### **SIP** Peering

Lars Strand PhD student



Workshop @ HPI March 2010



## SIP

- Session Initiation Protocol (SIP) is the *de facto* standard signaling protocol for VoIP
  - Application layer (TCP, UDP, SCTP)
  - Setting up, modifying and tearing down multimedia sessions
  - Not media transfer (voice/video)
  - Establishing and negotiating the *context* of a call
- RTP transfer the actual multimedia
- SIP specified in RFC 3261 published by IETF 2002
  - First iteration in 1999 (RFC2543) over ten years old
  - Additional functionality specified in over 120 different RFCs(!)
  - Even more pending drafts...
  - Known to be complex and sometimes vague difficult for software engineers to implement
  - Interoperability conference "SIPit"



VoIP Signaling RFC Pages (excl. obsoleted RFCs)



### SIP message syntax - INVITE

| Start line                    | INVITE sip:bob@NR SIP/2.0                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Message<br>headers            | <pre>Via: SIP/2.0/UDP 156.116.8.106:5060;rport;branch=z9hG4b2<br/>From: Alice <sip:alice@nr>;tag=2093912507<br/>To: <sip:bob@nr><br/>Contact: <sip:alice@156.116.8.106:5060><br/>Call-ID: 361D2F83-14D0-ABC6-0844-57A23F90C67E@156.116.8<br/>CSeq: 41961 INVITE<br/>Max-Forwards: 70<br/>Content-Type: application/sdp<br/>User-Agent: X-Lite release 1105d<br/>Content-Length: 312</sip:alice@156.116.8.106:5060></sip:bob@nr></sip:alice@nr></pre> |
| Message body<br>(SDP content) | v=0<br>o=alice 2060633878 2060633920 IN IP4 156.116.8.106<br>s=SIP call<br>c=IN IP4 156.116.8.106<br>t=0 0<br>m=audio 8000 RTP/AVP 0 8 3 98 97 101                                                                                                                                                                                                                                                                                                   |



### SIP example Direct call UA to UA



- Caller must know callee's IP or hostname
- No need for intermediate SIP nodes
- Problems:
  - Traversing firewalls / NAT
  - Must know IP/hostname of user
  - Mobility change IP/hostname



### SIP example



time

## Global reachability?

- SIP has won the "signaling battle" (over H.323)
  - (like SMTP won over X.400)
  - SIP incorporates many elements from HTTP and SMTP
- Design goal: Global reachability like SMTP
  - We call this the "email model"
- SIP has reached deployment worldwide
  - VoIP has reached high penetration both in companies and for ISP customers
  - But very few open SIP servers like originally planned
  - Why?



# SIP follows an "email alike model"

1) Email and SIP addresses are structured alike

- username@domain
- address-of-record (AoR): sip:alice@example.com
- 2) Both SIP and email rely on DNS
  - Map domain name to a set of ingress points that handle the particular connection
- 3) The ingress points need to accept incoming request from the Internet
- 4) No distinction between end-users and providers
  - Any end-user can do a DNS lookup and contact the SIP server directly
- 5) No need for a business relationship between providers
  - Since anyone can connect
- 6) Clients (usually) do not talk directly to each other often one or more intermediate SIP/SMTP nodes
- Read more: RFC 3261 and RFC3263



## Why has the email model failed?

#### **1) Business** – "sender keeps all" $\rightarrow$ breaks tradition

- The traditional economic model is based on termination fee
- Since anybody can connect to anybody, no business relationship is needed
- No (economical) incentives for providers to deploy open SIP servers providers

#### **2) Legal requirements** $\rightarrow$ written for PSTN

- Operators must comply to a wide range of regulatory requirements
- Example: Wiretapping, caller-id, hidden number, emergency calls, etc

#### 3) Security considerations

- A) Unwanted calls (SPIT)
- B) Identity
- C) Attack on availability (DoS)



# A) Unwanted calls (SPIT)

- Hard unknown attack vector
  - When there are enough open SIP servers, attackers will start to exploit them
  - Low amount of SPIT today (because few open SIP servers)

#### Worse than SPAM

- Content only available after the user picks up the phone = harder to filter and detect than email
- Users tend to pick up the phone when it rings = disruptive (users can choose when to check their email)
- A number of SPIT mitigation strategies has been proposed (active research)
- The research project "SPIDER" looked at SPIT
  - Good informative deliverables
  - Project finished

"We're afraid of SPIT, so we don't have open SIP Servers"



# B) Identity

#### PSTN

- Provide (reasonable) good caller-id
- Providers trust each others signaling
- SIP's email model breaks this
  - Anyone can send
  - SIP (INVITE) easily spoofed
- The SIP authentication is terrible
  - Modeled (copied) after HTTP Digest authentication
  - SIP also support TLS (and certificate authentication) but very limited deployment
- "SIP Identity" tries to fix this (RFC4474)
  - Rely on certificates
  - Not based on transitive trust between providers
  - No one uses this

# "Since SIP has so poor identity handling, we don't want to expose our SIP servers to the Internet"



# C) Attack on availability (DoS)

#### • Denial of Service (DoS) attacks are HARD!

- Simple and effective: Send more bogus traffic than the recipient can handle
- No simple solution to prevent DoS



- Example: DDoS for sale The ad scrolls through several messages, including
  - "Will eliminate competition: high-quality, reliable, anonymous."
  - "Flooding of stationary and mobile phones."
  - "Pleasant prices: 24-hours start at \$80. Regular clients receive significant discounts."
  - "Complete paralysis of your competitor/foe."

Reference: http://isc.sans.org/diary.html?storyid=5380

#### "We're terrified to become a victim of a DDoS attack"



### So, what is the result?

### **Providers do NOT have open SIP servers**

### All non-local calls are sent to the PSTN

### Why is that a bad thing?



SIP Peering - Lars Strand

### Disadvantages

1) Administrative overhead – more systems to keep track of

- IP-to-PSTN gateway
- 2) More expensive than "SIP only"
  - Must pay a termination fee to the PSTN provider
  - Must maintain the IP-to-PSTN gateway
- 3) Poor(er) voice quality
  - Voice must be transcoded from G.711 to the PSTN (and back again)
  - Can not use wide-band codecs, like G.722 that provides superior sound quality ("HD sound")
- 4) Only applies to voice miss out other functionality that SIP supports
  - IM, presence, mobility, etc.



# **SIP** Peering

- Peering overcome these disadvantages
- Do not need an open SIP server on the Internet
- Industry has started to do this ad-hoc
  - But not standardized in any way



## SPEERMINT

- IETF has recognized that SIP Peering must be standardized
  - (New) Working Group (WG) will fix that
  - "Session PEERing for Multimedia INTerconnect" (SPEERMINT)
- Goal:
  - Identify architecture requirements
  - Discuss security considerations
  - Define best practices for SIP peering
  - "Get SIP to work reliably in a worldwide deployment"
- Documents:
  - RFC5486: Session Peering for Multimedia Interconnect (SPEERMINT) Terminology
  - RFC5344: Presence and Instant Messaging Peering Use Cases
  - And several drafts pending

### SPEERMINT architecture





# Telephone number mapping (ENUM)

- Example: +47 2134 5678
  - How do we find the domain name and route the request?
- E.164 NUmber Mapping (ENUM)
  - Telephone numbers are organized in the E.164 standard
  - IP adresses on Internet uses DNS
  - E.164 + DNS = ENUM
- New DNS zone: e164.arpa
  - example: tel:+47 2123 4567  $\rightarrow$  7.6.5.4.3.2.1.2.7.4.e164.arpa  $\rightarrow$  DNS lookup
- Originally planned to be global
  - All the world (PSTN) phone numbers should be reachable via ENUM
  - (Part of the "email model" of SIP)
  - Did not happened
- Used locally within SSP and between peers



### Peering scenarios

- 1) **Static** peering between SSP1 and SSP2 is preprovisioned independent of any SIP sessions between users
- 2) Ondemand peering is established when a SIP session between SSP1 and SSP2 are needed
- A) Direct direct peer between SSP1 and SSP2
- B) Indirect or transit via an intermediate SSP
  - In combination with assisted LUF/LRF
  - XConnect



### Federation

"A group of SSPs which agree to receive calls from each other via SIP, and who agree on a set of administrative rules for such calls (settlement, abuse-handling, ...) and the specific rules for the technical details."





### Further work

- Identity? Is it solved by peering?
  - a) SIP Identity (RFC4474)  $\rightarrow$  Require PKI
  - b) Transitive trust between SSPs? (Combine RFC3324 and RFC3325)  $\rightarrow$  Utopian?
  - c) Multi-factor authentication?
  - d) Web-of-trust? (aka PGP)
- SPIT? Is it solved by peering?
- **DDoS?** Is it solved by peering?

Some discussion in *"SPEERMINT Security Threats and Suggested Countermeasures"*, IETF draft pending.



# Thank you



Project homepage: http://eux2010sec.nr.no



SIP Peering - Lars Strand