### Designing and analyzing computer experiments



Thore Egeland, Norwegian Computing Center March 9, 1995.  $^{\rm 1}$ 

<sup>&</sup>lt;sup>1</sup>Available from: http://www.nr.no/home/SAND/thore/

#### CONTENTS

- Motivation.

  Academic and commercial background.
- Experimental design. Weighing example.
- The computer is our laboratory.
- What's special about computer experiments?
- What's special about reservoir simulations?
- What we have tried to achieve:
  - Please consider replacing 'one-at-time-plans'. Why?
  - Please consider replacing computer program by response surface.
  - Please consider using experimental design as a way of structured problem approach.
  - Examples.

### NORSK REGNESENTRAL (NR)

NR Established 1952

Non-profit applied research foundation Situated at University of Oslo campus

70 scientists

Internationally known for:

First european Univac 1100

**SIMULA** 

Automatic mapping

Labor union projects

Geostatistics

# ULTIMATE GOAL: NET PRESENT VALUE

# WEIGHING APPLES AND ORANGES

### HISTORY

DESIGN of experiments.

Maximum Information at Minimum Cost:

- Agriculture 1920.
- Medicine, chemistry,...
- Computer experiments 1970.
- Reservoir simulations 1980-.

#### NR ACTIVITY SINCE 1989

### Petroleum:

- Uncertainty in production profiles.
- Automatic history matching.
- Rate optimization.

Projects for roughly 3 500 000 NOK. (Commercial software developed: DECISION).

# Basic model



## Basic approach



WHAT'S SPECIAL ABOUT COMPUTER EXPERIMENTS?

The experiments are deterministic, i.e., no noise.

Identical input and seed produce identical output.

Replications do not make sense without varying seed.

### WHAT'S SPECIAL ABOUT RESERVOIR SIMULATIONS?

- The applications we have in mind are extremely cpu—demanding.

  One run may require 10-20 hours.
- There are many input variables.

Typically: 5–15 input variables. Each defined at three levels.

Example:  $3^{13} = 531441$  possible runs.

Time and money for 50 runs.

Goal: select optimal runs.

### What we have tried to achieve

Please consider replacing 'one-at-time-plans'. Why?

## Input variables:

$$\mathbf{Porosity} = \begin{cases} -1 & \mathbf{Best \ guess} \\ 1 & \mathbf{Optimistic} \end{cases}$$

$$\mathbf{Permeability} = \begin{cases} -1 & \mathbf{Best \ guess} \\ 1 & \mathbf{Optimistic} \end{cases}$$

$$\mathbf{Faults} = \begin{cases} -1 & \mathbf{Best \ guess} \\ 1 & \mathbf{Optimistic} \end{cases}$$

#### ONE-AT-A-TIME

Simplified version of (previous?) approach in the oil industry:

| Porosity | Permeability | Faults | Oil                                          |
|----------|--------------|--------|----------------------------------------------|
| -1       | -1           | -1     | $y_1$                                        |
| 1        | -1           | -1     | $y_2$                                        |
| -1       | -1           | -1     | $y_3$                                        |
| -1       | 1            | -1     | $egin{array}{c} y_2 \ y_3 \ y_4 \end{array}$ |
| -1       | -1           | -1     | $y_5$                                        |
| -1       | -1           | 1      | $y_6$                                        |

### **Problems:**

- Porosity effect,  $y_2 y_1$ , calculated for unbalanced comb. of remaining variables.
- More accurate estimates available.
- No possibility to detect, say, Porosity-Permeability interaction

Fractional Factorial plans solve the problems.

### FACTORIAL PLAN. ALTERNATIVE

| Porosity | Permeability | Faults | Oil     |
|----------|--------------|--------|---------|
| 1        | -1           | -1     | $y_1^*$ |
| -1       | 1            | -1     | $y_2^*$ |
| -1       | -1           | 1      | $y_3^*$ |
| 1        | 1            | 1      | $y_4^*$ |

## Porosity effect:

$$(y_1^* - y_2^* - y_3^* + y_4^*)/2$$

Estimate based on four; not two runs.

Four factorial runs may well provide more information than 6 one-at-a-time runs.

# FACTORIAL PLAN. FIGURE

#### EXAMPLE

## Based on cooperation with Conoco (Aberdeen).

### Response variables:

$$y_k =$$
oil produced (cumulative),  
 $k = 1995, 1996, \dots 2017.$ 

Input variables describing reservoir:

- 6 variables on 3 levels,
- 2 variables on 2 levels.

## Possible number of runs:

$$3^6 \cdot 2^2 = 2916$$

## Approach



# RESULTS



#### SUMMARY

- The computer is a laboratory and methods used to design, say, chemical experiments apply.
- Experimental design may save time and money.
- A good design does not require advanced data analysis. A bad designed experience is a challenge for an experienced statistician.