
Note no DART/11/05
Author Bjarte M. Østvold

and Thor Kristoffersen

Date August 19, 2005

Analysis of
object-oriented
programs: a survey

Bjarte M. Østvold and Thor Kristoffersen

The author
Use \aboutauthors to enter author information.

Norwegian Computing Center
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-profit
foundation established in 1952. NR carries out contract research and development projects in the
areas of information and communication technology and applied statistical modeling. The clients
are a broad range of industrial, commercial and public service organizations in the national as
well as the international market. Our scientific and technical capabilities are further developed in
co-operation with The Research Council of Norway and key customers. The results of our projects
may take the form of reports, software, prototypes, and short courses. A proof of the confidence
and appreciation our clients have for us is given by the fact that most of our new contracts are
signed with previous customers.

Title Analysis of object-oriented programs: a survey

Author Bjarte M. Østvold <bjarte@nr.no>
and Thor Kristoffersen <thor@nr.no>

Date August 19, 2005

Year 2005

Publication number DART/11/05

Abstract
We survey code analysis research, applications and infrastructure, focusing on object-oriented
languages. In particular we cover static and dynamic program analysis, including non-conservative
analysis, and also consider language extensions facilitating program analysis, and libraries and
tools for doing analysis. The discussion outlines challenges and opportunities for program analy-
sis when applied to object-oriented applications development.

Keywords program analysis, static analysis, dynamic analysis

Target group Project group, partners

Availability Open

Project Reducing Software Entropy

Project number 802000

Research field program analysis, object-oriented programming

Number of pages 15

© Copyright Norwegian Computing Center

3

mailto:bjarte@nr.no
mailto:thor@nr.no

Contents

1 Introduction . 7

2 Static analysis . 7
2.1 Call graphs and data/control flow analysis 7
2.2 Points-to analysis . 8
2.3 Type-based and constraint-based analysis. 8

3 Dynamic analysis . 8

4 Analysis tools and frameworks 9
4.1 Non-conservative analysis 9
4.2 Dynamic program comprehension 9
4.3 Bug detection . 10
4.4 Style checking . 10
4.5 Compilation-related . 10

5 Research problems . 12
5.1 Frameworks and partial analysis 12
5.2 Leveraging meta-information. 12
5.3 Catering to the interactive setting 13

References . 13

Analysis of object-oriented programs: a survey 5

1 Introduction

This documents surveys, in a broad sense, the theory and practise of code analysis, with emphasis
on class-based object-oriented languages such as Java and C#.

Roughly code analysis may be divided into two kinds: static analysis and dynamic analysis. Static
analysis is concerned with analysing program code to derive properties about it, but without
considering concrete inputs. Static analysis derives abstract properties that hold for all program
executions. Dynamic analysis seeks to derive properties of a program based on running it on
various inputs. Properties found by dynamic analyses can be about concrete program values, but
they hold only for the analysed executions.

The appearance of modern techniques such as just-in-time compilation and classloaders means
that there is no longer a clear distinction between, on the one hand compile-time and static ana-
lysis, and on the other hand, run-time and dynamic analysis. An example is JIT compilation,
sometimes called jitting, is a byte-code to assembly compiler built into a virtual machine. Here
there are two levels of interacting compilation, before and mixed into, execution of a program.

The traditional goal of code analysis, or program analysis as it then called, is to improve per-
formance directly or to analyse a program’s performance as input to the programmer. Typical
examples of such program analyses are register allocation (static) and profiling (dynamic). There
are, however, also analyses for determining other properties such as security properties, and

2 Static analysis

Classical static analysis determines precise properties of program variables and parts. A intro-
duction to basic static analysis may be found in Appels compiler textbook [3, §10,§17]; we base
part of our presentation on his. Static analysis is a well developed field and static analyses are
widely deployed as part of optimising compilers.

2.1 Call graphs and data/control flow analysis
A call graph is a useful data structure for static analyses. Program statements are the nodes and
there is an edge from statement s to statement t if execution may, after performing s, go to imme-
diately to t. In a procedural language without pointers call graph construction is trivial: the target
of a call depends solely on the code at the call site. In object-oriented languages, however, this is
no the case. The actual method invoked depends on the class of the object on which the method
call is performed. Grove and Chambers remark the following on the relation between call graphs
and flow analyses for object-oriented (and functional) languages:

In general, determining the flow of values needed to build a useful call graph requires
an interprocedural data and control flow analysis of the program. But interprocedural
analysis in turn requires that a call graph be built prior to the analysis being performed.
This circular dependency be-tween interprocedural analysis and call graph construction
is the key technical difference between interprocedural analysis of object-oriented and
functional languages (collectively called higher-order languages) and interprocedural
analysis of strictly first-order procedural languages. Effectively resolving this circularity
is the primary challenge of the call graph construction problem for higher-order langua-
ges. [14]

Analysis of object-oriented programs: a survey 7

Finding the liveness of variables is an example of dataflow analysis. Here we briefly consider
interprocedural liveness analysis. The analysis seeks to determine what program variables are
live when, that is, at what positions in a program variables hold values that are later required by
the computation of the program. Given information about definitions and uses for each variable,
liveness calculation proceeds in iterations to solve equations about variable liveness. The ana-
lysis results may be used to determine the number of temporary variables needed and allocate
registers as a preparation for code generation. As many other flow analysis, liveness analysis is
undecidable. Therefore analysis algorithms compute conservative estimates, and in addition ma-
kes trade-offs between precision of the analysis and the cost of performing it.

Examples of other dataflow analysis are common subexpression elimination and dead-code eli-
mination. Dataflow analysis algorithms, and smart intermediate representations for such, is an
active field of research.

2.2 Points-to analysis
Points-to analysis, also called reference analysis [30], is concerned with determining (properties
of) the set of objects to which a reference variable or field may point.1 Points-to analysis forms the
basis for other analyses [22]:

· Side-effect analysis: determine which memory locations a statement execution changes.

· Def-use analysis: relate all use sites for a variable to all definition sites for that variable and
vice versa.

· Alias analysis: find references that may point to the same memory location.

· Escape analysis: determine the set of objects which are reachable at method return, that is,
the set of objects that ‘escape’ from the method.

Improving points-to analysis is a subject of current research [6, 20].

2.3 Type-based and constraint-based analysis
Type systems [7, 26] play an important role in capturing static information about programs. Pro-
gram analysis for languages with static type systems can assume that programs type check and
take advantage of this fact during analysis. Also, program analyses may be formulated as type
analyses. Palsberg surveys work on type-based analysis [25].

Aiken [1] argues that constrains allows good separation of the specification of an analysis from its
implementation. Furthermore he argues that constraints is a natural form of specification and that
leveraging constraint theory is useful. Constraint-based analysis divides analysis into constraint
generation and constraint resolution. Other analyses may be recast as constraint-based analysis.

3 Dynamic analysis

Dynamic analysis seeks to derive properties about a program from one or more executions of the
program. As such one may consider traditional programmer activities such as program profiling,
debugging as testing as rudimentary dynamic analyses. Likewise, compiler and VM technology
such as just-in-time compilation [18] and run-time optimisation [27]

Ball [5] argues as follows that dynamic program analysis is useful. First, when instrumenting

1. The term pointer analysis is usually reserved for a analysis of languages with C-like pointers.

8 Analysis of object-oriented programs: a survey

a program for recording of execution-time data the analyst can gather exactly the information
he or she wants. Second, and in contrast to static analysis, dynamic analysis can relate inputs to
program state and outputs. Ball [5] also presents two kind of analyses: Frequency spectrum analy-
sis, which measures the occurrence frequencies of program elements in a program execution, and
coverage concept analysis, which records what program elements where executed in an execution
and group the recorded data based on so-called concept analysis.

Rountevet al. [28] combine static and dynamic analysis of Java call chains, that is, edges in the call
graph (cf. Section 2.1).

Dufour et al. [12] define a family of dynamic metrics for a unambiguously characterising proper-
ties of program runs. The accompanying *J tool realises these metrics (Section 4.2).

Massalin’s superoptimiser [21] that find the smallest instruction sequence that realises a given
function, is an interesting combination of static and dynamic analysis.

4 Analysis tools and frameworks

All tools discussed here have available and liberal licences.

4.1 Non-conservative analysis
Classical static analyses techniques are conservative in the sense that they only draw sound conclu-
sions, that is, conclusions that follow logically from the program. Since such analysis is the basis
for optimising programs, it better be conservative: nearly-dead code elimination would not be a
useful compiler optimisation phase. To increase the power of a conservative analysis one must
either improve the analysis algorithm,2 or make additional information about the program, other
than the program source, available for analysis. The first is the subject of much current research
in static program analysis. The second is less investigated in conservative static analysis since for
the analysis to remain strictly conservative, the additional information must not conflict with the
program. Ensuring this is a hard problem in itself.

Non-conservative analysis is directly relevant to program analysis, since analysis results must
serve as inputs to developers, and not as input to compiler optimisation. Examples of systems
performing non-conservative analysis appear in some of the following sections.

4.2 Dynamic program comprehension
This section lists tool that aids the programmer in understanding a running program. We leave
out traditional tools, such as debuggers and profilers.

The Java PathExplorer [16] monitors an executing Java program and checks that the execution
conforms to a property specification in temporal logic. It is again based on the Maude rewriting
system.3. The Java PathExplorer can also indicate possible deadlocks and data races.

Caffeine [15] combines dynamic analysis using the Java Platform Debug Architecture and a Prolog-
based query engine to check conjectures about the program.

The tool *J [13]4 is available for dynamic analysis of Java programs, based on metrics [12].

JNuke [4] is a custom Java Virtual Machine for dynamic analysis facilitating efficient analysis

2. The power of conservative analysis has theoretical limits imposed by computability theory.
3. http://maude.cs.uiuc.edu/

4. http://www.sable.mcgill.ca/starj/

Analysis of object-oriented programs: a survey 9

http://maude.cs.uiuc.edu/
http://www.sable.mcgill.ca/starj/

with full access to program state and backtracking. JNUke does run-time verification and model
checking of Java programs.

4.3 Bug detection
ESC/Java2 translates Java sources files, with JML [9] annotations, into a form that can be analysed
by a theorem prover. The translation and prover together reason about the consistency between
the Java code and the annotations, where the latter capture low-level design information. The
analysis points to possible bugs in the code, but due to the non-conservative analysis the bugs
indications must be verified by human programmers, and no bugs reported does not mean there
are none.

The FindBugs tool5 also applies non-conservative analysis to locate typical Java programming
bugs and may also report false positives. FindBugs applies bug-patterns, description of undesi-
rable Java programming practises, and standard static program analysis.

4.4 Style checking
PMD6 checks Java programs for style-errors such as empty try-catch blocks, unused variables
and parameters, and empty if-statements. In addition PMD can detects ‘overcomplicated’ parts
of the code and identifies duplicated code (instances of ‘cut-and-paste programming). The tools
has a large number of pre-defined rules and allows the user define new ones. The released version
considers only one source file at a time and does not currently do dataflow analysis. PMD uses a
JavaCC-generated parser.

PMD has support for finding copied and pasted code. Another tool for doing this is Simian.7

Both compare tokenised Java programs, that is, they do not take the full language grammar into
account. The tools have options for ignoring constants and identifiers.

Checkstyle8 is checks that a Java program follows stylistic conventions, for example, there is a
pre-defined rule set defining the Sun Code Conventions.

Structural Analysis for Java9 analyses structural dependencies in Java applications, including
checking for design anti-patterns, and presents the results graphically.

4.5 Compilation-related
This sections lists compiler-related tools relevant when implementing program analyses.

The Polyglot extensible compiler framework [23]10 facilitates creation of variants of Java through
an extensible parser, new compiler passes and code generation. Polyglot translates Java variants
into pure Java. The framework is itself also written in Java.

Stratego/XT11 is a language for specifying program transformations, based on rewriting strate-
gies and XT is an add-on to Stratego that deals with parsing and pretty-printing of programs.
Stratego has applications in program transformation and optimisation, and promotes languages-
independence of transformations [24].

Jikes12 is an open source, high-performance Java byte-code compiler that has two advantages

5. http://findbugs.sourceforge.net/

6. http://pmd.sourceforge.net/

7. http://www.redhillconsulting.com.au/products/simian/. Note that commercial use of Simian costs money.
8. http://checkstyle.sourceforge.net/

9. http://www.alphaworks.ibm.com/tech/sa4j

10. http://www.cs.cornell.edu/Projects/polyglot/

11. http://catamaran.labs.cs.uu.nl/twiki/pt/bin/view/Stratego/WebHome

12. http://jikes.sourceforge.net/

10 Analysis of object-oriented programs: a survey

http://findbugs.sourceforge.net/
http://pmd.sourceforge.net/
http://www.redhillconsulting.com.au/products/simian/
http://checkstyle.sourceforge.net/
http://www.alphaworks.ibm.com/tech/sa4j
http://www.cs.cornell.edu/Projects/polyglot/
http://catamaran.labs.cs.uu.nl/twiki/pt/bin/view/Stratego/WebHome
http://jikes.sourceforge.net/

over other Java compilers. First, it performs dependency analysis, which makes it possible to do
incremental builds and makefile generation. Second, it offers constructive assistance by providing
clear error and warning text to assist the programmer in understanding problems.

Jikes RVM13 is an advanced virtual machine for research and experiments with such machines.
Jikes RMV is written almost entirely in Java and targets Linux on Intel and a few less common
configurations. A dynamic analysis could be realised using an instrumented Jikes RVM.

Soot14 [19] is an optimising Java bytecode compiler written in Java. It is available as an Eclipse
plugin, and it can be used for analysis and transformation of Java bytecode, including decom-
pilation. Whole-program analysis is also possible. Soot has several intermediate representations
(IRs), of which the most important are Baf, Jimple, and Shimple. Baf is an IR that is very much like
Java bytecode, but slightly more high-level. In particular, everything is typed. This makes it more
convenient to manipulate the code. Jimple is a typed, stackless, 3-address code representation of
Java bytecode (Java Simple) in a flow graph. Shimple is a Static Single Assignment (SSA) version
of Jimple. The essential property of the SSA form is that every variable receives, in the static con-
text, only one assignment during its lifetime. This is a very efficient form for doing optimisations
based on dataflow. Other, less important IRs are Grimp and Dava. Grimp is like Jimple, but with
aggregated expressions, and Dava is a structured representation suitable for Decompiling Java.

The Byte Code Engineering Library (BCEL)15 of the Apache Jakarta project16 is a library and
API for creating and manipulating Java byte-code. It is used by the FindBugs project. ASM [8]17

is a similar software, but it trades completeness for speed and is optimised for dynamic code
generation.

CUP18 and JLex19 are Java tools similar to Yacc and Lex for C. CUP produces LALR parsers. There
is no special facility for generating parse trees.

BYACC/J20 is an LALR parser generator that emphasises compatibility with Yacc for C. In par-
ticular, it can parse existing Yacc grammars.

SableCC21 is an LALR parser generator. It does not have any actions, but instead generates a parse
tree.

Beaver22 is an LALR parser generator capable of generating very fast parsers.

JavaCC23 is an open source parser generator for Java, similar to YACC for Unix and C. However,
JavaCC generates LL(k) recursive descent parsers, unlike YACC which generates LALR parsers.
This makes the grammar specification less powerful than in YACC, but this is compensated for
by several inelegant workarounds, like multiple token lookahead, syntactic lookahead, and se-
mantic lookahead. JavaCC does not in itself produce parse trees, but the authors of JavaCC have
provided an add-on called JJTree that does. There is also another third-party add-on called Java
Tree Builder24 (JTB) that produces parse trees for JavaCC. JTB is similar to JJTree, but simpler and
less flexible.

13. http://jikesrvm.sourceforge.net/

14. http://www.sable.mcgill.ca/soot/, http://freshmeat.net/projects/soot/
15. http://jakarta.apache.org/bcel/

16. http://jakarta.apache.org/

17. http://asm.objectweb.org/

18. http://www2.cs.tum.edu/projects/cup/

19. http://jflex.de/

20. http://byaccj.sourceforge.net/

21. http://sablecc.org/

22. http://beaver.sourceforge.net/

23. https://javacc.dev.java.net/

24. http://compilers.cs.ucla.edu/jtb/

Analysis of object-oriented programs: a survey 11

http://jikesrvm.sourceforge.net/
http://www.sable.mcgill.ca/soot/
http://freshmeat.net/projects/soot/
http://jakarta.apache.org/bcel/
http://jakarta.apache.org/
http://asm.objectweb.org/
http://www2.cs.tum.edu/projects/cup/
http://jflex.de/
http://byaccj.sourceforge.net/
http://sablecc.org/
http://beaver.sourceforge.net/
https://javacc.dev.java.net/
http://compilers.cs.ucla.edu/jtb/

ANTLR25 is a public domain parser generator for Java that is also LL(k) and hence fraught with
the same problems as JavaCC. However, ANTLR has built-in support for generating parse trees.
There is a default format, but other custom formats, including XML, are possible.

5 Research problems

In this section we list various research problems in program analysis, with slight emphasis on
analyses relevant for agile software development.

In general, analysis that leverage design or architecture information about the application being
analysed seems an interesting subject, especially for analysis results intended only for human con-
sumption. This requires, however, that such information be available. Ammons et al. [2] consider
the related problem “specification mining”

Also, for analysis to be useful in large software projects incremental analysis is important to
save time and/or computational power; an incremental analysis may be computed locally before
check-in into a central code repository. This allows the developer to inspect the analysis results
and possibly revise the code. The alternative is a centrally run analysis computed at regular in-
tervals for the whole project. Compositionality of analyses is also an issue: to what degree can
analyses of modules be composed to an analysis of a larger system.

5.1 Frameworks and partial analysis
Most deployed object-oriented applications no longer run on a minimal core of standard libraries.
Instead applications are typically built using extensible frameworks and other third party libraries
and APIs. Java 2 Enterprise Edition (J2EE) represents an important group of such frameworks.
Thus, deployed applications consist of custom-written source code and pre-compiled framework
and library code, intermingled by instantiation, inheritance and callbacks.

Analysing such applications cannot be done by reviewing the application source code in isolation—
the framework (and third party APIs) must be taken into account. There are at least two possible
approaches:

· Either the framework must also be analysed, assuming its source or byte-code is available.
Analysing byte-code has the disadvantage that byte-code generation typically loses informa-
tion that is potentially useful for analysis. Also, the code-base of a typical framework is so
extensive that analysing it is prohibitively expensive. Realistic analysis needs some know-
ledge about the framework to guide analysis. Rountev et al. [29] present a general approach
for adapting whole-program class analysis to analysis for program fragments.

· Alternatively, a specification delineating the relationship between the application and the
framework is required, with the obvious disadvantage that this somebody must write this
specification. Sweeney and Tip [31] discuss such a specification language.

5.2 Leveraging meta-information
Application development frequently includes writing non-source meta-information that may also
be the subject of, or inform, analysis. Examples of such information are numerous: Enterprise Java
Beans (EJB) deployment descriptors that specify, for example, name, persistence, state-fullness,
and abstract query and schema information; build scripts; unit tests or other kinds of test code;

25. http://www.antlr.org/

12 Analysis of object-oriented programs: a survey

http://www.antlr.org/

configuration files. There appears to be little work on this with the exception of deployment-time
checking of EJBs [10].

5.3 Catering to the interactive setting
Programmers have come to expect more of their code writing tools than what is provided by a text
editor. Integrated development environments (IDEs) are language-sensitive, supports advanced
code browsing, performs context-sensitive generation of code snippets and supports refactoring
the code. Eclipse is a state-of-the art IDE for Java. It is easily extensible through a plug-in architec-
ture and its Java development tooling API26 (JDT). Based on the JDT developers can realise new
ways of editing, compiling and viewing Java programs.

Presenting non-conservative analysis results (Section 4.1) to the programmer inside an IDE ap-
pears interesting for the following reasons:

· The programmer can browse the results, and the code, inside a familiar environment.

· A programmer can use the IDE to fine-tune the analysis or the presentation of results to his
or her personal preference, for example, suppressing false positives.

· Incremental update of analysis results on editing and immediate presentation to the pro-
grammer. This gives an instant gratification effect.

In fact, Eclipse already supports simplistic edit-time analysis: if the programmer references an
unknown method of a class Eclipse suggests to add a new definition for the method.

References

[1] Alexander Aiken. Introduction to set constraint-based program analysis. Science of Computer
Programming, 35(2):79–111, 1999.

[2] Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining specifications. In Conference
Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 4–16, 2002.

[3] Andrew Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1998.

[4] Cyrille Artho, Viktor Schuppan, Armin Biere, Pascal Eugster, Marcel Baur, and Boris
Zweimüller. JNuke: Efficient dynamic analysis for Java. In Rajeev Alur and Doron Peled,
editors, CAV, volume 3114 of Lecture Notes in Computer Science, pages 462–465. Springer, 2004.
ISBN 3-540-22342-8.

[5] Thomas Ball. The concept of dynamic analysis. In Oscar Nierstrasz and M. Lemoine, edi-
tors, ESEC / SIGSOFT FSE, volume 1687 of Lecture Notes in Computer Science, pages 216–234.
Springer, 1999. ISBN 3-540-66538-2.

[6] Marc Berndl, Ondrej Lhoták, Feng Qian, Laurie J. Hendren, and Navindra Umanee. Points-to
analysis using BDDs. In PLDI, pages 103–114. ACM, 2003. ISBN 1-58113-662-5.

[7] Kim B. Bruce. Foundations of Object-Oriented Languages: Types and Semantics. The MIT Press,
2002.

26. See the topic JDT Plug-in Developer Guide, in the Eclipse IDEs interactive help.

Analysis of object-oriented programs: a survey 13

[8] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to
implement adaptable systems. In Systèmes à composants adaptables et extensibles, Grenoble,
2002.

[9] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Lea-
vens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications. Inter-
national Journal on Software Tools for Technology Transfer, 2005. To appear.

[10] Dave Clarke, Michael Richmond, and James Noble. Saving the world from bad beans:
deployment-time confinement checking. In Crocker and Steele Jr. [11], pages 374–387.

[11] Ron Crocker and Guy L. Steele Jr., editors. Proceedings of the 2003 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications, OOPSLA 2003, October
26-30, 2003, Anaheim, CA, USA, 2003. ACM.

[12] Bruno Dufour, Karel Driesen, Laurie J. Hendren, and Clark Verbrugge. Dynamic metrics for
Java. In Crocker and Steele Jr. [11], pages 149–168.

[13] Bruno Dufour, Laurie J. Hendren, and Clark Verbrugge. *j: a tool for dynamic analysis of
Java programs. In Ron Crocker and Guy L. Steele Jr., editors, OOPSLA Companion, pages
306–307. ACM, 2003. ISBN 1-58113-751-6.

[14] David Grove and Craig Chambers. A framework for call graph construction algorithms.
ACM Transactions on Programming Languages and Systems, 23(6):685–746, 2001.

[15] Yann-Gaël Guéhéneuc, Rémi Douence, and Narendra Jussien. No Java without Caffeine: A
tool for dynamic analysis of Java programs. In ASE, pages 117–. IEEE Computer Society,
2002. ISBN 0-7695-1736-6.

[16] Klaus Havelund and Grigore Rosu. An overview of the runtime verification tool Java Pat-
hExplorer. Formal Methods in System Design, 24(2):189–215, 2004.

[17] Görel Hedin, editor. Compiler Construction, 12th International Conference, CC 2003, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003, volume 2622
of Lecture Notes in Computer Science, 2003. Springer. ISBN 3-540-00904-3.

[18] Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls with run-time type
feedback. In Proceedings of the ACM SIGPLAN’94 Conference on Programming Language Design
and Implementation, pages 326–336, 1994.

[19] Jennifer Lhoták, Ondrej Lhoták, and Laurie J. Hendren. Integrating the Soot compiler infra-
structure into an IDE. In Evelyn Duesterwald, editor, CC, volume 2985 of Lecture Notes in
Computer Science, pages 281–297. Springer, 2004. ISBN 3-540-21297-3.

[20] Ondrej Lhoták and Laurie J. Hendren. Scaling Java points-to analysis using SPARK. In Hedin
[17], pages 153–169. ISBN 3-540-00904-3.

[21] Henry Massalin. Superoptimizer: a look at the smallest program. In ASPLOS-II: Proceedings
of the second international conference on Architectual support for programming languages and ope-
rating systems, pages 122–126. IEEE Computer Society Press, 1987. ISBN 0-8186-0805-6. doi:
http://doi.acm.org/10.1145/36206.36194.

[22] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology, 14(1):
1–41, 2005.

[23] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible
compiler framework for Java. In Hedin [17], pages 138–152. ISBN 3-540-00904-3.

14 Analysis of object-oriented programs: a survey

[24] Karina Olmos and Eelco Visser. Composing source-to-source data-flow transformations with
rewriting strategies and dependent dynamic rewrite rules. In Rastislav Bodík, editor, CC,
volume 3443 of Lecture Notes in Computer Science, pages 204–220. Springer, 2005. ISBN 3-540-
25411-0.

[25] Jens Palsberg. Type-based analysis and applications. In PASTE, pages 20–27. ACM, 2001.
ISBN 1-58113-413-4.

[26] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[27] Feng Qian and Laurie J. Hendren. Towards dynamic interprocedural analysis in JVMs. In
Virtual Machine Research and Technology Symposium, pages 139–150. USENIX, 2004.

[28] Atanas Rountev, Scott Kagan, and Michael Gibas. Static and dynamic analysis of call chains
in Java. In George S. Avrunin and Gregg Rothermel, editors, ISSTA, pages 1–11. ACM, 2004.
ISBN 1-58113-820-2.

[29] Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Fragment class analysis for testing
of polymorphism in Java software. IEEE Transactions on Software Engineering, 30(6):372–387,
2004.

[30] Barbara G. Ryder. Dimensions of precision in reference analysis of object-oriented program-
ming languages. In Hedin [17], pages 126–137. ISBN 3-540-00904-3.

[31] Peter F. Sweeney and Frank Tip. Extracting library-based object-oriented applications. In
SIGSOFT FSE, pages 98–107, 2000.

Analysis of object-oriented programs: a survey 15

	Contents
	Introduction
	Static analysis
	Call graphs and data/control flow analysis
	Points-to analysis
	Type-based and constraint-based analysis

	Dynamic analysis
	Analysis tools and frameworks
	Non-conservative analysis
	Dynamic program comprehension
	Bug detection
	Style checking
	Compilation-related

	Research problems
	Frameworks and partial analysis
	Leveraging meta-information
	Catering to the interactive setting

	References

