o Nors k Norsk Regnesentral

Norwegian Computing Center
——g Regnesentral (+47) 22 85 25 00

nr@nr.no - WwWw.nr.no
NORWEGIAN COMPUTING CENTER

Functions added to
NRLIb

During internship on project SeismicForward

Note no SAND/11/11
Authors Marie Lilleborge

Date July 2011

== Norsk
e
- Regnesentral

NORWEGIAN COMPUTING CENTER

About the authors
Marie Lilleborge did a summer internship at NR in 2011.

Norsk Regnesentral

Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-profit
foundation established in 1952. NR carries out contract research and development projects in
the areas of information and communication technology and applied statistical modelling. The
clients are a broad range of industrial, commercial and public service organizations in the
national as well as the international market. Our scientific and technical capabilities are further
developed in co-operation with The Research Council of Norway and key customers. The
results of our projects may take the form of reports, software, prototypes, and short courses.

A proof of the confidence and appreciation our clients have for us is given by the fact that most
of our new contracts are signed with previous customers.

Norsk Regnesentral Bespgksadresse Telefon - telephone Bankkonto - bank account Internett - internet
Norwegian Computing Center office address (+47)22 852500 8200.01.48888 WWW.Nr.no
Postboks 114, Blindern Gaustadalléen 23A, B Telefaks - telefax Foretaksnr. - enterprise no. E-post - e-mail

N-0314 Oslo, Norway N-0371 Oslo, Norway (+47) 2269 76 60 NO 952125001 VAT nr@nr.no

Title

Authors

Quality assurance
Date

Year

Publication number

Abstract

Functions added to NRLib

Marie Lilleborge

<Insert quality assurance responsible here>
July 2011

2011

SAND/11/11

This is an overview and description of the C++ code I added to NRLib during my summer

internship at NR in 2011.

Keywords

Target group
Availability
Project number
Research field
Number of pages

© Copyright

SAND group
Open
676006
Seismic data
16

Norsk Regnesentral

i

1 Finding the convex hull of a set of points

Name: GetConvexHull

Member of class: PointSetSurface

Private functions added: AngleSort, RemoveEqualAngles

Input: Called from a PointSetSurface, which is a set of points with x, y and z-coordinates. The
GetConvexHull function treats the object as a 2D object, as only the x and y-coordinates are
used.

Returns: A polygon variable which contains the convex hull of the PointSetSurface the function
is called from. The Polygon points are listed counter clockwise, with the point with the lowest
y-coordinate first.

The algorithm implemented is the Graham’s Scan. Pseudo code for the Graham’s Scan
algorithm can be found in Thomas H. Cormen, “Introduction to Algorithms” (27 printing,
1990). The algorithm can also be found at http://en.wikipedia.org/wiki/Graham scan. The
convex hull of a set of points is the convex polygon that contains all points in the set, either on
the inside or along its boundary. Convex means that given any two polygon points, the line
segment between them are contained inside the polygon or along its boundary. The Graham’s
Scan uses the fact that the convex hull of a set of points always contains the point with the
smallest y-coordinate, and the points with the smallest and greatest polar angle with respect to
this point

The GetConvexHull function first finds the point with the smallest y-coordinate, call this point
pO. Then it uses AngleSort to sort the rest of the points according to the polar angle with respect
to p0, and then RemoveEqualAngles is called to remove the points that lie on a line segment
between p0 and another point. Recursively, in the nth loop, GetConvexHull finds the convex
hull of the first n points in the sorted list, together with p0. For each point added to the
candidate for the hull, it checks on whether the previous point, or points, needs to be deleted.

AngleSort is a kind of merge sort, which uses the sign of cross products to compare two points.
Cross product is also the tool used in RemoveEqualAngles. Both algorithm neglects the z-
coordinate of the points, since GetConvexHull looks for the convex hull of the points in the xy-
plane.

2 Check whether a polygon is convex, and a function to
make it convex if not

Name: IsConvex

Member of class: Polygon

Functions called by IsConvex: IsCounterClockwise

Input: Called from a Polygon variable, which is a set of points with x, y and z-coordinates. The
IsConvex function treats the object as a 2D object, as only the x and y-coordinates are used. The
points are assumed to construct a simple polygon.

Returns: A Boolean variable indicating whether the input represents a convex polygon or not.

Name: MakeConvex

Member of class: Polygon

Functions called by MakeConvex: IsConvex, IsCounterClockwise

Input: Called from a Polygon variable, which is a set of points with x, y and z-coordinates. The
MakeConvex function treats the object as a 2D object, as only the x and y-coordinates are used.
The points are assumed to construct a simple polygon.

Returns: Points are deleted from the input Polygon until it is convex.

A simple polygon is a polygon that is not self-intersecting.

Simple polygon Not a simple polygon

>

IsCounterClockwise loops over the Polygon points pi= (xi, yi) and calculates the quantity
S ExYie1 — Xi41Yi » which is positive if the polygon points are ordered counter clockwise and
negative if the Polygon points are ordered clockwise.

IsConvex loops the Polygon points, and uses the sign of cross products between neighboring
polygon corner vectors to check whether the Polygon is convex (if convex, all cross products
will have the same sign).

[vector a] x [vector from p2 to any point at
the yellow side]>0

[vector a] x [vector from pZ to
any point at the turquoise side]<0

MakeConvex is just an expansion of IsConvex, which deletes a point that makes a not convex
corner as long as the polygon is not convex. Note that this function is not designed to find the
convex hull of a point set, neither to make an arbitrary polygon convex. The GetConvexHull
algorithm in the PointSetSurface class is probably more efficient if more points need to be
deleted, and it has no assumptions on the order in which the points are listed. Also note that the
convex hull is a unique feature of a set of points, independent of the order. However,
MakeConvex might end up with different Polygons for different point orderings, since it
assumes that the input is a simple polygon.

3 Minimum area enclosing rectangle for a polygon

Name: MinEnclosingRectangle

Member of class: Polygon

Input: Called from a Polygon variable, which is a set of points with x, y and z-coordinates. The
IsConvex function treats the object as a 2D object, as only the x and y-coordinates are used. The
points are assumed to construct a simple polygon.

Returns: The variables x0, y0, length1, length2 and angle are called by reference. After the
function call, these variables are set to values that encode the minimum area enclosing rectangle
for the input Polygon. The angle parameter is the angle, in radians, the rectangle is rotated with
respect to the x-axis. This is always a number between zero and pi half. The x0 and y0
parameters are the coordinates of what would be the corner of minimum x-value and minimum
y-value if the rectangle was rotated angle radians backwards. In this position, aligned with the x
and y-axis, lengthl would be the length of the rectangle along the x-axis and length2 would be
the length of the rectangle along the y-axis.

caliper 2

<

>

caliper 3
| Jadijea

caliper 0

The algorithm implemented uses the idea of Rotating Calipers, as described in
http://cgm.cs.mcgill.ca/~orm/maer.html. The main idea of the algorithm is that the wanted
rectangle always has a side that is parallel to one of the polygon sides. Therefore, the algorithm
uses four unit vectors in the xy-plane, listed counter clockwise, and each normal to the previous

one. These vectors are the so-called calipers. In each step, one of them is parallel to one of the
sides of the polygon, and the extreme points of the polygon in the direction of each of the
calipers are calculated. These extreme points then describes the minimum area enclosing
rectangle aligned with the calipers, and the values corresponding to the currently found
rectangle of smallest area independent of angle are kept. After a rotation of pi half radians, all
candidate rectangles are checked, and we are done.

Finding the intercept between two pillars (equations used at the end)

Want the (min_x, min_y) corner, that is, the intercept between the extensions of “caliper 0” and
“caliper 3”. Let the coordinates of that corner be (x,y), the coordinates of the point at which
caliper i lies be (xi, yi), and denote caliper i by ci=[cix,ciy].

Weknow x = x3 +t*c3 =X +S*Cor and y = y3 + t *c3, = ¥y + 5 * ¢g, for some s and t.
Defining Ax=x3-xo and Ay=ys-yo, we get the linear system

Ax [Cox _C3x] N

Ay= Coy —C3zy *t

Since the determinant is
. T . s .
C3xCoy — C3yCox = €OS(cX) Sin (oc +E) — sin(«) cos (oc +;) = cos? x +sin? x=1,

the solution of the linear system is

S_[_C3y C3x] Ax
t L=Coy Cox Ay

Thus, we can write

X _ X3 + C3X(C0xAy - COyAX)
Y y3 + c3y(Coxly — CoyAX)

4 Find polygons around given area

Name: FindPolygonAroundActivePillars

Member of class: EclipseGeometry

Private functions added: SearchUp, SearchDown, SearchRight, SearchLeft

Input: Called from an EclipseGeometry variable, which contains an eclipse grid. It also takes a
z-value at which the polygons are to be constructed.

Returns: A Polygon at height determined by the input z-value. The Polygon may be consisting
of several nonintersecting simple polygons. The Polygon returned encloses the area of
intersection points between active pillars in the eclipse grid and the plane of points with the
given z-value. Each of the simple polygons is listed with the same point at the beginning as at
the end. If more than one simple polygon, the one with the lowest y-coordinate is listed first,
and between each new simple polygon this first polygon’s first point is added.

(To illustrate why this way it encloses only the necessary area, think of a draw-between-the-
numbers game.

g 7

.51)

Each eclipse grid has pillars; lines that cross the xy-plane once, and a list of z-values defining
the corners of the cells. Each pillar correspond to an index pair (i, j), and together with the
pillars corresponding to (i+1,j), (i+1,j+1) and (i j+1) it determines a column of cells. Each cell is
active or not, and a pillar is active if it's collinear with a side of some active cell. Considering
two pillars as neighbors if their index pair, (i, j1) and (iz, j2), haveli; — i,| + |j; — j2| = 1, we see
that the active pillars surround columns that contains some active cell. In the (i, j) grid we can
find “islands” of active pillars in the “ocean” of not active pillars. The algorithm finds the
simple polygons that encloses each of these islands, and at the end, it merges these into one (not
necessarily simple) polygon. Note that the algorithm does not assume any inactive nor any
active cells.

The FindPolygonAroundAdctivePillars algorithm searches through the pillars with a double for
loop over the indexes (i, j), looking for active pillars. Each time it finds a point on an until now
not discovered border line of an area of active pillars, it starts searching around this border,
constructing a simple polygon along the border pillar points with the given z-value. This search
around the border is done by the helper functions SearchUp, SearchDown, SearchRight and
SearchLeft. Since the original search through the pillars is done by a double for loop over (i, j),

10

we know that the first active point found has exactly two active neighbors. The one to the left
and the one underneath cannot be active, because if so, they would have been found earlier. We
also know that any active pillar has at least two active neighbors. The first method called is the
SearchUp method (but it could equally well have been the SearchRight method).

The idea behind the search around the border was a recursive search method: As long as you
haven’t reached where you started, you start the search again in the next point along the border.
Given that you name the direction of your last move forward (i.e. went from (i-1, j), now
standing in (i, j), forward is in the positive i-direction), you first try your left neighbor, then the
one in front, and at last your neighbor to the right. If one of the neighbors is accepted, you don’t
try the next one(s). This way, since each accepted neighbor is kept in a vector, when we reach
our starting point, this vector will contain a simple polygon containing all active pillars in that
area. A neighbor is accepted if the corresponding pillar is active, and the search methods are
named after what direction is considered as forward at the moment. Up is considered an
increase in the j-coordinate, and equivalently increasing i-coordinate is considered right and so

Second try: Just to compare, this would be
Choose this . [nird and !ast t_ry: SearchRight
= neighbor IF it & :ih_“'fs"' th_'s neighbor B -

e is active itis active = SEL. = 22
o c——)- o T =53
E First try: 2 .g 3 > :;.E

©3 | Choosethis | previous " § l +h

neighbor IFit , move " e
is active ‘Z;‘:‘-"

11

12

Why this algorithm works

Question: Couldn’t we potentially hit a previously visited point that is not the starting point?
Answer: First of all, since an active cell (in a column) is equivalent to the four corners (of the
column) being active, an active pillar always has at least two active neighbors that is not on
opposite sides of that given pillar. So the path around the active pillars will never have to go
back and forth along the same line (one active pillar => at least one active cell => four active
neighbors around that cell). So we know that the path we want is around a (nonzero) area. The
potential problem is if our way of choosing the next cell to search from could make us go to the
wrong neighbor. The only way this could happen is if we potentially could hit a
counterclockwise loop. Proof by contradiction:

Assume p is the first point to be visited twice. This is either the starting point (and then the
neighbor underneath is inactive) or WLOG (by symmetry) the first time we visited p was by the
SearchUp method. In both cases, the first time we visited p, the undiscovered neighbors are the
one to the left, say p3, the one over, p2, and the one to the right, p1. Toend up in a
counterclockwise loop, we could either go to pl and then revisit p from p3 or p2 the second
time, or go to p2 and arrive from p3 the second time. But none of these cases would ever occur:
The first case implies both p1 and either p2 or p3 active, which in turn implies that we would
not go to pl at the first move from p. The second case implies p2 and p3 active, which in turn
implies that we would move left from p the first time.

13

5 Find surface heights inside a rectangle for a given
layer

Name: FindLayerSurface

Member of class: EclipseGeometry

Private functions added: TriangularFilllnZValuesInArea, BilinearFilllnZValuesInArea,

FilllnZV AluesBy Averaging

Input: Called from an EclipseGeometry variable, which contains an eclipse grid. Three doubles
indicating xy-coordinates of one corner of the rectangle we want surface heights for, and its
polar angle. Other input: Layer number k, an integer indicating top or bottom layer (following
previous standard), a Boolean variable indicating whether the surface heights inside a cell
should be done by triangularization or by the bilinear formula. It also takes a Grid2d of doubles
to fill the surface heights into. Together with doubles indicating step lengths along the sides of
the rectangle, the size of the Grid2d gives the lengths of the sides of the rectangle.

Returns: The values in the Grid2d z_surface are being filled in by the surface height of the given
rectangle. Each entry (i, j) now contains the midpoint height of the (j, j)th cell constructed by
dividing the given rectangle into equal smaller rectangles of width dx and length dy.

FindLayerSurface loops all eclipse cells, and for each eclipse cell it fills out all entries in
z_surface that corresponds to a midpoint in that eclipse cell. The writing in z_surface is done by
TriangularFilllnZValues or BilinearFilllInZValues (which method that is to be used is chosen by
an input Boolean variable). While looping the eclipse grid the method also checks whether
there’s a fault along the i- and j-coordinates, respectively, by checking whether the neighboring
cells have the corresponding corners in common (whether they have the same x- and y-
coordinates). If a fault is detected between two cells, the gap between them is filled as if it was
an eclipse cell with heights from the (just mentioned) neighboring (real) eclipse cells.

TriangularFilllnZValues divides the four-sided eclipse cell into two triangles by Delaunay
decomposition in the xy-plane:

VA
Possible line to make two
triangles. Keep if
| ngIeI + angleZ<=Pi

If not: Use this line

anglel

o

Inside each triangle it fills out ‘the height of the plane determined by the corner points’ in each
(i, j) cell of z_surface that corresponds to xy-coordinates inside the triangle. This is done by
member functions of the Triangle class.

14

BilinearFillInZValues calculates height of midpoints using to member functions of the
BilinearSurface class.

In common for BilinearFilllnZValues and TriangularFilllnZValues:

We are given a polygon described by its four corner points, and a rectangle R (in some sense
equivalent to a grid we want to write values to). To loop over the entries of the R-grid more
easily, a linear transformation (i.e. rotation) of the coordinates of the polygon corners are done
s.t. the coordinate axis are parallel to the rectangle sides. From these coordinates we find the
extreme x- and y- values of the polygon (i.e. a rectangle S which contains the polygon that also
has the same polar angle as R). Then we loop over the intersection of S and R to fill in the entries
that lies inside the polygon we started with.

Eclipse grid
Rectangle R

Eclipse cell
with corresponding:

Rectangle S

» Midpoints of the
R -grid that will be
written to

FilllnZValuesByAveraging starts in the “center of mass” of the entries in z_surface that has
written a value to it. Then it works outwards in squares of increasing “radii”: For each entry
that has not got a value written to it yet, the average of the values written to its neighbors is
filled in. This routine is done in case R has some nonempty intersection with the compliment of
the eclipse grid for the given layer. If this occurs, we set the values outside the eclipse grid by
using this method. If the intersection is empty or all of R, the algorithm will not write any
values to z_surface.

15

6 Other changes | made to the Visual Studio project

In some of the .h or .cpp files I had to include some NRLib .h or .cpp files, these #includes are
all marked with //M at the end (probably no need for it, but just in case).

I also edited the SeismicForward member function FindVpAndR.

Changes:

1. Delaunay Decomposition to make triangles (no longer always a triangle consisting of pt1, pt2
and pt4)

2. Limiting which entries in vpgrid we need to check if is inside the eclipse cell (same idea as in
the FindLayerSurface routine.

3. Filling out values corresponding to “frame” (inside eclipse grid, but outside midpoints of the
outermost eclipse grid cells). These values are filled out by mirroring out values to the outside
of the eclipse grid, and then filling out unwritten values on the inside by triangulating:

mirrored points
Eclipse grid

Area inside red polygon
is already treated by
existing routine

16

