

Modelling of
Biomedical Sensor
Networks using the
Creol Tools

Report no 1022

Authors Wolfgang Leister, Xuedong Liang, Sascha Klüppelholz,
Joachim Klein, Olaf Owe, Fatemeh Kazemeyni,
Joakim Bjørk, Bjarte M. Østvold

Date 31th July 2009

ISBN 978-82-539-0532-7

About the authors
Wolfgang Leister is Chief Research Scientist at the Norwegian Computing Center. Bjarte M.
Østvold is Senior Research Scientist at the Norwegian Computing Center. Sascha Klüppelholz
and Joachim Klein are PhD students at the Faculty of Computer Science at the Technische
Universität Dresden. Xuedong Liang and Fatemeh Kazemeyni are PhD students at the
Rikshospitalet University Hospital (RRHF) and at the Institute of Informatics at the University
of Oslo. Joakim Bjørk is PhD student at the Institute of Informatics at the University of Oslo.
Olaf Owe is professor at the Institute of Informatics at the University of Oslo.

Norsk Regnesentral
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non‐profit
foundation established in 1952. NR carries out contract research and development projects in
the areas of information and communication technology and applied statistical modeling. The
clients are a broad range of industrial, commercial and public service organizations in the
national as well as the international market. Our scientific and technical capabilities are further
developed in co‐operation with The Research Council of Norway and key customers. The
results of our projects may take the form of reports, software, prototypes, and short courses.
A proof of the confidence and appreciation our clients have for us is given by the fact that most
of our new contracts are signed with previous customers.

 3

Title Modelling of Biomedical Sensor Networks
using the Creol Tools

Authors Wolfgang Leister (NR), Xuedong Liang (UiO/RRHF),
Sascha Klüppelholz (TUD), Joachim Klein (TUD),
Olaf Owe (UiO), Fatemeh Kazemeyni (UiO/RRHF),
Joakim Bjørk (UiO), Bjarte M. Østvold (NR)

Quality assurance Einar Broch Johnsen (UiO), Frank de Boer (CWI)

Date 31th July 2009

Year 2009

ISBN 978-82-539-0532-7

Publication number NR-Report No. 1022

Abstract
 This document is submitted as Annex 6.3.3 for the Deliverable D6.3 (Final Modelling of
Biomedical Sensor Networks using the Creol Tools) of the EU project IST‐33826 CREDO:
Modeling and analysis of evolutionary structures for distributed services. We describe how to model
biomedical sensor networks using the CREDO methodology and the Creol Tools, specifically
Creol, Vereofy, and UPPAAL. Properties from forwarding and routing as well as from the link‐
and network layers are put into focus. Modelling the AODV algorithm is presented in‐depth in
this document. The outcome of this work will be used for the validation phase of CREDO to
judge the suitability of the Creol Tools.

Keywords Creol, formal methods, modelling, biomedical
sensor networks

Target group Researchers, Developers of Creol Models

Availability open

Project number CREDO - 320362

Research field Formal Methods

Number of pages 37

© Copyright Norsk Regnesentral

Final Modelling of Biomedical Sensor Networks
using the Creol Tools

Wolfgang Leister1, Xuedong Liang2,4, Sascha Klüppelholz3, Joachim Klein3,
Olaf Owe4, Fatemeh Kazemeyni4, Joakim Bjørk4, and Bjarte Østvold1

1 Norsk Regnesentral, Oslo, Norway
2 Rikshospitalet University Hospital, Norway
3 Fakultät Informatik, TU Dresden, Germany

4 Institute of Informatics, University of Oslo, Norway

1 Introduction

The generic architecture of a biomedical sensor network (BSN) is shown in Fig. 1,
where each shaded element corresponds to one sensor node. The node n1 reveals
its internal structure, which consists of a radio object r, a controller object c,
and (in our example) two sensor objects s1 and s2.

n1: Node

s2: Sensor

s1: Sensor

c: Controller r: Radio e: Network

n2: Node

n3: Node

n4: Node

Fig. 1. Architecture of a sensor node and its relation to other nodes

The controller object c maintains the main activity of a node ni. c reads data
from the sensors, collects these readings into packets. The controller object c also
receives messages from the radio and processes these. The processed packets are
forwarded to the radio r for transmission via the Network e. Forwarding and
routing behaviour of a node is modelled in the controller c.

The Network e between the sensor nodes models different aspects of (wireless)
networks. In this object the communication properties between the nodes ni are
modelled. In our model the network contains a connection matrix which defines
which note can reach which other node in a broadcast operation, i.e., the next
hop for each node.

In order to forward packets or messages in a BSN from the source node to
the sink node different strategies can be used. In the following we will look closer
into models of flooding and the routing protocol AODV. Routing protocols are

used to build up routing tables that are used by the nodes to forward messages
to the next hop.

2 Modelling of Flooding

Flooding is a simple forwarding strategy where each node that wants to forward
a message broadcasts this message to its neighbours, i.e., to the nodes that are
reachable in one hop. Each message carries an unique identification, which is used
to check whether this message already has been handled on this node. Messages
that have not been seen on a node before are broadcast further to all neighbours,
while the others are dropped. When a message reaches its destination this event
is registered.

Fig. 2. Example of a sensor network with eight nodes showing the possible paths from
S1 to the Sink.

Models of the flooding strategy are presented in the following. We use these
models as a basis for further modelling efforts for more advanced protocols,
like AODV described in Section 5. As an illustration we show an example of a
network of sensor nodes in Figure 2 with the possible pathes of a message sent
from Sensor S1 to the Sink.

2.1 Flooding modelled in Creol

We modelled the flooding strategy in Creol using the interfaces which are shown
simplified in Fig. 3. The objects used in this model are besides the Main-object
several Nodes connected through one Network.

Node Interface. Each node has an interface for sensing, which may be imple-
mented as an internal call when the node is an active object (which is the case

Fig. 3. Interfaces for flooding

in our model). For receiving messages from the network a call to receive broadcast
messages is implemented which does not return its success. We also implemented
a the reception of a singlecast message to demonstrate how to model whether
the correct recipient receives a message. The sending operation of data is an in-
ternal call in the node; both broadcast and singlecast variants are implemented.
Note, that for demonstration of the flooding strategy we only use the calls that
implement broadcast. The external interface of a node looks as follows:

interface Node begin
with Network

op receiveBroadcast(in data: Message)
op receiveSinglecast(in data: Message, rec: Int ; out success: Bool)

end

Network Interface. The network includes interfaces for both broadcast and sin-
glecast of messages. Additionally, for the setup of the direct connections between
nodes of this network the method register is defined. Thus, the external interface
of the network is as follows:

interface Node begin
with Network

op receiveBroadcast(in data: Message)
op receiveSinglecast(in data: Message, rec: Int ; out success: Bool)

end

Node implementation. The following snippet shows how the broadcast method
is implemented in the flooding model. Using the list of connections the message
is sent to all directly connected nodes.

with Node
op broadcast(in data: Message) ==

var rec: Node;
var recs : List [Node] := nil ;

if caller in nodesConns then
recs := get(nodesConns, caller)

end;

while ¬isempty(recs) do
rec := head(recs);
recs := tail (recs);
if rec 6=caller then

rec .receiveBroadcast(data;)
end

end

Note that in this model all messages will arrive at all connected notes. In real-
ity, different circumstances, for instance electrical noise, could prevent messages
from arriving. Therefore, for model checking indeterminism could be applied,
which would result in the following implementation (only last part presented):

[...]
while ¬isempty(recs) do
rec := head(recs);
recs := tail (recs);
if rec 6=caller then

rec .receiveBroadcast(data;) � skip
end

end

Internally, in a node the incoming messages are processed by counting them
when a message has arrived at the right recipient, else storing them in a buffer
belonging to the node. This buffer is then inspected by a process in the node
and forwarded to other nodes. Processing an incoming message is implemented
as follows:

op processMessage(in data: Message) ==
var theMessageType :Int;
var psrc: Int ; var ppld: Int ;
var p: [Int , Int];
var plmdata: PayloadMessage;

data.getMessageType(;theMessageType);
if theMessageType = 1 then
data.getPayloadMessage(;plmdata);
plmdata.getSrcNode(;psrc);
plmdata.getPayload(;ppld);
p := (psrc,ppld);
if ¬(p in reced) then
reced := reced ` p;
store(data;)

end
end

The active process in a node for handling sensing or forwarding the stored
messages from the buffer is implemented as a choice as follows:

op run ==
while true do

await seqNo <noSensings; sense(;)
�
await #(stored) >0; sendOrForward(;)

end

Modelling of messages. Since a model of flooding only contains only one message
type, namely the payload, we can represent the message by one integer number.
This was done in the early versions of the model. However, in order to be able to
extend the model, we needed a more flexible representation in order to include
more complex information into the messages, as explained in Section 5. Following
the object-oriented paradigm we chose objects without an internal behaviour,
comparable to structs in C/C++. We discuss the impact of this decision and
alternatives later in Section 5.

We define a generic message which is forwarded in the network object, which
also contains information about the link layer, i.e., the sending and receiving node
of the current hop. Within the node objects we need access to the information of
each message type. To specialise to a specific message object, we use the method
getPayloadMessage which implements a typecasting pattern. The interfaces for
messages are as follows:

interface Message
begin with Node

op getSrcNode(out srcNode: Int)
op getDstNode(out dstNode: Int)
op getMessageType(out mt: Int)
op getPayloadMessage(out m: PayloadMessage)

end

interface PayloadMessage inherits Message
begin with Node

op getPayload(out payload: Int)
end

2.2 Extensions of the Flooding Models

An extended version of the flooding protocol has been modelled in Creol. In
this model, we added the notion of distance between the nodes as well as power
consumption of sending and receiving of the messages to the previous flooding

model. We added the concept of position (altitude and latitude) to each node.
The distance between each two nodes is calculated using these positions. When
a node broadcasts a message, only the nodes that are within the valid distance
range can receive that.

To consider the power consumption of nodes, we add the concept of power
to each node. After each sending and receiving operation the total power of the
node will be decreased by a predefined value.

The following snippet shows our modifications of the flooding model:

op send(in data: [Int , Int], x_sender: Int,y_sender: Int) ==
var l : Label[];
power:=power − broadcast_power;
l !network.broadcast(data,x_sender,y_sender)

with Network
op deposit (in data: [Int , Int], x_sender: Int,y_sender: Int) ==
distance := (x − x_sender)∗(x − x_sender)−(y − y_sender)∗(y − y_sender);
if (distance < tr) then

power:= power − recieve_power;
if ¬(data in reced) then

!send(data, x_sender, y_sender);
reced := reced ` data

end
end

2.3 Flooding modelled in Vereofy

In this section we provide a brief overview on the Vereofy model for flooding in
the BSN case study.

Data domain. As an abstraction we assumed that the data which should be
transferred to the sink node corresponds to the ID of the originating sensor
node. The data received by a sensor node A may be corrupted when collisions
occur.

As depicted in Figure 4 the received data at a sensor node SN1 is corrupted
whenever two sensor nodes SN2 and SN3 which are both in sending reach of SN1

broadcast a message at the same time. Other sensor nodes which are only in
range of one of the broadcasting nodes will receive the uncorrupted message.

Thus, the global data domain for the flooding in the Vereofy main program
corresponds to the set of sensor node IDs together with the ERROR_MSG which
indicates a collision.

CONST NR_OF_SENSOR_NODES = 8;
TYPE Data = int(0, NR_OF_SENSOR_NODES);
CONST ERROR_MSG = NR_OF_SENSOR_NODES;

SN 1

SN 2

SN 3

SN 4

Sink

SN 6

SN 5

Fig. 4. Collisions

Sensor nodes. The prototype for a sensor node has two parameters. One for
indicating the node ID and one for the encoding of corrupted messages. The
sensor nodes consists of the sub-modules for sending and receiving messages.
Both are modeled with the help of CARML. The resulting interface of a sensor
node thus consists of a port for receiving messages, one port for broadcasting
messages and a port for receiving acknowledgements from the sink.

MODULE sensor_node<id,error> {
in: receive ;
in: ack;
out: broadcast;

/ / sub−modules for sending and receiving:
...

}

Sink node. Contrary to the sensor nodes the sink node does not send any data
to other nodes. It simply receives messages via an input port and acknowledges
the message via an output port.

MODULE sink_node{
in: receive ;
out: send_ack;

var: Data last_received := ERROR_MSG;
var: enum{IDLE,BUSY} state :=IDLE;

state==IDLE
−[{receive} & #receive!=ERROR_MSG]→

last_received :=#receive & state:=BUSY;

state==BUSY
−[{send_ack} & #send_ack==last_received]→

state := IDLE;
}

For the sink node we assume a reliable synchronous channel communication
to each of the sensor nodes for sending acknowledgements. This is illustrated in
Figure 5.

sink
node

sensor
node

ACK

ack_1

sensor
node

ack_2

sensor
node

ack_k

. . .

Fig. 5. The sink node with reliable communication

Thus, the sink node does not rely on the broadcast medium as it will be
described in the next paragraph for sending the acknowledgements.

Broadcast medium. The network medium is modeled in RSL and composed out
of several sub-networks; one for the topology which may dynamically change over
time and one for the collision detection. Let from now on be k be the number of
sensor nodes. Furthermore we identify the sink node with the sensor node with
ID 0. Figure 6 shows how the broadcast medium is composed and how the sensor
nodes are supposed to use the medium for sending and receiving messages. The
sink node uses the medium for receiving only.

CIRCUIT topology_matrix<k>{
/ / interface definition
for (i=0;i<k;i=i+1){

if (i>0){
source[i−1] = NODE;

}
for (j=0;j<k;j=j+1){

topology matrix

≤k 1

≤k 1

≤k 1

collision matrix

sensor
node 1

sensor
node 2

sensor
node k

sensor
node 1

sensor
node 2

sensor
node k

sink
node

sink
node≤k 1

receive ibroadcast i

Fig. 6. The broadcast medium

sink [(i ∗ (k)+ j)] = NODE;
}

}

/ / creating synchronous channels for each connection:
...

}

The topology component as it is composed by the RSL circuit above has k
input ports and (k + 1)2 output ports. We require that there is a synchronous
channel between input port i and the i-th input port of the collider j iff in the
current topology sensor node i can reach sensor node j (including the sink).
We used the same structure to model dynamically changing network topologies
which may occur whenever nodes are added, power down, move to another lo-
cation, or change their sending power. An example where the medium has two
possible topologies is illustrated by the following RSL code.

/ / topology 0
TOPO(0) = {
for (i=0;i<k;i=i+1){

if (i>1){ new SYNC(source[i];sink[(k)∗(i−2)+i]); }
if (i>0){

if (i<k−2){
new SYNC(source[i];sink[(k)∗(i+2)+ i]);

}
}

}
if (k>1){ new SYNC(source[2];sink[k+2]); }
if (k>0){ new SYNC(source[1];sink[1]); }

}

/ / topology 1 has more connects:
TOPO(1) = {

if (k>2){ new SYNC(source[3];sink[(k∗2)+3]);
if (k>3){ new SYNC(source[3];sink[(k∗4)+3]);

if (k>5){ new SYNC(source[3];sink[(k∗6)+3]); }
}

}
}

The collision matrix consists of k+1 individual components; one for the sink
and one for each sensor node. Each of the components behaves in the following
way: Each collider always accepts data, i.e. the collision component is input en-
abled. If exactly one input is detected the data value will be passed to the output
port. Whenever more than one output is detected the data item ERROR_MSG
is written to its output port. The collision component for each sensor node can
be composed of collision components of size 2 either by using linear or recursive
composition. This is illustrated in Figure 7.

≤k 1

≤2 1

≤2 1

≤2 1

t_(i,1)

t_(i,2)

t_(i,3)

t_(i,k)
IN_i

≤k 1

≤2 1

≤2 1

≤2 1

t_(i,1)

t_(i,2)

t_(i,3)

IN_i

≤2 1
t_(i,4)

≤2 1

≤2 1

t_(i,k-3)

t_(i,k-2)

t_(i,k-1) ≤2 1
t_(i,k)

...

Fig. 7. Collision detection

Composite system. The composite system is then build using the following RSL
script.

CIRCUIT main{
/ / create medium
med = new medium<NR_OF_SENSOR_NODES+1>;

/ / build the sink node (sensor [0])
/ / and the other sensor nodes (sensor[i])
for (i=0;i≤NR_OF_SENSOR_NODES;i=i+1){

if (i==0){
sensor [0] = new sink_node;
ACK = sensor[0].sink[0];
receive [0] = sensor [0]. source [0];
join(med.sink[0], receive [0]);

} else{
sensor[i] = new sensor_node<i−1, ERROR_MSG>;
ACK = join(ACK, sensor[i].source[1]);
receive [i] = sensor[i]. source [0];
broadcast[i] = sensor[i]. sink;
join(broadcast[i], med.source[i]);
join(med.sink[i], receive [i]);

}
}

}

3 UPPAAL Model focusing on Link- and Network Layer

A timed automaton is a finite state automaton extended with real-time clocks.
UPPAAL is a tool box for timed automata, which provides a modelling lan-
guage, a simulator and a model checker. In UPPAAL, timed automata are fur-
ther extended with data variables of types such as integer and array etc., and
networks of timed automata, which are sets of automata communicating with
synchronous channels or shared variables, to ease the modelling tasks. The mod-
elling language allows to define templates to model components that have the
same control structure, but different parameters, which is a perfect feature for
modelling of sensor nodes.

In this section, we develop a UPPAAL model for a biomedical sensor network
(BSN), as a network of timed automata where each automaton models a sensor
node. As all sensor nodes are implemented with the same chip for wireless com-
munication, running the same protocol, we use a template to model the node
behaviour with open timing parameters to be fixed in the validation phase. The
network topology is modelled using a matrix declared as an array of integers
in UPPAAL. Elements in the matrix denotes the connectivity between pairs of
nodes.

Modelling the Chipcon CC2420 Transceiver. To study the network performance,
we need to model only the transceiver of a sensor node for wireless communica-
tion. We assume that all sensor nodes use the Chipcon CC2420 transceiver. We
model the transceiver as a UPPAAL template based on the radio control state
machine of the transceiver, described in its reference manual.

The modelled template is shown in Fig. 8. Most of the states are of the same
name as the radio control states in the original state machine for the transceiver.
The functionality of the transceiver is modelled by the state transitions according
to the reference manual.

TX_PREAMBLE

Backoff
y<=BACK[bo_cnt]
and x<=P_W

TX_CALIBRATE
y<=1

Initial_delay

x<=D

PreRX

PreTX

RX_FRAME
x<=P_W and
y<=P_S[tmp_sig]

RX_SFD_SEARCH
x<=P_W &&
y<=bound

TX_FRAME y<=P_S[buffer[ID]]

PowerDown
x<=P_M

y>=bound
bound:=ack(ID),
y:=0

signal[ID]>0 and
ignore[ID][signal[ID]]==1
go?
ignore[ID][signal[ID]]:=2

y>=1
send(ID)

x>=P_W bo_cnt:=0,y:=0

signal[ID]!=0 and
bo_cnt >= MAX_BO

buffer[ID]:=0,
bo_cnt:=0, y:=0

signal[ID]!=0 and
bo_cnt < MAX_BO
bo_cnt++, y:=0

signal[ID]==0
bo_cnt:=0,y:=0

x>=D
buffer[ID]:=ID,
x:=0, y:=0

topology[tmp][ID]<=0

topology[tmp][ID]>0
tmp_sig:=signal[ID]

x>=P_W
buffer[ID]:=0

start[ID]!
y:=0

signal[ID]>=0
stop[tmp]?

received[tmp_sig]++,
buffer[ID]:=tmp_sig

signal[ID]<0
go?
buffer[ID]:=0

buffer[ID]>0
go?

y:=0

i : int[0,N-1]

buffer[ID]==0 and
signal[ID]>0 and
ignore[ID][signal[ID]]==0

start[i]?
tmp:=i,
y:=0

x>=P_W and y>=P_S[buffer[ID]]
stop[ID]!
y:=0,
reset_signal(ID)

x>=P_M
buffer[ID]:=ID,
ignore[ID][ID]:=0,
x:=0, y:=0

x>=P_W

y>=P_S[buffer[ID]] and x<P_W
stop[ID]!

reset_signal(ID)

Fig. 8. A UPPAAL template for wireless sensor nodes based on the Chipcon CC2420
Transceiver

Modelling the Network and Communication. Now we describe how data packets
are transferred between nodes and how errors are modelled, that may occur dur-
ing packet transmission. The description is mainly on the global data variables
used by the template automaton.

The network topology – the spatial distribution of the sensor nodes – rep-
resents the direct connections between the nodes. It is the task of the routing
protocol to find a path for a packet from one node to the sink. We model the
network topology using a matrix (topology) referred as topology matrix. The

dimensions of this matrix correspond to the number of nodes in the network.
Every element stands for the connectivity from one node (row index) to another
(column index). If the matrix should map the topology, negative values can be
used, for instance, to represent that a pair of nodes is not connected and posi-
tive values can reflect the distance or signal strength between the corresponding
nodes. The matrix can also be used to store routing information. In this case,
some values can stand for a connection, where a node is in range but not on a
routing path.

Using the topology matrix, it is easy to model a fixed routing scheme. The
matrix also allows us to model dynamic reconfigurations of the network topology
due to the movement of a node or the change of routing information at runtime.
To study dynamic reconfigurations, we have modelled controlled flooding which
is a dynamic routing scheme. A node broadcasts a packet to all its neighbours
and remembers every received packet to control this flooding. If a node receives
a packet that has been forwarded earlier, it will be ignored, which avoids cyclic
forwarding. The model contains a matrix (ignore) with which every node re-
members the packets it has received so far. The same matrix is used to remember
if an acknowledgement is expected or received. In addition to dynamic routing,
the flooding scheme offers the opportunity for an implicit acknowledgement:
when a node has transmitted a packet, it will most likely receive it again after
a short while, because the receiver(s) will broadcast it again. When a defined
time after transmission has passed, a node will call a function (ack) to check if
a packet has to be retransmitted.

For simplicity, we abstract away from the contents of packets. Every node
has an unique identifier and if a node emits a packet, it is named by the iden-
tifier of the node. The identifier is also used to determine the length of the
packet (P_S[ID]). To transmit a packet, a node uses a function named send.
The function walks through the topology matrix and updates the incoming sig-
nal of every node in range, where the incoming signals are modelled by an array
named signal. Packet collisions that lead to packet losses are modelled with
help of the signal array. If a node starts a transmission while another node in
range is receiving a signal, the corresponding element in the signal array will be
set to a negative value meaning that the packet is corrupted.

Based on the model, we have used UPPAAL to validate and tune the tempo-
ral configuration parameters of a BSN in order to meet desired QoS requirements
on packet delivery ratio and network connectivity. The network studied allows
dynamic reconfigurations of the network topology due to the physical movements
of sensor nodes and also their temporally switching to the power-down mode for
energy-saving.

Both the simulator and the model-checker of UPPAAL are used to analyse
the average-case and worst-case behaviours. The simulator scales well; it can
easily handle up to 50 nodes in our experiments. Even the model checker can
handle networks with 5 up to 16 nodes depending on the properties to be checked;
these are reasonable numbers for BSN applications in medical care.

Detailed information on the design of the timed automation model, simula-
tion and verification environment settings and results can be found in [14,15].

4 An Object-Oriented Component Model for
Heterogeneous Nets

Many distributed applications can be understood in terms of components inter-
acting in an open environment. This interaction is not always uniform as the
network may consist of subnets with different quality: Some components are
tightly connected with order preservation of communicated messages, whereas
others are more loosely connected such that overtaking of messages and even
message loss may occur. Furthermore, certain components may communicate
over wireless networks, where sending and receiving must be synchronised, since
the wireless medium cannot buffer messages. We proposed a formal framework
for such systems, which allows high-level modelling and formal analysis of dis-
tributed systems where interaction is managed by a variety of nets, including
wireless ones [10]. We introduce a simple modelling language for object-oriented
components, extending the Creol language.

In order to model the units of the heterogeneous network, we introduce a
light-weight notion of multi-object network components. The objects inside a
component are tightly connected and communicate directly with each other. A
component supports all interfaces supported by its objects; thus the caller may
call a method on a component if the called method is supported by some object
in that component. However, if the caller knows the identity of a preferred object
inside the component, the caller may call that object directly.

In a given model, the network connecting the components need not be uni-
form. Actual nets are defined by means of a number of direct links between
components, which may have different characteristics. We consider three basic
forms of links: wireless, loose, and tight. In order to model the heterogeneous
net, links are declared by special statements, for instance link o wless u. This
statement adds wless links from each each component in o to each compo-
nent in u. Correspondingly, links are explicitly broken by, e.g., the statement
unlink o wless u. We do allow broadcast communication to all components
supporting a given interface. The modelling language considered here depends
on a notion of time. This is handled by a combination of global and local clocks.

Primitives are added for broadcast communication to objects supporting a
given interface (this is useful to establish a connection between a wireless network
and a new sensor moving into the network). The modelling language considered
in this paper depends on a notion of time. This is handled by a combination of
global and local clocks. An operational semantics for the language is defined in
rewriting logic, which directly provides an executable implementation in Maude.

As a case study we have used this executable implementation to simulate
a small sensor network. The sensors are connected to each other by wireless
connections. Some of the sensors are also connected to a sink. The network is

evolving which means that connections may be broken, and new ones may ap-
pear. The sensors measure some kind of data and tries to pass the measurements
to the sink. Since not all of the sensors are connected to the sink, messages must
be passed on by other sensors. The sink then passes the data to a user trough
a wired network. The sensors and the sink are components consisting of a con-
trol object and a radio object. The executable program representing this whole
system consists of approximately 70 lines of Creol code.

5 Modelling of AODV

In BSNs, the underlying communication networks must ensure that the data
packets can be delivered to the medical center reliably and efficiently [9,4]. Data
in a network are often forwarded by using a routing table, where the next hop in
the communication chain can be retrieved. The routing table is built up by using
a so-called routing protocol. The properties of routing protocols have a significant
impact on the network performance. Many routing protocols have been proposed
for wireless sensor networks in recent years, which can be classified into two main
categories: proactive and reactive routing protocols [2,1].

We select the AODV [12] protocol as a study on how to model and evaluate
protocols and algorithms in BSN. AODV has undergone model-checking before
[11]. The entities to model are rather discrete, while timing and probabilistic
properties can be abstracted away in a straight-forward manner. For protocols
like AODV it is also possible to check invariants and other assertions in the
model.

5.1 AODV

AODV is a routing protocol which can inherently handle the network dynamics,
e.g., node mobility, varying wireless link qualities and the changing network
topology. Besides, AODV is well documented and has been demonstrated to be
effective in the application of distributed communication systems, e.g., wireless
sensor networks, wireless AD hoc networks. Furthermore, AODV is a distributed
routing protocol, i.e., sensor nodes can establish and maintain routes without the
need of centralised control. Thus, AODV is selected as a suitable communication
protocol to be modelled using Creol.

The AODV (Ad hoc On Demand Distance Vector) routing algorithm, de-
signed for wireless networks, is a reactive routing protocol, i.e., routes are deter-
mined when they are needed. When a node has a packet to send, it will initiate
a route discovery procedure by broadcasting RREQ (route request) messages.
When a node receives a RREQ message, if it is the destination node or it has
a route to the destination, the node will send a RREP (route reply) message to
the node which originated the RREQ message; if not, the node will re-broadcast
the RREQ message. This procedure continues until the RREQ message reaches
the destination node or a node has a valid route to the destination node. The

RREP message is unicast to the source node through multi-hop communica-
tions, as the RREP message propagates, all the intermediate nodes setup routes
to the destination. When the source node receives the RREP message, it can
establish a route to the destination, and can begin to send data packets along
the established route.

The most common metric used in AODV is the number of hops. Therefore,
when multiple RREP messages are received by the source, the route with the
minimum number of hops will be selected.5

If any of the links in the route breaks due to node mobility, wireless channel
interferences, etc, the node which detects a broken link6 can try to repair this
locally, or inform the source node. For this it sends a RERR (route error) message
along the reverse route, which will finally arrive at the source node. Thus the
source node can know that the current route is broken and that it must initiate a
new route discovery procedure. Detailed information on AODV routing protocol
description, design, implementation and network performance measurement can
be found elsewhere [12,6,3].

As an illustration, Figure 9 shows an example of a small BSN with eight
nodes, where the potential RREQ messages are shown in blue, while the RREP
messages are shown in read. Note that more or other pathes for the RREP
messages are possible outcomes of this example.

Fig. 9. Example of AODV messages in a BSN with eight nodes.

5.2 Model checking aspects of AODV

Models and implementations of AODV have been simulated and model-checked,
and both specification and implementation errors have been found [11]. Both
5 This is one of the properties that can be checked in the model.
6 The Medium Access Aontrol (MAC) layer acknowledgement scheme can be used to
detect link errors.

node-local (e.g., properties of the routing tables) and global properties (e.g.,
shortest route is selected; or the route contains no loops) can be checked.

Since the nodes in an AODV network do not have access to a global clock
the protocol uses so-called sequence numbers to measure the freshness of routes.
According to ([11], Section 4), there is an invariant property; for a route to d at
a and b, b being the next hop to the destination, and using seq for the sequence
number, and hcnt for the hop count:

(seqa < seqb) ∨ (seqa = seqb ∧ hcnta > hcntb)

5.3 Modelling of AODV in Creol

The Creol model of AODV is derived from the Creol model of the flooding
strategy. This final model contains code for both AODV and flooding in one
model, which is facilitated by the object-oriented structure in the model of the
messages. In the following we will present the implementation AODV model in
Creol followed by a discussion of its features and alternatives.

Fig. 10. Interfaces for AODV

Additionally to the features of the flooding model the AODV model needs
to handle four different message types, for incoming and outgoing messages, and
provide a storage for messages that need to wait for a route. Additionally time-
outs (i.e., a RREQ message does not receive a RREP message) and the outcome
of messages not delivered to the peer are modelled. A graphical presentation of
the interfaces for the AODV model is shown in Figure 10. We recognise that
this model is quite similar to the interfaces of the flooding strategy, except that
several message types are to be handled.

Modelling of the messages. We modelled four different message types of AODV
protocol: Payload messages, RREQ, RREP, RERR, including the handling rou-
tines in the nodes for incoming and outgoing messages. In the network the mes-
sages are not diversified, and thus only handled as a message where sender, and
receiver between peers (i.e., link layer information) is available.

A suitable abstraction for this would be classes without an internal behaviour,
not unlike a struct in C, exposing only access functions (i.e., get and set oper-
ators) in their interface. Additionally inheritance is suggested as a mechanism
to diversify between different message types. This kind of implementation would
be very close to a real implementation, and therefore reduce the modelling ef-
fort. However, there are several obstacles in Creol for such a solution, such as
increasing the number of states when model checking, missing support for type
casting in Creol, and the fact that access functions must be written as pro-
cedures. Nonetheless we chose to use Creol classes with inheritance to model
messages. Alternatives to the use of Creol classes to model the messages are:

Parameter list: For each message type a separate routine is written for trans-
mission in the network and for handling in the nodes, e.g., transmitPayload,
transmitRREQ, etc. using the appropriate parameters for each type. How-
ever, this alternative would make it necessary to repeat code in the network
class, instead of defining only routines for singlecast and broadcast. Note
that a separate routine for each message type and the resulting repetition of
code would make modelling of a different behaviour in the network object
less flexible.

Common block: Instead of transporting all parameters explicitly in the call,
one could use an unique identifier for each message. In order to access the
single parameters for each message one could define a common block object
that contains the necessary maps and tables to retrieve and set these values,
e.g.,

op getMessageType(in idx: Int; out val: Int)

The common block object needs to be globally available in the nodes. From a
practitioner’s perspective this kind of modelling resembles somewhat to the
programming practice of FORTRAN, where this technique is often used.

maps: The messages could also be modelled as maps, i.e., a collection of name
and type. However, currently all elements of a map must have the same data
type, e.g., Int. Therefore, all information in a message must be transformed
to Int values, which is possible for all important values used in AODV.

pairs: An alternative is to use the build-in Pair type already provided by the
Creol type system. By using nested Pairs one may then model parameter
lists of any length and with elements of different types, as in

var parlist : [Int , [String, Bool]]

As in the model for flooding there is a generic classMessage with the following
main elements of interface7:

7 Methods used for tracing and debugging purposes are omitted in this interface. In
the real implementation we added a string variable where in the absence of printing
commands in Maude, a trace of nodes is provided which were involved in processing
this message.

interface Message begin with Any
op getSndNode(out seno: Int) / / link layer / peer−to−peer
op setSndNode(in seno: Int) / / link layer / peer−to−peer
op getRecNode(out reno: Int) / / link layer − negative for broadcast
op setRecNode(in reno: Int) / / link layer − negative for broadcast

op getMessageType(out mt: Int)
op getPayloadMessage(out m: PayloadMessage)
op getRREQMessage(out m: RREQMessage)
op getRREPMessage(out m: RREPMessage)
op getRERRMessage(out m: RERRMessage)
op getFloodingMessage(out m: FloodingMessage)

end

The elements SndNode and RecNode denote the sender and receiver on the link-
layer, i.e., between two peers. The second part shows the methods for the type-
casting mechanism necessary for diversifying the messages according to their
type.

As an example, the RREQ message has the following interface which provides
read access to all message content; for the other message types we refer to the
code.

interface RREQMessage inherits Message begin
with Any

op getHopCount(out hc: Int)
op setHopCount(in hc: Int)
op getDstNode (out dsn: Int)
op getDstSeqNo(out dsno: Int)
op getOrgNode (out osn: Int)
op getOrgSeqNo(out osno: Int)
op getUFlag(out uflag: Bool)
op getRREQID(out theRREQID: Int)

end

The definition of the Message class and its implementation, including the
typecasting mechanism and cloning messages takes about 300 lines of code.

Modelling the network. The interface and implementation of the Network is
similar to the flooding case, but the fact that AODV needs both the broadcast
and singlecast methods.

interface Network begin
with Any

op register(in node: Node, connections: List [Node])
with Node

op broadcast(in data: Message)
op singlecast(in data: Message, rec: Int ; out success: Bool)

end

Modelling the nodes. The interface of the Node is similar to the model in flood-
ing. The interface includes receive-routines for broadcast and singlecast; the
latter provides a result parameter. Note that all nodes in the vicinity of a sender
will handle incoming singlecast-messages, since their radio part will be occupied
during this operation. Each node will ignore all incoming singlecast messages
that are bound for other nodes than itself. An extra method is the raiseTime-
out method which models possible timeouts that may occur when an outgoing
RREQ message is not responded with a suitable RREP message. The classes
RoutingLogic and CacheLogic contain data structures needed internally in the
node, that is one instance of the routing table, and a cache that is suited to
detect duplicate messages.

interface Node inherits RoutingLogic inherits CacheLogic begin
with Network

op receiveBroadcast(in data: Message)
op receiveSinglecast(in data: Message, rec: Int ; out success: Bool)

with Any
op start
op raiseTimeout(in timeoutID: Int)

end

The behaviour of a node is similar to the behaviour of a flooding node. the
storedQ implements a queue of messages that are yet to be transmitted through
the radio of a node. The internal behaviour of a node is implemented by the
following methods:

op sendOrForward ==
var processResult: Bool;
processOutgoingMessage(head(storedQ);processResult);
storedQ := tail (storedQ)

op run ==
await start;
while true do

await seqNo <noSensings; sense(;)
�
await #(storedQ) >0; sendOrForward(;)

end

The processing logic for messages is impelemented in the methods processIncom-
ingMessage and processOutgoingMessage. Both of these call the specific routine
suitable for the message to be handled. That is, all incoming messages are re-
ceived through this one method, which retrieves the message type, and calls the
appropriate handling routine, e.g., processIncomingRREQMessage. The outgo-
ing messages are handled similarly.

For incoming messages with a payload the method processIncomingPayload-
Message first checks whether the current node is the receiver. For messages to
be forwarded further the node checks whether an entry to the destination exists;

if so the message is put into the storeQ, else the message is moved into the wait-
ingQ and an RREQ message is generated. The following code snippet illustrates
this further:

(this as RoutingLogic).existsValidRouteTo(pdst;existRouteToDst);
if existRouteToDst then

store(data;) / / put into storedQ
else

waitingQ := waitingQ `plmdata; / / put into waitingQ
couma.getNextMessageId(;newmid);
ownSequenceNumber :=ownSequenceNumber +1;
newRREQmsg :=new RREQMessage(id,−1,newmid,

id ,ownSequenceNumber,pdst,0,false,ownRREQID);
ownRREQID :=ownRREQID +1;
newmsg := newRREQmsg;
store(newmsg;)

end

In the nodes there are three larger data structures defined as classes, that are
inherited into a node; these are the RoutingLogic (implementing the routing ta-
ble), two different CacheLogic classes, which remember already incoming RREQ
and RERR messages. While we implemented the Cache Logic functionality, it
depends on the properties to check whether these classes are needed. Note that
the code will not work without these classes, since we derived the model from
the RFC specification.

The DeusExMachina object. Our model supports several possiblities of indeter-
minism introduced in the real world due to properties of the outer environment,
resulting in, e.g., lost messages which could cause timeouts. Even when these in-
cidents occur, the invariants while running the model must be fulfilled. To model
such behaviour of the model we introduce the object DeusExMachina that can
make decisions, and that could have an internal behaviour to generate timeouts.
At the moment, DeusExMachina is implemented as an oracle that tells whether
a message will arive, or whether a timeout occurs. In principle this functionality
also could be implemented in the Network.

The following snippet shows how indeterminism whether messages arrive
are implemented. This snippet also shows the implementation of timeouts, that
can occur between a RREQ is broadcast and the corresponding RREP is re-
ceived. In our model, timeouts potentially occur (somewhen) before a message
arrives. In this model we avoid to model time explicitely, and instead abstract
the time intervals between two incoming messages as one possibility for a time-
out to occur. Note also that for simulation arbitrary decisions are made, while
for model-checking all possiblities are checked. In the AODV model the raiseTi-
mout method implements to resend RREQ messages up to a specified number
of times.

op receiveBroadcast(in data: Message) ==

var doesArrive: Bool;
var doesTimeout: Bool;
couma.doesRiseTimeout(id,intrID;doesTimeout);
if doesTimeout then

this.raiseTimeout(intrID;)
end;
data.getSndNode(;fromNode);
couma.doesArriveBroadcastMessage(fromNode,id;doesArrive);
if doesArrive then

processIncomingMessage(data;theSuccess)
end

Initialising the model. As an example how to set up and initialise the AODV
model we show the Main class. As an extension the setup can be defined as a
method for more advanced network topologies.

class Main begin
var nw: Network
var n1, n2, n3, n4, sn: Node
var couma: DeusExMachina

op run ==
var none: List [Node] := nil ;
var noNodes: Int := 5;
couma := new DeusExMachina;
nw := new BroadcastNetwork(noNodes,couma);
n1 := new SensorNode(1, nw, couma);
n2 := new SensorNode(2, nw, couma);
n3 := new SensorNode(3, nw, couma);
n4 := new SensorNode(4, nw, couma);
sn := new SinkNode(nw, couma);
/ / Network topology:
/ /
/ / N1 <→N2 <→SN
/ / ^ ^ ^
/ / | | |
/ / V V |
/ / N3 N4<−−−−+
nw.register (n1, [n2,n3];); nw.register (n2, [n1,n4,sn];);
nw.register (n3, [n1];); nw.register (n4, [n2,sn];);
nw.register (sn, [n2,n4];);
!n1.start (); !n2.start (); !n3.start (); !n4.start (); !sn. start ()

end

About the Creol Code. The model of AODV in Creol is about 1400 lines of code,
which is rather large. However, different real world implementations of AODV

are of about 5000-9000 lines of code [11]. The fact that our Creol model was
to some extent developed from more low level implementations, only partially
explains the length of the model.

For the TinyAODV [13], which is a tailored version of the standard AODV
adapting to the resource-constrained wireless sensor networks, the core AODV
processing file has about 1500 lines of code, which is comparable to our Creol
AODV model. Besides this, there are about 2000 lines in the non-core files
in TinyAODV which define the underlying communication protocols. In total,
around 3500 lines of code are used to in the TinyAODV implementation.

While the length of our model is comparable to the implementation of TinyAODV,
we must admit that we model less functionality. There are other reasons for the
lengthyness of our model, like the fact that the definition of messages alone takes
300 lines of code, while the much simpler alternative model of Section 5.4 con-
tains the same number of lines. We will explain more reasons for the lengthyness
of our Creol model later in Section 6.1.

Using Creol Modules and Maude Functions. An alternative to use Creol is defin-
ing Creol Modules. An example for defining messages is as follows:

fmod CREOL−AODV−MESSAGE is

extending CREOL−DATA−SIG .
protecting CREOL−DATATYPES .

∗ ∗ ∗ record−like messages (with a trace)
op Msg :Expr Expr Expr Expr →Expr .
op Msg :Data Data Data Data →Data [ctor] .

vars sndNode recNode msgId theTrace :Expr .
vars sndNode’ recNode’ msgId’ theTrace’ val’ : Expr .
∗ ∗ ∗ get functions for selecting a field
eq "getsndNode" (Msg(sndNode, recNode, msgId, theTrace)) = sndNode .
eq "getrecNode" (Msg(sndNode, recNode, msgId, theTrace)) = recNode .
eq "getmsgId" (Msg(sndNode, recNode, msgId, theTrace)) = msgId .
eq "gettheTrace"(Msg(sndNode, recNode, msgId, theTrace)) = theTrace .
∗ ∗ ∗ set functions for setting a field of a record
∗ ∗ ∗ e.g. setsndNode(message, newsndNodevalue) give updated message
eq "setsndNode" (Msg(sndNode, recNode, msgId, theTrace):: sndNode’) =

Msg(sndNode’, recNode, msgId, theTrace) .
eq "setrecNode" (Msg(sndNode, recNode, msgId, theTrace):: recNode’) =

Msg(sndNode, recNode’, msgId, theTrace) .
eq "setmsgId" (Msg(sndNode, recNode, msgId, theTrace):: msgId’) =

Msg(sndNode, recNode, msgId’, theTrace) .
eq "settheTrace" (Msg(sndNode, recNode, msgId, theTrace):: theTrace’) =

Msg(sndNode, recNode, msgId, theTrace’) .
∗ ∗ ∗ add the trace : adds a value to the trace

eq "apptheTrace" (Msg(sndNode, recNode, msgId, theTrace):: val’) =
Msg(sndNode, recNode, msgId, "`"(theTrace ::val’)) .

endfm

Note that using this model would imply some (trivial) changes to the Creol
compiler, in order to make applications of the defined functions syntactically
acceptable.

5.4 Extensions of the AODV Models

The AODV model. We modelled an alternative, simplified model of AODV using
Creol and in Spin [8,7], to verify some properties which may form the basis of
a comparison between these two frameworks. Both models represent simplified
models of AODV in Creol and in Promela, the modelling language of Spin [5].
The Creol and Promela models have about the same length of about 250 lines
of code.

The first property we checked is the absence of a deadlock, which means the
protocol always can find the routing path if there is one. The second property
we checked is to evaluate if the path is the shortest possible path to destination.

These prober ties are important in the AODV protocol, since it is designed
to always find a path if there is one, and to find the shortest path. In the model
we abstract away some details of the protocol that are not related to these
properties. We use the assumptions in our model that no message is lost in the
protocol; the the topology of network consists of a pre-defined number of nodes;
and the messages do not expire. Figure 11 shows a simplified graph of our model.
The nodes in this graph correspond to the labels in the Spin node process and
also correspond to the methods in the Creol Node class.

Fig. 11. Simplified graph of extended AODV model

In this8 model we abstract away Hello messages. Instead, we check all the
possible neighbourhoods of nodes by initialising the neighbours in each run non-
deterministically.

Model Information Our model has a fixed number of nodes, that is three nodes.
The connection between nodes are chosen non-deterministically at each run.
Messages consist of these parts: type of message, source, destination, message
ID, previous node in path, and number of hops.

Each node has its own routing table that stores the path to each destination;
the information in the routing table for each destination is the next hop (node)
that the path to destination starts with it, and number of hops of that path.
When a node finds a shorter path to a destination (with less number of hops),
it updates its routing table and replace the older path with the shorter one.

Verification We checked whether the algorithm can find a routing path between
two nodes, and whether this path is the shortest possible one. In order to verify
this property in Spin, we use the accept-label. At first, we put an accept-label in
the position that shows that the desired routing path has been found. Then we
use the LTL property manager of the xspin tool to verify these properties. To
formulate the properties we define the following:

1. q is defined to express the number of hops in the path (length of path) which
should always be less than three (number of nodes).

2. p is defined to express a path to the destination has been found.
3. Path is defined to express the possible topologies that a path exists between

source and destination.

The LTL formulae of properties are:9

Path− ><> p

Path− > pUq

These properties have been shown correctly by the SPIN model checker.

5.5 Modelling AODV with Vereofy

In this section we provide a brief overview on the AODV modeling on the level of
the interfaces using Vereofy’s input languages CARML and RSL. The model is
very close to RFC3561 [12], except we abstract from the lifetime of routes (TTL).
For our model we also abstract from collisions and assume reliable connections
such that messages are not lost. Contrary to the Vereofy flooding model, the
AODV model is able to handle messages to arbitrary destination nodes; not
only to one designated sink node.
8 Internal reviewer note: unknown what “this” refers to . . . ; it is also unclear what
a Hello message is, and why it is abstracted away. Fatemeh, Olaf: This must be
re-written. – Reviewer: wvl

9 Internal reviewer note: The entire section is out of context. I am not sure whether
this should be here; especially the formulae. Verification should possibly be moved
to the next deliverable D6.4. – Reviewer: wvl

Data domain. The data domain consists of two types of messages; the actual
data which should be transferred to the sink and the AODV messages (RREQ,
RREP, and RERR) forming the routing protocol. The data messages are sent via
unicast while the AODV messages are broadcasted in some cases and unicasted
in others. All messages are encapsulated into an address frame consisting of the
ID of the sending node (from_ip) and an address of the target node or the
broadcast address (to_ip). The to_id field corresponds to a node ID in case of
unicast and the broadcast address in case of broadcasting messages.

TYPE message_type_t = enum {RREQ,RREP,RERR,DATA};
TYPE address_t = int(0,nodes);
TYPE id_t = int(0,nodes−1);
TYPE data_type_t = enum {data0,data1};

TYPE message_t = struct {
/ / determine the type and destination
message_type_t message_type;
id_t dest_id;

/ / encapsulation: sender id and receiver id / broadcast
address_t to_ip;
id_t from_ip;

/ / case 1: sending aodv messages
hop_counter_t hop_count;
seq_no_t dest_seq_no;
id_t orig_id;
seq_no_t orig_seq_no;
Bool unknown_seq_no;

/ / case 2: for sending data messages
data_type_t the_data;

};

TYPE Data = message_t;

Sensor nodes. As in the case of the flooding protocol the prototype description of
a sensor node is parametrized. The first parameter determines the node id while
the second indicates the number of nodes in the composite system. The sensor
node consists of the sub-modules for sending and receiving AODV and data
messages. Both are modeled with the help of CARML. The resulting interface
of a sensor node thus consists of one port for receiving both, data and AODV
messages, one port for sending both, data and AODV messages, and a port for
receiving link failure messages which may occur when links break at runtime.

MODULE sensor_node<id,k>{

in: receive ;
in: failure ;
out: send;
...

}

A sensor node consist of the sub-modules for sensing data, receiving messages,
and sending messages. The distinct modules synchronize their activity via shared
variables. Each sensor nodes has its own routing table and buffers for data and
AODV messages.

/ / message buffers
var: Data message;
var: Data AODVMessage;

/ / routing table
var: seq_no_t[k] rt_dest_seq_no := 0;
var: Bool[k] rt_valid_dest_seq_no :=FALSE;
var: Bool[k] rt_route_valid := FALSE;
var: hop_counter_t[k] rt_hop_count := k;
var: id_t[k] rt_next_hop := id ;

While the receiving and sensing of messages accords to writing messages into
its corresponding buffer, the handling of AODV and data messages is rather
complex. Figure 12 gives a brief overview on the different cases. E.g., one can
see that receiving an request for a route (RREQ) may trigger forwarding new
the request or create an routing reply answer package (RREP) which is then
being broadcasted.

For each of the different cases in the sub-module handling received messages
we introduced control locations in the model. The flowchart for a refined version
of the schema from Figure 12 is depicted in Figure 13. This flowchart contains
also the behavior of the sub-modules for sensing data and receiving messages.

Sink node. Since the protocol is flexible enough to deal with arbitrary destination
nodes instead of just one designated sink node, the behavior of the sink agrees
with the behavior of the other sensor nodes except that the sink has no sensor
and sends AODV messages (RREP) only.

Omnicast medium. As for the flooding the medium represents the topology in
which the sensor nodes are arranged. Since we abstract from collisions and mes-
sage loss the medium for AODV consists of the topology matrix only and can
now deal with unicast and broadcast communication. Thus, we used a broad-
cast filter channel instead of synchronous channels to model connections between
neighbored nodes. These broadcast filter channels forward a message if the to_ip
corresponds either to the intended receiving node or the broadcast address (b).
For indicating link failures we add unicast filters back to the sender of the mes-
sage, such that whenever a node tries to send to an unreachable neighbor, the

HANDLE
MESSAGE

HANDLE
DATA

HANDLE
RREQ

HANDLE
RREP

HANDLE
RERR

SEND
DATA

SEND
AODV

RREQ

RERR

RERR

RREP

RREQ

RREP
RERR

RERR

Fig. 12. The AODV schema

node will get feedback via its failure port. Thus for k nodes the topology matrix
has k input and 2 ·k output ports. Figure 14 shows the structure of an omnicast
medium for the links of node 1 only. The connections for the other nodes are set
up in the same way.

Whenever the first sensor node sends a unicast message to either sensor
node 2 or sensor node 4 the message will be delivered to the corresponding
neighbor. In case node 1 uses broadcast communication the sensor nodes 2 and
4 will receive the message. Sending a unicast message to any other node (0, 1, or
3) will lead to a link failure which is fed back to the failure port of the sending
node via a unicast filter. The RSL code for a chain topology matrix looks as
follows.

CIRCUIT topology_matrix<k>{
/ / interface declaration
for (i=0;i<k;i=i+1){

/ / one input
source[i] = NODE;

/ / one output
sink[(2 ∗ i)] = NODE;

/ / and the error feedback
sink[(2 ∗ i)+1] = NODE;

}
...

}

IDLEsensing
data

AODV
MsgType

send on
RREQ

handle
RREP

handle
RERR

RREQ

RREP

RERR

haveRoute?

toMe?

store
sensor
data

forward
data

store
Data

receive
data

link
failure?

back to
IDLE

back to
IDLE

update neighbor
and orginator

handle
RREQ

forMe?

send AODV
message

unicast
RREP

broadcast
RREQ

send AODV
message

back to
IDLE

update neighbor

forward
RREP

ownRREP? back to
IDLE

unicast
RREP

no yes

no

yes
yes no

yes

no

refresh
routing table

broadcast
RREQ

broadcast
RERR

link
failure?

back to
IDLEnoyes

broadcast
RERR

forward
RERR

send
message

yes

no

unicast
RERR

receive
AODV

store
AODV

message

back to
IDLE

refresh
routing table

refresh
routing table

broadcast
RERR

store
data

message

back to
IDLE

sensed
data?no yes

have
AODVMsg?

yes

have
message?

yes

N

no

noN

Fig. 13. The full AODV flowchart schema

(2,b)

(4,b)

receive0

receive1

receive2

receive3

receive4

send0

send1

send2

send3

send4

{0,1,3}

failure
0

failure
1

failure
2

failure
3

failure
4

Fig. 14. Omnicast medium for AODV

/ / connect up
for (i=0;i<k;i=i+1){
for (j=0;j<k;j=j+1){

if (j+1==i | i+1==j){
/ / connected
new broadcast_filter<j,k>(source[i];sink[2 ∗ j]);

} else{
/ / unconnected
new unicast_filter<j>(source[i];sink[(2 ∗ i)+ 1]);

}
}

}
}

Composite system. The composite system is then build using the following RSL
script.

CIRCUIT main{
TOPO_MATRIX_OF_SIZE[nodes] = new topology_matrix<nodes>;

for (i=0;i<nodes;i=i+1){
send[i] = TOPO_MATRIX_OF_SIZE[nodes].source[i];
receive [i] = TOPO_MATRIX_OF_SIZE[nodes].sink[2∗i];
failure [i] = TOPO_MATRIX_OF_SIZE[nodes].sink[(2∗i)+1];
node[i] = new sensor_node<i,nodes>(receive[i],failure[i];send[i]);

}
}

6 Experiences

6.1 Experiences with Creol

While modelling we found it rather easy to start with modelling in Creol once
the run-time system and compiler were installed on the computer. We found
a reasonable selection of language constructs suitable for the modelling task.
When selecting how express the model in Creol we got some guidance by the
developers. However, since there is no best practice established yet we had to
try and possibly fail in some occasions.

The Creol model of both flooding and AODV were implemented like a pro-
gram in a real world application. This has the advantage that the content of
messages can be kept together in structures, but had the disadvantage of rather
lengthy code. Besides that, from a developer’s perspective modelling in Creol can
be compared with programming in many other programming languages. Creol
offers many of the programming paradigms and abstractions programmers are
used to.

Of course, being a modelling language under development, there are several
oddities in the language, flaws in the implementation, and features not imple-
mented. We discuss some of these. Note that some of our comments refer to the
syntax and are independent of the Creol runtime system.

One feature of the Creol syntax is its use of the “;” symbol which only can
be used to separate commands. While this might be nice for the beauty of the
language, it is not practical from a programmer’s perspective. This feature causes
many unnecessary error messages, and thus increases the number of compiler
runs!

In the absence of input- and output-facilities in the language we needed
to find a way to debug code. One practical solution is to put string variables
with a characteristic name into all objects, and append debug information into
these strings. Since objects are persistent in Creol this debug information can
be accessed while inspecting the objects.

The absence of local scoping of variables is another disadvantage, especially
in combination with the non-availability of access functions to values in objects.
When methods get larger many local variables must be defined at the beginning
of the method, which is responsible for the modellers loosing overview.

As mentioned before, our AODV model got quite lengthy, and several reasons
contribute to that. The non-availability of access functions (which are access-
methods in the current implementation) increases the code length. For each
in-parameter of a method that is to be retrieved from a class object we need
to define a temporary variable and to retrieve the value by a method call; thus
for example, cloning a RREQ message (9 parameters) by calling a new opera-
tor with all parameters retrieved from another RREQ message would result in

extra 9 temporary variables, and extra 18 lines of code. Note that this does not
(necessarily) influence the length of the compiled code in Maude.

Creol is based on a object-oriented paradigm. However, while developing the
model we observed that there is no sufficient support for typecasting and multiple
inheritance. While technical reasons might be the reason for that, some design
decisions while modelling would have been made different, had we been aware of
this fact. The implementation of a simple pattern for typecasting (poor-man’s
typecasting) caused the definition of Messages to get quite lengthy; about 300
lines of code. There is also a technical limitation when using multiple inheritance,
since method names in all classes must be distinct. Failure to obey this unwritten
rule will cause unforeseen results.

We would also propose that behaviour-less objects should be introduced into
Creol. While we implemented these using ordinary classes, their use may have
an impact on the state space, and we should consider alternatives. On the other
hand the use of behaviour-less objects was a blessing for debugging, since all
the message objects created ever are stored in the state and can be inspected.
This also allowed us to implement a trace in a string variable, which was a very
helpful feature.

6.2 Experiences with Vereofy

We found it rather straight-forward to model flooding and AODV using Vereofy’s
input languages CARML and RSL for the sensor nodes. Abstract description
formalisms, such as control flow charts, could immediately be translated into
CARML modules. The composite approach facilitated the modelling procedure
a lot. For modelling the broadcast and unicast media we depended on specialist
knowledge about REO and some practice on composing channels in the right
way, to end up with the intended behaviour. While modelling we identified some
language features that were not implemented, like complex data structures for
the data domain or support for user defined functions. The language features
that were required during the modelling phase were added to Vereofy which
furthered its development.

6.3 Experiences with UPPAAL

In modelling the CC2420 radio and the controlled flooding protocol using the
model checker UPPAAL, we found it very intuitive to model the distributed com-
munication system using timed-automata, simulate it, and then verify properties
on it. The features of using templates to define and instantiate processes in a
complex system, the C-like modelling language, and the integrated toolbox make
UPPAAL being a convenient validation tool for wireless sensor networks. For in-
stance, we modelled a medium size biomedical sensor network and validated the
QoS and network connectivity properties with reasonable effort.

From a practical perspecive the use of pointers in the modelling language
of UPPAAL could ease modelling of complex communication protocols, since

many implementations, like the Tiny-AODV, use these low-level features in their
implementations.

References

1. K. Akkaya and M. Younis. A survey on routing protocols for wireless sensor
networks. Ad Hoc Networks, 3:325–349, May 2005.

2. J. N. Al-Karaki and A. E. Kamal. Routing techniques in wireless sensor networks:
a survey. IEEE Wireless Communications, 11:6–28, Dec. 2004.

3. I. Chakeres and E. Belding-Royer. AODV routing protocol implementation de-
sign. In Proc. the 24th International Conference on Distributed Computing Systems
Workshops(ICDCS’04), pages 698– 703, Tokyo, Japan, Mar. 2004.

4. D. Chen and P. K. Varshney. QoS support in wireless sensor networks: A survey.
In Proc. of the 2004 International Conference on Wireless Networks (ICWN’04),
pages 227–233, Las Vegas, Nevada, USA, june 2004.

5. R. Gerth. Concise promela reference. fulltext, available with SPIN, 1997.
6. C. Gomez, F. Salvatella, O. Alonso, and J. Paradells. Adapting AODV for IEEE

802.15.4 mesh sensor networks: Theoretical discussion and performance evaluation
in a real environment. In Proc. IEEE the 7th International Symposium on World
of Wireless, Mobile and Multimedia Networks (WOWMOM’06), pages 159–170,
Niagara-Falls, Buffalo-NY, USA, June 2006.

7. G. J. Holzmann. The model checker spin. IEEE Trans. Software Eng., 23(5):279–
295, 1997.

8. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003. ISBN 0-321-22862-6.

9. L. H. II and R. TAFAZOLLI. A survey of QoS routing solutions for mobile ad hoc
networks. IEEE Communications Surveys & Tutorials, 9(2):50–70, July 2007.

10. E. B. Johnsen, O. Owe, J. Bjørk, and M. Kyas. An object-oriented component
model for heterogeneous nets. In F. S. de Boer, M. M. Bonsangue, S. Graf, and
W. P. de Roever, editors, FMCO, volume 5382 of Lecture Notes in Computer
Science, pages 257–279. Springer, 2007.

11. M. Musuvathi, D. Park, A. Chou, D. Engler, and D. Dill. CMC: a pragmatic
approach to model checking real code, 2002.

12. C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561 (Experimental), July 2003.

13. N. Pham, J. Youn, and C. Won. A comparison of wireless sensor network routing
protocols on an experimental testbed. In Proc. IEEE the 2006 International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06),
pages 276–281, Taichung, Taiwan, June 2006.

14. S. Tschirner, X. Liang, and W. Yi. Model-based validation of QoS properties of
biomedical sensor networks. In Proc. The International Conference on Embedded
Software (EMSOFT2008), pages 69–78, Atlanta, Georgia, USA, Oct. 2008.

15. S. Tschirner and W. Yi. Validating QoS properties in biomedical sensor networks.
In Proc. The 19th Nordic Workshop on Programming Theory (NWPT’07), pages
11–15, Oslo, Norway, Oct. 2007.

	rapport-1022.pdf
	binder-notat-dart-06-09.pdf
	notat-dart-06-09.pdf
	AnnexD6-3-3.pdf

