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Abstract

The management of urban green structure has received much attention lately in the research
community. The present project was initiated to meet the need of municipalities in Norway to
develop a green structure plan. Traditional mapping has its limitations, since the land use is in
focus and not the actual land cover. Therefore, other sources of information about urban and
suburban green structure are being sought.

The purpose of this study is to discuss the current state of the art of classification methodology
for high resolution remote sensing imagery in the context of urban green structure, and to
suggest possible improvements of an existing classification algorithm, implemented in
Definiens Developer. In this report, several methods are presented, with no concern of whether
they can be implemented with Definiens Developer or not. Experiments are needed in order to
get an indication on which of the approaches can be used.

The scope is very wide, and with no focus on budget limitations. Obviously, the cost and
ambition of an improved automatic green structure classification and measurement system
must be taken into account when selecting from the different methods and alternatives
presented.
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Excecutive summary

The management of urban green structure has received much attention lately in the research
community. The present project was initiated to meet the need of municipalities in Norway to
develop a green structure plan. Traditional mapping has its limitations, since the land use is in
focus and not the actual land cover. Therefore, other sources of information about urban and
suburban green structure are being sought.

Geodatasenteret AS, Arendal, Norway, has a contract with the Norwegian Space Centre to
develop a prototype for a service for monitoring of urban green structure, with the Norwegian
Computing Center as a subcontractor. In phase one of the project, Geodatasenteret developed
an automatic classification method, implemented in Definiens Developer. The Norwegian
Computing Center performed an evaluation of the detection result.

The purpose of this study is to discuss the current state of the art of classification methodology
for high resolution remote sensing imagery in the context of urban green structure, and to
suggest possible improvements of the existing classification algorithm, implemented in
Definiens Developer. In this report, several methods are presented, with no concern regarding
whether they can be implemented in Definiens Developer or not. Experiments are needed in
order to get an indication on which of the approaches can be used.

The choice of methods is to a large extent influenced by what remote sensing and other data is
available. Clearly, in order to observe changes over time, repeated acquisitions are important,
preferably by the same sensor. If different sensors are being used, then, in general, a new
automatic classification algorithm has to be developed. At best, an existing algorithm can be re-
trained on data from the new sensor.

However, there is no guarantee that an algorithm that was trained on one single acquisition
from one sensor will perform well on another image acquisition from the same sensor. Imaging
conditions may have changed, due to varying atmospheric conditions, including varying
presence of aerosols, haze; sun elevation, and time of the day. Also, seasonal variations within a
year and between years, often referred to as phenological variation, alter the spectral and
textural properties of vegetation. Also, the time since rainfall, and temperature and humidity
variations adds to the variability. It is therefore important to use methods that compensate for
these variations in one way or another, and to include training data that reflect the typical
variations that one may encounter in the operational setting.

Another problem is the presence of clouds, which obscures parts of the scene. This means that
multiple image acquisitions may be necessary to ensure full ground coverage.

Phase one of the project clearly demonstrated that Quickbird imagery is a relevant source of
information for urban green structure assessment, and provided repeated acquisitions are
made, one could expect to be able to monitor and quantify changes. However, shadows from
trees and buildings create problems for the segmentation and classification methods. If lidar
data is available, the location and extent of these shadows may be predicted, and corrected for.
Cloud shadows are much larger, and they may be detected as separate classes. If multiple
image acquisitions are available, even with another sensor, they could be used to confirm if it is
a cloud shadow or not, and help in calibrating the expected reflectance in non-shadow

State of the art of classification methodology m% 7



conditions. Even without any extra images, it might be possible to model the changed
illumination conditions in shadows.

Very high resolution images of urban areas have green structure textures on different scales.
This indicates that a multiscale approach should be considered. The multiscale approach could
be applied at the pixel-level feature extraction, segmentation, segment-level feature extraction,
and classification stages. One could use an image pyramid approach, in which 2x2 pixels are
merged at the next coarser resolution, ore one could use a smaller number of fixed scales, e.g.,
three or four, corresponding to the pixel level, individual tree crown/small house level, the
garden level, and/or the land use area level. With the latter approach, one needs to estimate the
relevant scales.

As features, one could use texture features, the multispectral pixel values, and multispectral
band ratios and indexes, all computed at all (selected) scales. At the finest scale, the
multispectral pixel values could be taken from a pansharpened multispectral image of the same
resolution as the panchromatic image. One alternative is to implement most or all of the texture
features and multispectral features mentioned in Section 2, and to use a feature selection
method to reduce the number of features. It might be that different feature subsets are selected
at different scales. For feature selection, either the sequential forward floating selection method,
or the adaptive floating search method could be used. Since one might expect the best feature
subsets to be dependent on scale, the process must be repeated for all scales.

One possibility is to do initial segmentations independently on different scales. Next, the
segment boundaries at a coarser scale can be adjusted to use the segment boundaries at a finer
scale. At the finest scale, the house and road outlines from GIS could be used as recommended
segment borders. At the same time, tree canopies overlapping buildings and roads should be
mapped. However, perhaps it does not matter if a tree canopy is divided into two or more
segments, as long as the individual parts are merged later. At a coarser scale, land use
categories from GIS could be helpful, while at the same time allowing for changes that may
have occurred after the GIS layers were made.

The goal of the multiscale classification is obviously to extract meaningful entities from the
image. At the finest scale, one would like to extract regions corresponding to individual trees,
small grass areas, individual houses, garden furniture, etc. On a coarser scale, one would like to
separate residential areas from large open grass land, public parks, forests, etc.

As complementary information to the classified image, one may compute key parameters
within each segment or another suitable unit, e.g., percentage tree cover, percentage grass
cover, percentage grey areas, average tree distance.

In conclusion, this document reviews the state of the art of recent research relevant to the
classification of urban green structure from Quickbird images, and suggests possible methods
that may be used in an improved classification system. However, experiments are needed in
order to get an indication on which of the approaches should be used.

The scope is very wide, and with no concern regarding budget limitations. Obviously, the cost
and ambition of an improved automatic green structure classification and measurement system
must be taken into account when selecting from the different methods and alternatives
presented. There is no individual technique that stands out as the single best solution; rather, a
combination of techniques could be used.
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1 Introduction

The management of urban green structure has received much attention lately in the research
community (e.g., see Caspersen and Olafsson, 2009; Vallejo et al., 2009; Uy and Nakagoshi, 2008;
Nilsson et al., 2007). The present project was initiated to meet the need of municipalities in
Norway to develop a green structure plan. Traditional mapping has its limitations, since the
land use is in focus and not the actual land cover. Therefore, other sources of information about
urban and suburban green structure are being sought.

Geodatasenteret AS, Arendal, Norway, has a contract with the Norwegian Space Centre to
develop a prototype for a service for monitoring of urban green structure, with the Norwegian
Computing Center as a subcontractor. In phase one of the project, Geodatasenteret developed
an automatic classification method, implemented in Definiens Developer. The Norwegian
Computing Center performed an evaluation of the detection result.

A municipality is interested in a green structure plan for several reasons:

1. To map current status of green areas and their changes over time. For example, what
happens with the vegetation in public parks over time, even if the mapped land use
does not change?

2. To maintain biological diversity. Different species or groups of species use different
varieties of green structure as corridors. For example, small birds would avoid open
areas, and need a corridor of trees to move safely. In open areas, they would expose
themselves to predators.

3. Green structures are being used for recreation.

4. Vegetation converts carbon dioxide to oxygen, reduces noise, and has aesthetical value.
Vegetation also binds water, reducing the prospect of floods after heavy rainfall.

5. If accurate, the green structure map can be used in overlays

The green structure includes private gardens. Although not accessible to the public, private
gardens containing trees contributes to items 2 and 4 above.

Forest and farmland are not in the focus of this study, since they are well mapped, and the land
cover aligns well with the land use classification of traditional mapping.

The purpose of this study is to discuss the current state of the art of classification methodology
for high resolution remote sensing imagery in the context of urban green structure, and to
suggest possible directions for improvement. Earlier in this project, a prototype automatic
classifier has been developed in Definiens Developer, which uses a hierarchy of classification
rules to classify a Quickbird image into three vegetation classes and non-vegetation:

1. Trees

2. Grass

State of the art of classification methodology m% 9



3. Little vegetation
4. Grey areas
5. Water, unknown, or missing data
The classification result has been validated, and the conclusions were (Trier, 2009):
1. Segmentation borders were very rugged
2. Leaving the segmentation problems aside, the classifier had a 9% misclassification rate
in the two class problem ‘grey area’ versus ‘green area’. This is a very good basis for

further improvement.

3. Itis unclear if the automatic method can be used on another image with different light
conditions, e.g., with the presence of clouds and light haze.

In this report, several methods are presented, with no concern of whether they can be
implemented with Definiens Developer or not.

The rest of the report is organized as follows: Section 2 reviews the current methodology,
relevant to, but not restricted to, classification of high resolution remote sensing imagery of
urban green structure. These methods are discussed in section 3 in the context of improving the
current classification algorithm. The report ends with a conclusion in section 4, and a list of
references to the research literature.
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2 Current methodology

This section presents recent research relevant to the classification of vegetated areas in urban
landscapes.

2.1 Multispectal pixel values

In low to medium resolution images (e.g., MODIS and Landsat), the multispectal pixel values
themselves have been widely used as features for classification. As an alternative, spectral band
ratios or other band combinations have been used to eliminate varying illumination conditions
from one image acquisition to another, or within an image. However, for high resolution
images (e.g., Quickbird), the individual pixel values themselves can not always be reliably
classified without considering the context, or local neighborhood, e.g., the texture in a local
neighborhood. Some sort of segmentation might be needed before classification can take place.

2.2 Spectral mixing

Tooke et al. (2009) use spectral mixing analysis to extract vegetation characteristics in urban
areas from Quickbird images. Lidar data is used to estimate shadows in the Quickbird image. A
principal component analysis was performed to convert the four-band input space to three

dimensions, which were interpreted as ‘vegetation’, “high albedo substrate” and ‘dark’
endmembers in a linear mixing model:

Ri = ijrij + ¢,
=
and
0<> f,<1
j=1

where Riis the total pixel reflectance for input image band i, fj is the endmember image fraction,
rij is the reflectance of image endmember j at band i, n is the number of endmembers, and «i is
the residual error for band i. In Tooke et al.'s (2009) approach, the number of possible
endmembers equals the number of bands minus one.

Decision trees were used to classify pixels into four vegetation classes and a non-vegetation
class:

1. Manicured grass cover

2. Mixed ground vegetation, including wild, herbaceous and dry.
3. Evergreen trees

4. Deciduous trees

5. Non-vegetation (including shadow and soil)
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The threshold values used in the decision trees were calibrated from field observations.

Small and Lu (2006) used spectral mixing analysis to estimate urban vegetation abundance from
Landsat images. Three endmember classes were used: vegetation, substrate, and dark.
Calibration and verification was done with Quickbird images.

Stow et al. (2003) used NDVI thresholding followed by spectral mixing analysis to map
irrigated vegetation from Ikonos images. The spectral mixing analysis had the following
endmembers: (1) green vegetation, (2) soil and impervious materials, and (3) shade. A simple, 3
x 3 variance metric was used to measure texture in the 1 m resolution panchromatic band, this
was used to separate medium-to-high vegetation (trees and shrubs) from low vegetation
(grass). A decision tree classifier was implemented in the Expert classifier module of the Erdas
Imagine software.

Leboeuf et al. (2007) used the shadow fraction to estimate the above ground biomass in boreal
forests in Canada from Quickbird images. There was a positive correlation between biomass
and shadow fraction, which can be expected when the forest is not too dense.

2.3 3D models from overlapping aerial photos

Iovan et al. (2008) uses 20 cm ground resolution multispectral aerial images to detect,
characterize and model vegetation in urban areas, in a four step approach. The images have
four bands (blue, green, red and near infrared) and 60% overlap both within-strip and between-
strip. The first step is to extract vegetation areas, using supervised classification with a support
vector machines classifier. The recognition performance is much better than using NDVI (98.5%
versus 87.5%), but the support vector machines classifier has to be re-trained each time the
image acquisition conditions change. The second step is based on a digital surface model, which
is obtained from the overlapping images. Local height variance was computed using an 11 x 11
neighborhood, and the vegetated areas from step 1 were divided into grass and trees by
thresholding the local height variance image. In step three, individual tree crowns are
delineated, using as seed points the local maxima of a smoothed version of the digital surface
model. In step four, simple parameters such as tree height and crown diameter were extracted.
In the final step, texture features are used for supervised classification of tree crowns into tree
species using support vector machines. The following texture measures were computed within
each delineated tree crown: mean, standard deviation, range, angular second moment, contrast,
correlation, entropy, and inverse difference moment. Several of these can be computed from the
grey level co-occurrence matrix (Haralick et al., 1973).

2.4 The use of low resolution satellite images

There are several products based on low resolution imagery, such as MODIS (250 m resolution).
The 500 m resolution MODIS vegetation continuous field tree cover product is a yearly product
that gives a percentage canopy cover for each pixel. Montesano et al. (2009) validated the year
2005 MODIS vegetation continuous field tree cover product in the taiga-tundra transition zone
in the northern hemisphere. This area includes the northern limits of the boreal forest. The
study area was divided into seven regions, with the Nordic countries and the Kola peninsula
being one region. The evaluation was done using Quickbird images. The MODIS vegetation
continuous field tree cover product was found to be over-estimating tree cover values in areas
with low percent tree cover. Further, in the Nordic countries plus Kola peninsula region, the
MODIS product did not perform well. We think that this does not necessarily mean that MODIS
is not suitable for estimating percentage tree cover in the Nordic countries. Rather, one will
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have to use an alternative algorithm to derive percentage tree cover from MODIS images in the
Nordic countries.

2.5 Vegetation indexes
As an alternative to using the multispectral pixel values as features directly, one can use band
ratios or other combinations of the spectral bands.

Eklundh et al. (2009) mapped insect damages in pine forests from MODIS time series. They
estimated leaf area index from the wide dynamic range vegetation index, WDRVIL. WDRVI is
based on the normalized difference vegetation index, NDVI. NDVI is popular for extracting
vegetated areas; however, it reaches a saturation level, so the WDRVI is better for, e.g., leaf area
index estimation in dense forest. NDVI is computed from the red (R) and near infrared (NIR)
bands as

NIR - R

NDVI= ———
NIR + R

WDRVI can be computed from NDVI as

(¢ +)NDVI + (o - 1)

WDRVI = /
(a —=)NDVI + (a +1)

or, equivalently, directly from the near infrared and red bands (Gitelson, 2004) as

o-NIR—-R

WDRV] = —————
a-NIR+R

The parameter value for a must be selected. a is usually between 0.05 and 0.2, and a=0.2 is a
good starting point.

Jin and Sader (2005) used the normalized difference moisture index, NDMI, to detect forest
disturbances in Landsat images. NDMI is based on the near infrared band (Landsat band 4) and
the short wave infrared band (Landsat band 5):

NIR(4) - SWIR(5)
NIR(4) + SWIR(5)

NDMI =

There are many other spectral vegetation indexes (e.g., see Tucker, 1979; Perry and
Lautenschalger, 1984; Ji and Peters, 2007), including green NDVI (GNDVI) and green
atmospherically resistant vegetation index (GARI) (Gitelson et al, 1996), and visible
atmospherically resistant index (VARI) (Gitelson et al., 2002). GNDVI uses the green (G) band in
place of the red band used in NDVI:

NIR -G
NIR +G

GNDVI =

GARI uses atmospherically corrected versions of the blue (B), green (G), red (R), and near
infrared (NIR) bands:

State of the art of classification methodology m% 13



NIR"—(G"-A(B"-R"))
NIR"+(G"-A(B"-R"))

GARI =

A is a parameter that controls the atmospheric correction. VARI uses only visible bands, and the
original spectral bands:

VAR]:—G_R
G+R-B

VARI was found to be very little affected by atmospheric effects (Gitelson et al., 2002).

2.6 Textural features
A number of textural features have been described in the literature, including

1. Wavelet filter features

2. Gabor filter features

3. Granulometry features

4. Priority sequence Gaussian Markov random field
5. Fractal features

6. Grey level co-occurrence matrix features

7. Local statistics

Due to the curse of dimensionality effect (e.g., see Jain and Chandrasekaran, 1982), one will
often have to select a subset of the above texture measure methods. Some studies have
investigated which texture measures perform the best in different applications.

Ohanian and Dubes (1992) evaluated the performance of four different classes of textural
features: grey level co-occurence features, Markov random field features, Gabor filter features,
and fractal features. For the test images they used, the gray level co-occurrence features
performed the best, followed by fractal features, but they point out that there is no universal
best features. Rather, feature selection has to be performed for each specific application or
problem. Clausi and Deng (2005) noted that grey level co-occurrence features captured high
frequency information in the textures well, whereas Gabor filters are better at capturing lower
and mid frequency information in the textures. Solberg and Jain (1997) used feature selection
(Whitney, 1971; also, see Section 2.11 below for alternatives) to combine features derived from
different texture models: grey level co-occurrence, local statistics, fractal features, and
parameters of lognormal field models.

Aksoy et al. (2010) detected strips of tree vegetation in agricultural landscapes from Quickbird
images. First, non-vegetation areas were eliminated by thesholding of the NDVI image. Next,
pixel-based image classification was done. For this, two different multiscale texture measures
were used on the panchromatic band: Gabor wavelet features (Manjunath and Ma, 1996) and
granulometry features (Soille, 2002). In addition, the multispectral values of the pansharpened
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image were used as features. The sequential backward selection algorithm (Marill and Green,
1963; Duda et al., 2000) was used to reduce the number of features from 20 to 9. The pixel-based
image classification divided the vegetated areas into woody and non-woody. Then,
skeletonizing was used to identify elongated objects with thickness between two threshold
values.

To obtain rotation invariance, at each pixel, Aksoy et al. (2010) used the maximum value of all
Gabor wavelet filters with different orientations at a given scale, and used six scales, resulting
in six features at each pixel.

For the granulometry features, Aksoy et al. (2010) used five different disk structuring element
radii: 1, 3, 5, 7, and 9; combined with granulometry by closing and granulometry by opening,
this gave 10 features at each pixel.

Chellappa and Chatterjee (1985) introduced Gaussian Markov random field texture features.
Zhao et al. (2007) used what they called “priority sequence Gaussian Markov random field”-
based texture features for classification of land cover types in Ikonos and Spot-5 images. They
observed that residential areas are difficult to detect by spectral pixel values as features, because
of high variance and low correlation. The lowest order variance texture feature was effective for
residential area extraction.

2.6.1 Wavelet filter features

Lucieer and van der Werff (2007) extracted wavelet texture features from the panchromatic
band of a Quickbird image, and combined them with the multispectral pixel values for land
cover classification. A 16 x 16 pixels neighborhood in the panchromatic band, centered on a
multispectral pixel, was used for wavelet decomposition, based on the Daubechies wavelet
(Daubechies, 1988; Antonini et al., 1992). The highest resolution wavelet decomposition on the
16 x 16 pixels subimage has 64 coefficients. From these, the following features were computed:
standard deviation, skewness, kurtosis, entropy, and energy.

2.6.2 Gabor filter features
Ohanian and Dubes (1992) used four directions and four frequencies, resulting in 16 Gabor
filters. The averages of the filtered images were used as features, 16 in total. The Gabor filters

are expected to discriminate textures with different orientations and/or different frequencies.

A Gabor filter in 2D is a sinusiodal plane wave, with frequency 6 and orientation p, modulated
by a Gaussian envelope (Ohanian and Dubes, 1992; Manthalkar et al., 2003):

1,0 V2
P 2
y

h(x, y; 0, p) = cos(276u)e 2(273 7,
where

u=xC0Sp and v=ysin p.

We will then use n different filters

h,=h(x,y,0,,p,), 0<j<n
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resulting in n filtered images
— J* ;
]j =7 hj, 0<j<nm
where “*’ denotes convolution, and I is the input image.

Ohanian and Dubes (1992) used the average absolute deviation of the zero-mean filtered images
I; as features:

1 N N
/i :FZZ‘IJ(X’J’)‘

x=1 y=1

Ohanian and Dubes (1992) computed the features for 32 x 32 subimages, using four orientations
0%, 45°,90°, and 135°, and four frequencies 1/16, 1/8, 1/4, and 1/2.

2.6.3 Granulometry features

Granulometric features can be extracted from the panchromatic band by grey scale
morphological opening and closing operations. Granulometry by opening in effect removes
bright grains smaller than the structuring element, whereas granulometry by closing removes
similarly small dark grains. Aksoy et al. (2009) used disk structuring elements of radii 1, 3, 5, 7,
and 9. Local granulometric features were computed as the sum within sliding windows, for
each of the opened and closed images. We suggest that mean values be used instead of sums.
For the Quickbird images, we would need to consider if the number of grey level values should
be reduced prior to applying the opening and closing operations.

2.6.4 Grey level co-occurrence features
For the grey level co-occurrence features, Ohanian and Dubes (1992) used a distance of one
pixel only, and four angles (0, 45, 90 and 135 degrees). Four features for each angle were
extracted:

1. angular second moment

2. contrast

3. correlation

=

entropy
Solberg and Jain (1997) used the same four angles, but a 9 x 9 window (instead of a 3 x 3
window) for the computation of the co-occurrence matrix. They used the following additional
features:

5. cluster shade

6. inertia

7. inverse difference moment
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The grey level co-occurrence features are expected to capture high frequency information in a
texture.

A grey level co-occurrence matrix looks at all pixels in an image that are separated by a fixed
distance d at a fixed orientation &, and counts the number of occurrences for all possible pairs of
grey level values, (i,j). These counts are divided by the total number of pixel pairs separated by
the distance d at the direction a, N(d,ct). For texture analysis, the image in question is usually a
small subimage, so, to get reliable estimates, the number of grey levels is usually reduced to a
very few, e.g., Ng = 8. The dimension of the grey level co-occurrence matrix is then Ng x Ng. The
elements of the Ng x Ng matrix P(d,a) are defined as

It is common to use only one distance, d = 1, and four directions a=0°, 45°, 90°, and 135°. To
obtain rotation invariance, the average over all directions can be taken, resulting in only one co-
occurrence matrix P, with elements:

A
P(i, j) Z—ZP(z,j;l,ai),
a i=1

where 7. is the number of angles.

Ohanian and Dubes (1992) computed features from four directional co-occurrence matrices
P(1,a), while Solberg and Jain (1997) used the single, rotation invariant one, P.

From the co-occurrence matrix, a number of features can be extracted. Haralick et al. (1973)
suggested 14. Solberg and Jain (1997) used four of these, and two additional ones. In the
expressions below, P can be either one of the directional co-occurrence matrices, or the rotation
invariant one. In the context of urban green structure, it makes sense to use rotation invariance.
1. angular second moment
2 PG J)
i,j

2. contrast

Zn > P(i, ))

n=0 ‘i—j‘:n

3. inverse difference moment
Z p(i,j )
1+(i—
4. entropy

=2 P(i. )og(P(i. /)
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5. 1inertia

2= ) PG.J)

6. cluster shade
D+ j—p,—u,) PG, j)
i,j
where

Ng-1 N, -

po= 212 PG )

i=0

and

N,-1 N -

1
H= D j D PG j)
j=0 =0
7. correlation

1 L
G—LZUP(la])—ﬂxﬂyJ

<Oy i

2.6.5 Markov random field features

An image pixel and its eight neighbors can be modeled as a Markov random field. The grey
tone of image pixel ¢ is modeled as a random variable X:. The conditional probability
distribution of an observed value x: for X: is P(Xi=xi| R:), where R: is the grey levels of the
neighboring pixels. Below, G is the number of grey levels in the image.

—1)1
P(x,|R)= %q L)
where
_ e’
S lteT
and

T= z 0.(x,, +x,,

It is common to reduce G, the number of grey levels in the image, to a small number in order to
obtain numerical stability. Ohanian and Dubes (1992) used G = 4. Also, the number of neighbors
is usually kept small. Ohanian and Dubes (1992) used eight neighbors, meaning that r varied
from 1 to 4 in the sum in the equation for T above. The parameters 0: are estimated and used as
features.

18 m% Urban green structure



If a larger number of grey levels is desired, say, G>8, then one may use Gaussian Markov
random field, instead of the discrete Markov random field described above.

2.6.6 Gaussian Markov random field
The following description is based on Zhao et al. (2007). In a Gaussian Markov random field
model, the grey level value of a pixel t has a conditional probability density function

1 —z—lv{f(s)—u—zﬁv)(f(w)—m
P(f(f)|f1e(f))=ﬁe =

where

Fo@ ={f(t+7)|r € R} is the set of grey level values of the neighbor pixels of £, 1 is the

mean value of the entire image, f(r) are the modeled parameters, and v is the conditional
variance.

At the same time, the grey level value f(t) of the pixel f can be represented as a linear
combination of its neighbors and additive noise:

S@O=u=2 BONS(t+r)=p)+e()

reR

where {e(t)} is a zero-mean Gaussian noise sequence with the following correlation structure:

v, r=(0,0)
Cov[e(t), e(t+ r)] =<=p(r)v, reR
0, otherwise

The neighborhood R can be split into two regions R* and R-, so thatif » € R*, then —r € R,
rg R ,and —r & R". Also, f(r) = (7). Then,

f)—u=e(s)+ > BONfE+r)—w)+(f(t-r)- )]

reR”

The parameters f(7) and the conditional variance v, can be used as texture features. The least

square estimate for the vector g of p(r) values is

p= {Z 000’ (r)} {Z 0O/ (1)~ u)}
where Q(t) is a column vector

0(0) = col|(f(t+r) = )+ (f(t=r) =) | F e R

The conditional variance v is estimated as
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P 2 0-n-0 )l

The sums over t are taken on an MxN subimage centered on the pixel t.

2.6.7 Priority sequence Gaussian Markov random field

Zhao et al. (2007) introduced priority sequence Gaussian Markov random fields as a means to
estimate the parameters 5(r) and v in a step-by-step fashion. For a small subimage centered on a
pixel t, they ordered the pixels by distance from the central pixel. For example, by using a 5x5
neighborhood, orders up to 5 could be used (Figure 1).

5[4[3]4]5 5[4]3]4]5
4]2[1[2]4 4]2[1[2]4
3[1]t]1]3 t]1]3] [3[1]t
412[1[2]4] [4]2][1]2]4
5[4[3[4]5] |5]4[3[4]5

(@) (b) (©

Figure 1. (a) Neighborhood orders of pixels surrounding a pixel t., (b) the region R", (c) the region R".

In the case of a 5x5 neighborhood, one could then choose to use orders up to 4, and the
parameter vector f3 is then divided into four groups: 1, 2, f3, and Bs. Each group fi corresponds

to a group of neighbors, R’ (Figure 2).

t]1 t t] [3 t

1 2] [2 4 4
3 4] T4

(@) (b) (© (d)

Figure 2. The four groups of neighborhoods. (a) R*1, (b) R*,, (c) R*3, and (d) R*,.

Then, for group k, Qk(t) is the column vector

0, (1) = col|(f (t+r)— )+ (f(t=r) =) | r e R} |

For k =1, the estimated parameters are

B, = {Z (00! (t)} X {Z Q) - ﬂ)}

A=y LU 0-u-0l A}

For 1 <k <m, where m is the total number of groups,
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B = {Z 0,(00; (1)} X {Z O (f(O)—pu+ Z)}

z =M1Nz[f(r>—u—;gf<z>/ﬂ

where

Z= l[%(f(t)—ﬂ)—QfT(t)E}

i=1

The estimated values of the parameters f1, f, ..., fm are then combined to form the estimated
parameter vector 8. The estimates of vi for increasing orders are based on increasing
neighborhood sizes, so all of them are valid as features. Zhao et al. (2007) found the lowest
order variance v1 to be useful for the discrimination between residential areas and other land
use types.

2.6.8 Fractal features

The fractal dimension of a grey level image can be computed when the image is regarded as a
surface with height equal to the grey level value in each pixel. Another fractal measurement is
lacunarity.

The fractal dimension can be estimated by several different methods:
1. power spectrum method
2. variation method (Dubuc et al, 1989)
3. box counting method (Keller et al., 1989)
4. e-blanket method (Peleg et al., 1984)

Ohanian and Dubes (1992) found the power spectrum method to give the best estimate for the
fractal dimension, whereas Huang et al (1994) found the variation method (Dubuc et al, 1989) to
be the best. The variation method computes the maximum variation, V(¢), of the image surface,
within squares of side €. The fractal dimension D is estimated as 3-s, where s is the slope of the
least square fit of the data {In(e), In(V(¢))}, as € varies (Solberg and Jain, 1997). Ohanian and
Dubes (1992) noted that the methods for computing the fractal dimension should ideally be
applied on larger subimages than the size of 32 x 32 pixels that they used. Further, they
observed that it could be beneficial to use more than one estimate of the fractal dimension in the
set of textural features.

Lacunarity can be estimated from the box counting method (Keller et al., 1989). We will be
using subimages of size n x n, and the actual range of grey levels of the entire image should be
re-mapped to n values from 0 to n-1 (regarded as height values in the context of a fractal
surface). Let A be the volume in R?, composed of cubes of unit size, between the height z=0 and
the re-mapped image. Let N(L) be the number of boxes of side L needed to completely contain
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A, and M(L) the average mass density within a box of side L. The lacunarity can then be
estimated as

N(L)-M(L)

ch)= N(L) + M (L)

Ohanian and Dubes (1992) used C(3) as the lacunarity feature for 32 x 32 subimages (possibly
reduced to 30 x 30 pixels when estimating lacunarity).

2.7 Local statistics
In a local neighborhood N centered on the pixel (x,y), one can compute local statistics. Many of
these are based on computing moments

E(I (ry) =2 Y1)

N (i j)en

and central moments

E((y) - 1)) =—— S (10, J) - w)"

n—1q5n

In both the above, n is the number of pixels in the neighborhood N. i is the mean value in the
local neighborhood, and is the first moment:

p=E((x,y))
We will also use o, the standard deviation, which squared is the second central moment:
o’ =E((I(x,y)~ )"
Solberg and Jain (1997) used the following features based on local statistics:
1. power-to-mean ratio
olu

2. skewness

E((I(x,y) = 1)°)

O_3

3. kurtosis

E((I(x,») = 1)°)
0_4

il
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4. contrast

1 (I (x,p) -1, )))
n _1(i,_/)eN ;Uz

5. homogeneity

1 1
=15y, UG - 1G.))

2

y7,

2.8 Hyperspectral images

Xiao et al. (2004) used airborne hyperspectral 3.5 m resolution images to detect tree types and
tree species in an urban environment. With this resolution, some tree canopies were smaller
than one pixel. The sensor has 224 bands in the range 400-2400 nm. Of these, 131 were used,
avoiding bands with wavelengths above 1800 nm and water absorbing bands. Spectral mixing
analysis was used to separate land cover surface into vegetation, bare soil, pavement, building,
water, etc. Spectral mixing analysis was further used to subdivide vegetation into shrub, grass
and tree; tree into broadleaf and conifer; broadleaf into evergreen and deciduous; and, finally,
the evergreen, deciduous and conifer tree types into their respective tree species.

2.9 Multisensor image fusion

Hyde et al. (2006) studied combinations of lidar, interferometric X-band SAR, Landsat ETM+
and Quickbird imagery for the mapping of forest canopy height and biomass. Lidar was the
best single sensor. The combination of all sensors gave the best result. The best combination of
two sensors was lidar and Landsat ETM+. Hyde et al. (2006) did not give any reason why
Landsat ETM+ was a better companion to lidar than Quickbird. The lidar data was collected at 7
km flying height and with approximately 20m footprint diameter. This resolution matches well
with the 15m panchromatic and 30m multispectral resolutions of Landsat ETM+, in contrast
with the 0.6 m and 2.4 m resolutions of Quickbird.

2.10 Multi-scale segmentation

Lamonaca et al. (2008) used multi-scale segmentation in eCognition, to map structural
complexity in Quickbird images of beech forests in Italy. They used three segmentation levels,
starting with large segments in level 1 and small segments in level 3. The smallest segments in
level 3 corresponded to the canopy gap resulting from one tree that has died. They observe that
forests segments that are homogeneous at a coarse scale, are heterogeneous when analyzed
internally at a finer scale, and wvice versa.

2.11 Feature selection methods

In pattern recognition problems, one is often faced with the problem of reducing the number of
measurements, or features, of each pattern or object to classify. At a first glance, one might think
that it is beneficial to have many rather than few measurements of each object or pattern.
However, in order to estimate a large number of parameters in a statistical classifier, neural
network classifier or support vector machine classifier, a large training set is needed to estimate
the parameters reliably. Also, in non-parametric classifiers (e.g., k nearest neighbor) and in
decision tree classifiers, it is beneficial to identify the features which have the most
discriminative power.
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As mentioned above, Aksoy et al. (2010) used the sequential backward selection algorithm
(Duda et al., 2000). Jain and Zongker (1997) evaluated the following methods, and found the
sequential forward floating selection method to be performing almost as well as the “optimal”
branch-and-bound method, while having a much lower computation time.

1. Branch-and-bound (Narendra and Fukunaga, 1977)

2. Node pruning (Mao et al., 1994)

3. Genetic algorithm (Siedlecki and Sklansky, 1989)

4. Sequential forward selection (Whitney, 1971)

5. Sequential backward selection (Marill and Green, 1963)

6. Plus-r take-away-/ (Stearns, 1976)

7. Sequential forward floating selection (Pudil et al., 1994)

8. Sequential backward floating selection (Pudil et al., 1994)

9. Max-min algorithm (Backer and Schipper, 1977)
Somol et al. (1999) have proposed an adaptive floating search method, which is in essence a
variation of Plus-r-take-away-I, where the parameters r and / are determined dynamically by

the algorithm.

The sequential forward floating selection method can be summarized as follows (Somol et al.,
1999).

1. Add the most significant feature to the current subset of size k. Let k=k + 1.

2. Conditionally remove the least significant feature in the current subset.

3. If the current subset is the best subset of size k — 1 found so far, let k=k -1 and go to
step 2. Else, return the conditionally removed feature back into the current subset, and

go to step 1.

The adaptive floating search, in the sequential forward variety, is more complicated to describe,
and we refer to (Somol et al., 1999).
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3 Discussion

In the previous section, a number of relevant image analysis and pattern recognition techniques
that could be used for automatic classification of urban green structure. There is no individual
technique that stands out as the single best solution; rather, a combination of techniques could
be used.

The choice of methods is to a large extent influenced by what remote sensing and other data is
available. Clearly, in order to observe changes over time, repeated acquisitions are important,
preferably by the same sensor. If different sensors are being used, then, in general, a new
automatic classification algorithm has to be developed. At best, an existing algorithm can be re-
trained on data from the new sensor.

However, there is no guarantee that an algorithm that was trained on one single acquisition
from one sensor will perform well on another image acquisition from the same sensor. Imaging
conditions may have changed, due to varying atmospheric conditions, including varying
presence of aerosols, haze; sun elevation, and time of the day. Also, seasonal variations within a
year and between years, often referred to as phenological variation, alter the spectral and
textural properties of vegetation. Also, the time since rainfall, and temperature and humidity
variations adds to the variability. It is therefore important to use methods that compensate for
these variations in one way or another, and to include training data that reflect the typical
variations that one may encounter in the operational setting.

Another problem is the presence of clouds, which obscures parts of the scene. This means that
multiple image acquisitions may be necessary to ensure full ground coverage.

The choice of imaging sensor is dependent on many factors, including
1. The time frequency of repeated acquisitions
2. The prospect of cloud free acquisitions
3. The size of the area to be covered
4. The prospect of performing atmospheric correction in a reliable way

5. The ground pixel size of the image in relation to the sizes of the phenomena on the
ground one wishes to observe

The alternatives include aerial orthophotos with ground resolution between 10 and 50 cm, very
high resolution satellites like Quickbird (0.6 m panchromatic, 2.4 m visible and near infrared
(VNIR)), Landsat (15 m pan, 30 m multispectral (MS), MODIS (250 m red and near infrared, 500
m MS), and the upcoming Sentinel-2 (10 m MS).

Aerial photographs are traditionally acquired at cloud free conditions. In the process of making
orthophotos, which is a geo-corrected mosaic of individual photos, illumination corrections are
applied to produce an image with no visible abrupt changes in color across mosaic edges. Aerial
photographs may also be acquired at complete overcast, provided the clouds are at high
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elevation so that the airplane can fly below the clouds. Atmospheric correction of a single
Quickbird image is difficult, since the methods are based on infrared channels that are not
present. Landsat images have such channels to some extent, and MODIS have dedicated
channels for this purpose. The upcoming Sentinel-2 satellite will also have dedicated channels
for atmospheric correction. A technique that might help is to find MODIS acquisitions acquired
within a few hours of the Quickbird acquisition to estimate the atmospheric correction to be
applied to the Quickbird image. An alternative that could be considered is to use the ideas of
the VARI index (Gitelson et al., 2002), which was found to be very little influenced by
atmospheric effects, to provide a rough estimate of the atmospheric disturbance.

The previous project phase (Trier, 2009) clearly demonstrated that Quickbird imagery is a
relevant source of information for urban green structure assessment, and provided repeated
acquisitions are made, one could expect to be able to monitor and quantify changes.

As we have seen in the previous phase of the project (Trier, 2009), shadows from trees and
buildings create problems for the segmentation and classification methods. If lidar data is
available, the location and extent of these shadows may be predicted, and corrected for. Cloud
shadows are much larger, and they may be detected as separate classes. If multiple image
acquisitions are available, even with another sensor, they could be used to confirm if it is a
cloud shadow or not, and help in calibrating the expected reflectance in non-shadow conditions.
Even without any extra images, it might be possible to model the changed illumination
conditions in shadows, i.e., direct sunlight is blocked, allowing only indirect light to illuminate
the ground, objects, and vegetation. This could then be compensated for, in effect removing the
cloud shadows. In a more simplistic approach, one could increase the brightness of all channels
by the same amount, or to the amount of cloud shadow free areas.

Some authors have eliminated non-vegetation areas at an early stage. This can be done using,
e.g., NDVI, or another vegetation index. However, small non-vegetated areas within vegetated
areas should not be removed, as these are part of the texture patterns of residential areas.
Whether this step is needed, or if it is actually counterproductive, must be decided through
initial experiments. A variation of this step can also be used for automatic cloud removal,
provided a good cloud index is used.

The previous chapter mentioned a number of feature extraction methods. In principle, all of
them could be used to assign features to individual pixels, or be computed for segments. For
segments, one could either use the average of the values for each pixel, or one could re-compute
the values within each segment.

Very high resolution images of urban areas have green structure textures on different scales.
This indicates that a multiscale approach should be considered. The multiscale approach could
be applied at the pixel-level feature extraction, segmentation, segment-level feature extraction,
and classification stages. One could use an image pyramid approach, in which 2x2 pixels are
merged at the next coarser resolution, or one could use a smaller number of fixed scales, e.g.,
three or four, corresponding to the pixel level, individual tree crown/small house level, the
garden level, and/or the land use area level. With the latter approach, one needs to estimate the
relevant scales.

As features, one could use texture features, the multispectral pixel values, and multispectral
band ratios and indexes, all computed at all (selected) scales. At the finest scale, the
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multispectral pixel values could be taken from a pansharpened multispectral image of the same
resolution as the panchromatic image.

Two vegetation indexes that could be used in Quickbird images are NDVI and VARI. If we
have Landsat imagery available, one could use the normalized difference moisture index,
NDMI, but one should consider the extra effort needed to process another image type for the
sake of only one extra feature.

Some of the texture feature extraction methods are multiscale by nature. However, these
multiscale texture measures are often extracted from the same neighborhood size in the finest
resolution. Since we really are interested in textures at very different scales, e.g., single pixels,
single tree canopies, and contiguous residential areas, an alternative is to fix the texture
measurement methods at the finest scale, and apply it on an image pyramid. Alternatively, if
using a few select scales, the features may be computed for all intermediate scales up to the next
coarser image scale.

One alternative is to implement most or all of the texture features and multispectral features
mentioned in Section 2 above, and to use a feature selection method to reduce the number of
features. It might be that different feature subsets are selected at different scales. For feature
selection, either the sequential forward floating selection method (Pudil et al., 1994), or the
adaptive floating search method (Somol et al., 1999) could be used. Since one might expect the
best feature subsets to be dependent on scale, and on whether it is segmentation of pixels or
classification of segments, the process must be repeated for all combinations.

One possibility is to do initial segmentations independently on different scales. Next, the
segment boundaries at a coarser scale can be adjusted to use the segment boundaries at a finer
scale. At the finest scale, the house and road outlines from GIS could be used as recommended
segment borders. At the same time, tree canopies overlapping buildings and roads should be
mapped. However, perhaps it does not matter if a tree canopy is divided into two or more
segments, as long as the individual parts are merged later. At a coarser scale, land use
categories from GIS could be helpful, while at the same time allowing for changes that may
have occurred after the GIS layers were made.

The goal of the multiscale classification is obviously to extract meaningful entities from the
image. At the finest scale, one would like to extract regions corresponding to individual trees,
small grass areas, individual houses, garden furniture, etc. On a coarser scale, one would like to
separate residential areas from large open grass land, public parks, forests, etc.

As complementary information to the classified image, one may compute key parameters

within each segment or another suitable unit, e.g., percentage tree cover, percentage grass
cover, percentage grey areas, average tree distance.
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4 Conclusions

This document has reviewed the state of the art of recent research relevant to the classification
of urban green structure from Quickbird images, and suggested possible methods that may be
used in an improved classification system. Experiments are needed in order to get an indication
on which of the approaches should be used.

The scope has been very wide, and with no concern regarding budget limitations. Obviously,
the cost and ambition of an improved automatic green structure classification and measurement
system must be taken into account when selecting from the different methods and alternatives

presented above. There is no individual technique that stands out as the single best solution;
rather, a combination of techniques could be used.
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