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ABSTRACT: 
 
Municipalities in Norway need to develop an urban green structure plan. Traditional mapping has its limitation, since the land use is 
in focus and not the actual land cover. This study evaluated the appropriateness of using multispectral Quickbird images for the 
semi-automated mapping of green structures in urban and suburban areas. A Quickbird image of Oslo from 2 June 2008 was used. A 
classification algorithm was implemented in Definiens Developer. The algorithm was applied to the whole image, and tested on six 
randomly selected subsets. The validation was performed by manual editing of the classification result. The main focus of the 
editing process was to detect misclassifications between grey areas (such as roads and buildings) and green areas (trees, grass, and 
sparse vegetation). The most striking problem with the automated method was that the object borders were very rugged. However, 
these segmentation problems were to some extent ignored in the evaluation process, concentrating on correcting major parts of 
objects being misclassified rather than correcting all minor segmentation inaccuracies. The classification step had approximately 9% 
misclassification rate in the two-class problem grey area versus green area. This is a very good basis for further improvement. The 
obvious segmentation problems are clearly the first things to address when further improving the method. Another problem is to 
what extent the automated method can be used on other images with different light conditions, e.g., with the presence of clouds or 
light haze and another solar elevation. Will a simple retraining of the classification rules be sufficient, or will the rules have to be 
redesigned? It could even happen that redesigning the rules is not sufficient, so that other methods have to be developed. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

This work was initiated to meet the need of municipalities in 
Norway to develop a green structure plan. Traditional mapping 
has its limitation, since the land use is in focus and not the 
actual land cover. Therefore, other sources of information about 
urban and suburban green structure are being sought. A 
municipality is interested in a green structure plan for several 
reasons: 

1. To map current status of green areas and their 
changes over time. For example, what happens with 
the vegetation in public parks over time, even if the 
mapped land use does not change? 

2. To maintain biological diversity. Different species or 
groups of species use different varieties of green 
structure as corridors. For example, small birds would 
avoid open areas, and need a corridor of trees to move 
safely. In open areas, they would expose themselves 
to predators. 

3. Green structures are being used for recreation.  
4. Vegetation converts carbon dioxide to oxygen, 

reduces noise, and has aesthetical value. Vegetation 
also binds water, reducing the prospect of floods after 
heavy rainfall. 

5. If accurate, the green structure map can be used in 
overlays 

 
The green structure includes private gardens. Although not 
accessible to the public, private gardens containing trees 
contributes to items 2 and 4 above.  

Forest and farmland are not in the focus of this study, since they 
are well mapped, and the land cover aligns well with the land 
use classification of traditional mapping. 

The purpose of this study was to evaluate the appropriateness of 
using Quickbird 0.6 m – 2.4 m resolution satellite images for 
the automatic mapping of green structures in urban and 
suburban areas. The rest of the report is organized as follows: 
Section 2 presents the available Quickbird image data, followed 
by a description of the segmentation, training, classification and 
postprocessing steps of the automatic algorithm in Section 3. In 
section 4, the validation methodology is described. The 
validation results are presented in Section 5 and discussed in 
Section 6. This paper is a condensed version of a project report 
(Trier, 2009), available at http://publ.nr.no. 
 

2. DATA 

The project has acquired parts of a cloud-free Quickbird scene 
of parts of Oslo and surrounding area, acquired on 2 June 2008. 
The image has a 0.6 m ground resolution panchromatic band, 
and four 2.4 m resolution multispectral bands (blue, green, red 
and near infrared). 
 

3. CLASSIFICATION PROCEDURE 

Definiens Developer (Definiens, 2007) was used to segment the 
image, based on pixel colors and parameters describing the 
segment shapes. Then the user defined a set of rules to classify 
the segments based on texture, neighborhood, color and other 
attributes. The final classification result consists of five classes: 
(1) grey areas, (2) grass, (3) trees, (4) little vegetation, and (5) 
water and missing data. 
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3.1 Segmentation 

The segmentation was done in two levels in a bottom-up 
fashion.  

The segmentation has to be a compromise between conflicting 
needs. On one hand, one would like to obtain large building 
blocks. At the same time, one would like to keep narrow 
corridors of green structure. Multiresolution segmentation was 
used, with two levels. The level 1 segmentation was based on 
the panchromatic image alone, whereas the level 2 
segmentation also used the multispectral image bands (Table 1). 
The level 2 segmentation is based on the level 1 segmentation, 
which means it is locked to the segment boundaries that were 
created in level 1. The level 2 segmentation essentially 
aggregates segments from level 1. 
 
Table 1. Segmentation parameters in Definiens Developer. 

Level settings level1 level2
Level Usage Create above
Image layer weights
    QB_PAN 1 1
    QB_NIR 0 1
    QB_Red 0 1
    QB_Green 0 1
    QB_Blue 0 1
Thematic layer usage (not used) (not used)
Scale parameter 20 50
Composition of homogenity criterion
    Shape 0.1 0.1
    Compactness 0.5 0.5

level name

 
 

 
Figure 1. Homogeneity criteria in Definiens Developer. The figure is 
from (Definiens 2007), page 160. 

On each level, the segmentation process iterates several times. 
In the first iteration in level one, all segments are one pixel 
each. The mutually best pairs according to a homogeneity 
criterion are found, and each identified segment pair is merged 
into a new segment. This continues as long as segments can be 
merged without breaking the scale parameter constraint. The 
scale parameter is a threshold on the homogeneity value of a 
segment, and the homogeneity value is computed as the 
standard deviation from the ideal situation. The following 
criteria can be used, in combination 

• Color: homogeneity is computed as standard 
deviation of the spectral colors. 

• Shape: divided into smoothness and compactness 
o Compactness: homogeneity is computed as 

the deviation from a compact object 
o Smoothness: homogeneity is computed as 

the deviation from a smooth object 
boundary. 

The color and shape weights sum to 1. Within the shape 
criterion, the compactness and smoothness weights sum to 1 

(Figure 1). So, the shape value of 0.1 in Table 1 denotes that the 
shape criterion has weight 10% and the color criterion 90%. By 
increasing the shape weight, the segmentation will be more 
eager to find objects which are compact and/or smooth, and less 
eager to find objects with low color variation. 
 
If, for a segment, the color homogeneity is, say, 12, the 
smoothness homogeneity is 48 and the compactness 
homogeneity is 60 then the weighted homogeneity (Table 1) is 

0.9×12 + 0.1×0.5×48 + 0.1×0.5×60 = 9.2 + 2.4 + 3.0 = 14.6 , 

which is below the scale threshold for level 1, so this segment is 
accepted. However, if the shape homogeneity had been set to 
0.5, then the weighted homogeneity had been 

0.5×12 + 0.5×0.5×48 + 0.5× 0.5×60 = 6 + 12 + 15 = 33 , 

which is above the scale threshold for level 1. 

In level 2, equal weight is placed on the four multispectral 
bands (blue, green, red and near infrared (NIR)) (Table 1). One 
could place a higher weight on NIR for vegetation mapping, 
and also reduce the weight of blue if there is haze in the image. 

The scale parameter indicates how large objects one is 
interested in. To find individual trees, a low value should be 
used. To segment parts of a forest, a large value is used. We are 
interested in private gardens, where trees are present but the 
pattern is less homogeneous than in a forest. So we are 
interested in single trees and groups of trees, and a value of 50 
seemed to work well.  
 
3.2 Classification  

The classification was done in a hierarchical fashion. At each 
level, there are competing rules, and the rule that gives the 
highest score is selected. (In the documentation, the rules are 
called membership functions (Definiens, 2007).) There is also a 
threshold for setting an object to be unclassified. This was set to 
0.1. One can set this to, say, 0.9 during training. 

The rules used on the 2008 Quickbird image are outlined in 
Figure 2, and the actual values for the thresholds should be 
adjusted for a new image. However, one may also want to use 
different rules for another image, due to different colors, 
phenological cycle, date, haze, etc. 

Both the panchromatic 0.6 m resolution and the four bands 
multispectral 2.4 m resolution information was used in the 
classification procedure.  

The classification rules are organized in a hierarchical fashion 
(Figure 2). Note that so-called soft thresholds are being used. 
This means that instead of using a simple if-test on a threshold 
value, essentially producing a sharp transition from 0 to 1, there 
is a smooth transition zone where the response goes gradually 
from 0 to 1. Then the rule with the highest score wins. The 
actual threshold values are given in (Trier, 2009). 

When working with the rules, one might add new rules or tune 
the thresholds. At the end, one has a handful of misclassified 
and unclassified objects. One may then add “cleanup rules”. Six 
cleanup rules were used, see (Trier, 2009) for details. 
 

3.3 Comments 

The segmentation and classification modules in Definiens 
Developer provided a means to quickly obtain a fairly good 

Page 2 of 6 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B
Contents Author Index Keyword Index

597



 

 
Figure 2. Hierarchy of classification rules. 

classification result. Some time was spent on optimizing the 
parameters, but it was felt that it was not a good idea to spend 
too much time on this, as this would have to be repeated for a 
new model. 

Agricultural land, rivers and lakes are not considered important 
in this project, as they are well mapped, and can be obtained 
from GIS. However, the positional accuracy is often lower than 
for buildings and roads. 

The result of the classification procedure was a 0.6 m resolution 
image with the following classes: 

1. Open grass land and lawns. 
2. Bushes, trees, forest. (Parts of) private gardens are 

expected to fall into this class. 
3. Little vegetation: Paths, grass areas with substantial 

wear and tear. 
4. “Grey” areas, that is, covered by buildings, roads, 

parking lots, etc; thus with no vegetation. 
5. Not classified or missing data, also used for water. 

The three first classes are regarded as “green” areas, and can be 
seen as subclasses of green areas. 
 
3.4 Postprocessing of classification result 

The classified image can be combined with GIS data of 
buildings and roads. Trees overlapping buildings and roads are 
kept, based on the NDVI value, but other parts of the buildings 
and roads are subtracted from the vegetation classes. 

Enhanced versions of the Oppegård and Lørenskog areas were 
created by using GIS data for buildings and roads. The houses 
and roads were subtracted from the green areas if the NDVI was 
low. In cases where the NDVI was high, for example, caused by 
a tree overlapping a house or a road, the tree was kept. 
 

4. VALIDATION METHODOLOGY 

The classification may be validated manually or automatically. 
In order to perform an automatic validation, a ground truth must 
be established. For Oppegård and Lørenskog municipalities, we 

have obtained digital maps, free of charge, of roads and 
buildings, for use within the project. These maps can be used to 
validate grey versus green area classification, but can not be 
used to validate which of the three green area classes that has 
been assigned. 

One major shortcoming of the digital map we had access to is 
that not all grey areas are included. Large parking lots are 
missing, as well as private driveways. So, the digital map could 
be used to find houses and public roads that were partially or 
fully missing in the automatic classification. However, areas 
that had been misclassified as grey areas could not be flagged, 
since many grey areas are missing in the digital map. 

Thus, manual validation of the automatic classification was 
needed. The intention was also that the manual classification be 
used to validate the subclasses of green areas. However, this 
turned out to be too difficult to do in a quantitative manner. 
Only some general observations could be made. Where 
available, the digital map was used to guide the manual 
validation 
 
4.1 Manual validation method 

4.1.1 Selection of validation area 

Given the size of the image, and the available resources for the 
project, a complete inspection of the classification result of the 
entire image was considered infeasible. Instead, a selection had 
to be made.  Manual selection of areas that could be considered 
“representative” would lead to a biased result. On the other 
hand, some of the selected areas should cover the areas of 
which we had map coverage. These considerations led to the 
following selection procedure of validation areas. 

1. Set the image counters NOppegård, NLørenskog and NOslo 
all to zero. 

2. Pick an x,y coordinate within the image at random. 
The range of possible values are 1 .. xmax-xsize for the 
x coordinate, and 1 .. ymax-ysize for the y coordinate, 
with xmax, ymax being the Quickbird image size and 
xsize, ysize being the validation area size.  
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3. If the validation area only contains missing or no 
data, discard the area and jump back to step 2 above. 

4. If the new validation area partially overlaps an 
existing validation area, then replace the overlap with 
missing data in the new validation area 

5. Compute the fraction of the area within the Oppegård 
map coverage (fOppegård), within the Lørenskog map 
coverage (fLørenskog), outside map coverage (fOslo), and 
with no or missing data (fNodata). These four fractions 
should sum to 1.  

6. Add the map fractions to the counters, for example, 
NOppegård(i+1) = NOppegård (i) + fOppegård(i+1), where i 
and i+1 denote iterations i and i+1, respectively. 

7. Continue, by jumping back to step 2 above, until all 
three counters are above predefined thresholds 
MOppegård, MLørenskog and MOslo. 

The Quickbird image size, (xmax, ymax) = (28090, 36602 ), and 
the validation area size (xsize, ysize) = (1000, 1000).  The 
validation thresholds are MOslo= MOppegård = MLørenskog = 2. 
Initially, we intended to have MOslo much higher, but the 
manual editing was so time-consuming that we ended up with 
MOslo= 2. 
 
4.1.2 Validation of automatic classification 

For each validation area, make a copy which is then edited, as 
described below.  The difference between the validation area 
and the edited version is then used to compute a confusion 
matrix, counting the number and type of misclassification. 
Although the editing is object-based, see below, the counts in 
the confusion matrix are pixel-based. 

For each validation area, the classified image is compared with 
the original image and an aerial orthophoto with 0.5 m 
resolution or 0.1 m resolution (Oppegård, Figure 4). All 
obvious misclassifications are corrected. The editing is mainly 
object-based, that is, individual pixels are not edited. The 
classified image has quite rugged object boundaries, many 
which could have been cleaned by using road and building 
outlines as a guide in the segmentation process. Noting this, we 
have, to some extent, avoided editing these rugged boundaries.  

On some occasions, however, what should have been two or 
more objects have by mistake been segmented into one object 
only. In such cases, the object has been split and parts of it 
reclassified in the editing process.  

On some occasions, parts of water bodies have been mistaken 
as grey areas, probably due to wind patterns. Since water bodies 
can be easily removed by using GIS data, we have not counted 
these as misclassifications, but regarded them as missing/no 
data. 

Although originally intended, a validation of the three 
subclasses of green areas is not performed. Only a few 
occasional substitutions of one subclass of green with another 
are done. 

During the manual verification, the need for a gravel subclass 
emerged. This class has been used in some instances to denote 
grey areas that are not sealed, and thus may be recovered as 
green areas. This is indeed the case for construction sites. 
Typically, when a new house is being built, the entire garden 
looks like a grey area in the Quickbird image, but is planted 
shortly after. In practice it is difficult to see the difference 

between gravel, asphalt and concrete, so the gravel class is only 
used in very obvious occasions. It is in practice a subclass of 
grey areas. 
 

5. VALIDATION RESULTS 

The manual validation procedure, as described in section 4, was 
applied, resulting in 6 validation areas. Of these, two were from 
Oppegård, two from Lørenskog, and two from Oslo. The overall 
classification performance is about 89% correct classification 
rate (Table 2). This figure hides the fact that the object 
boundaries from the segmentation step are far from ideal. 
Further, in the manual validation procedure, almost no objects 
from one of the three green structure classes were reclassified 
as another green structure class. In this respect, it is more 
meaningful to look at the two-class problem: green versus grey 
areas. In this case, the recognition performance was slightly 
better, about 91% (Table 3) 
 
Table 2. Classification performance when using six classes. 

89.13%
10.87%

100.00%

correct classification
misclassification
total  

 
Table 3. Classification performance when using two classes. 

91.38%
8.62%

100.00%

correct classification
misclassification
total  

 
Table 4. Combined confusion matrix for all six verification areas, in 
number of pixels. 

Grass Forest Little vegt. Grey area Gravel No data
Grass 535353 0 1 4479 110 1 539944
Forest 931 2737263 4568 110921 2013 8650 2855696
Little vegt. 59 3164 499868 135870 3387 432 642348
Grey area 3029 65620 178704 1575587 126162 3256 1949102
Gravel 0 0 0 0 0 0 0
No data 0 558 0 13 0 1 571

539372 2806605 683141 1826870 131672 12340 6000000

Edited Sum 
classified

Area 1-6

C
la

ss
ifi

ed

Sum edited

 

Table 5. Combined confusion matrix, in percentages. 

Grass Forest Little vegt. Grey area Gravel No data
Grass 99.25% 0.00% 0.00% 0.25% 0.08% 0.01%
Forest 0.17% 97.53% 0.67% 6.07% 1.53% 70.10%
Little vegt. 0.01% 0.11% 73.17% 7.44% 2.57% 3.50%
Grey area 0.56% 2.34% 26.16% 86.25% 95.82% 26.39%
Gravel 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
No data 0.00% 0.02% 0.00% 0.00% 0.00% 0.01%

100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Edited

C
la

ss
ifi

ed

Sum edited
 
The most common misclassification is to confuse little 
vegetation and grey areas. This resulted in about 300,000 pixels 
being reclassified (Table 4). This is about 5% of the 6,000,000 
image pixels. Of the 683.141 pixels that were regarded as little 
vegetation after the manual validation step, 178,704, or 26%, 
were originally classified as grey area (Table 4 – Table 5).  
 

6. DISCUSSION 

The classification results show that the classification part of the 
automatic algorithm is able to classify between green and grey 
areas, with approximately 10% misclassification. This is clearly 
a good starting point for improvements. However, the 
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ruggedness of objects suggests that the segmentation step of the 
automatic algorithm has a great potential for improvement.  

Another issue is to what extent the automatic algorithm can be 
used on another Quickbird image or not. The classification rules 
in the automatic classification method have been trained on a 
subset of the image, and then evaluated on random portions of 
1000 by 1000 pixels. The illumination conditions were very 
close to ideal and uniform over the entire scene, whereas many 
other Quickbird images of Oslo have clouds. It is possible that 
the classification rules will have to be adjusted for every image 
to be processed. Also, it is not known what problems the 
presence of clouds will result in. All in all, it could happen that 
redesigning the rules is not sufficient, so that other methods 
have to be developed. 

One minor issue was dealt with wrongly in the manual 
evaluation procedure. Whenever a house or road was partly 
obscured by a tree, the tree was ignored and the house or road 
was edited to show its extent. However, in the context of green 
structure, one is more interested in the trees than in the houses 
and roads. So, some correct classifications have been marked as 
misclassifications. However, the total number of pixels that 
have wrongly been edited in this manner, is small, so the main 
findings of the evaluation are still valid. 

The smallest mapped area is approximately 100 m2. If for 
example there is a piece of grass land in a private garden of 10 
by 10 meters, then it will be mapped. However, if a medium to 
large tree appears in the middle, then the homogeneity criterion 
may flag the entire area as forest. 

Private gardens appear as a mixture of the three green structure 
classes in addition to the houses and driveways. Gardens also 
contain a mix of different materials in addition to vegetation, 
including furniture, trampolines, etc. In the classification rules, 
there are additional classes. Many of these are merged into the 
grey area class.  In addition, there are two shadow classes, one 
for tree shadows, which are regarded as part of green 
vegetation, and one for other shadows.  

The manual editing resulted in an additional class: gravel, 
which is considered as grey area.  This class was added mainly 
to meet a potential need to indicate temporary grey areas, and 
was used on construction sites. Gravel also indicates an area 
that is not sealed, permitting water drainage. However, gravel 
and sand is difficult to discriminate spectrally from concrete. 

6.1 Segmentation 

The results of the segmentation step are not directly available to 
us in the classified image, since neighboring segments in many 
cases have been assigned the same class in the classification 
step. From the classification result, it is obvious that the object 
boundaries of classified grey areas deviate substantially from 
the true outlines of houses and roads. This is especially true in 
suburban areas (Figure 3), where there are a lot of small roads 
and buildings. However, the segmentation results can be 
examined in Definience. This was done for a few selected areas. 
Level 1 segmentation often creates border segments one pixel 
wide and very long. These pixels are often a spectral mixing of 
the two neighboring regions, for example, building and 
vegetation, or at the edge of shadows. Many roads are also 
segmented into many parallel narrow and long segments. In 
other instances, the gradual transitions between different objects 
allowed segments to be merged across the true object 
boundaries. 

 
Figure 3. Segmentation problems in suburban areas in Oppegård 
municipality. Top: a 330 m x 250 m part inside validation area 1 of the 
Pansharpened Quickbird image. Middle: the automatic classification 
result for this subimage, with houses and roads from a digital map 
superimposed in grey. Bottom: Aerial orthophoto of the same area, 
captured with 10 cm ground resolution. 

 
Figure 4. Close-up of the upper left corner of the part of the aerial 
image of Oppegård in Figure 3. 

Many of the segmentation problems are due to shadows from 
buildings (Figure 5) and trees (Figure 6). Building shadows are 
often classified as grey areas. It could be possible to predict 
these shadows from the building height and the sun’s position. 
The building height might be available from a digital map, and 
the sun’s position can be computed from the acquisition time 
and date for the satellite image.  
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Figure 5. House shadows are sometimes misclassified as grey areas.  

 
Figure 6. Tree shadows are sometimes mistaken as grey areas (far 
and middle left), and other times they block grey areas (far and 
middle right). 

Tree shadows are sometimes classified as grey areas, other 
times they block grey areas (Figure 6). In both cases, the 
shadows need to be detected and removed. The tree height is 
not readily available, but one can make a few guesses and see if 
one of the heights matches the shadow length fairly well.  

For both tree shadows and building shadows, the shadow 
outline must be extracted, and the intensity values inside the 
shadow increased to the level outside the shadow.  

Shadows aside, there are many more segmentation issues to 
solve. The most important shortcoming of the current 
segmentation approach is that no prior information is used. By 
including outlines of buildings, roads, rivers and lakes from a 
digital map, the outlines could be used to guide the 
segmentation step so that the outlines from the map were 
preferred to some extent. In some cases, there might be 
coregistration errors in the order of 1-2 m between the GIS  and 
the Quickbird image. Ideally, the segmentation algorithm 
should be aware of this uncertainty and allow that a, say, house 
be moved 1-3 pixels. 
 
6.2 Time series of chlorophyll or NDVI 

An entirely different approach than the current could be to use 
time series of medium or low resolution satellite images to 
directly measure the variation from year to year in chlorophyll, 
which is often estimated from the so-called normalized 
difference vegetation index, NDVI. The NDVI for a pixel (x, y) 
is computed from the near infrared (NIR) spectral band and the 
red (R) spectral band as 
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By using 250 meter resolution images from MODIS, or even 1 
km resolution images from AVHRR, one obtains average 
values, in which a decrease in chlorophyll in one small area 

may be cancelled by an increase in another small area within 
the same pixel. However, the general trend can be monitored, 
since these images are captured daily.  

The Norwegian Computing Center has developed time series 
analysis algorithms for vegetation monitoring in other projects 
(Salberg, 2010; Aurdal et al., 2005). These algorithms could be 
modified for use on monitoring of green structure in urban and 
suburban areas. The time series analysis algorithm models 
change on three scales: 

1. Daily variations due to imaging conditions 
2. Phenological variation during one year 
3. Changes from year to year. 

During one year, the green vegetation goes through one cycle, 
which has nearly the same shape from one year to another, but 
with variations in the start and end dates of the summer season, 
as well as the strength of the peak of the cycle (Huseby et al., 
2005). By eliminating the modeled changes on the daily, 
seasonal and yearly scale, one can detect statistically significant 
changes in individual pixels, and detect areas in which the 
green structure has been reduced or improved. 
 

7. CONCLUSION 

In the present work, Definiens Developer was used for 
segmentation and classification of a Quickbird scene from 
2008. The result is validated in the present paper, and the 
conclusion is that this is a good starting point for further 
improvements of the method. The most striking problems are 
related to the segmentation. Object contours are often ragged, 
and do not follow the true boundaries of houses and roads very 
well. Another difficulty is shadows from buildings and trees, 
resulting in frequent misclassifications of whatever happens to 
be in the shadow areas. 
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