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ABSTRACT

We propose to use probabilities calculated from indicator kriging to modify the

probabilities of unilateral stationary Markov mesh models to condition on data.

The method can be applied both to soft and hard data. We also propose an iterative

method based on block updates created by using the modified Markov mesh model.

The iterative method can be used for doing local update on existing realizations

when new data is available. Both the unilateral and the iterative method are

illustrated with examples.

INTRODUCTION

Markov mesh models constitute a subclass of Markov Random Fields (Politis) that
allows efficient calibration and simulation combined with good ability to reproduce
the characteristics of a training image (Daly).

Markov mesh models are defined sequentially using a unilateral scan of a regular
grid; the probability of a node depends only on previously simulated nodes. This
construction ensures that the model is statistically well defined and easy to simulate
when the unilateral path is followed. The drawback is that the sequential nature of
the model makes it hard to compute the influence of data that is located along
the future simulation path. Examples of data are hard data in the form of well
observations, and soft data in the form of seismic probability cubes.

We propose to use probabilities computed from indicator kriging to modify the
probabilities from the Markov mesh model in order to do the well conditioning. In
an approximate approach we simulate directly with these modified probabilities. In
an iterative approach we use the modified probabilities to construct a block update
in a Metropolis Hastings algorithm. This iterative approach is made possible by the
Markov random field properties of the Markov mesh model.

The proposed approximate approach will also provide a method for doing well
conditioning when using multigrids or subgrids in the standard snesim algorithm
(Strebelle). The quality and efficiency of snesim simulations depends much on
the application of multigrid and subgrids. A problem arises in this setting since



the wells are not guaranteed to be present in the grid except on the finest level.
The potentials computed by indicator kriging provides a method for doing soft
conditioning on wells present in a finer grid when doing simulations on a coarse
grid.

The proposed iterative approach can also be used to do local updates for a Markov
mesh model. Frequently it is such that more data will become available after initial
simulations have been generated, e.g. a new well is drilled. The iterative approach
can be used to generate models that are identical to the previous simulations except
in a region around the new well.

METHODOLOGY

We consider a regular grid with N cells. The cells are indexed with a
one-dimensional index i. Each cell is assigned a categorical variable zi that can take
on a finite number of values 0,1, ...,K−1. A typical application is to let zi represent
geological facies. The full configuration of the grid is denoted z = {z1,z2, ...,zN}.
We will frequently use the notation zi when we mean the value taken on by
the variable, and hence write the joint probability for the grid to have a specific
configuration z as

p(z) = p(z1)p(z2|z1)...p(zN |zN−1,zN−2, ...,z2,z1). (1)

Assume that the conditional probability for zi depends only on a subset Γi of all
cells j < i, such that

p(zi|zi−1,zi−2, ...,z2,z1) = p(zi|zΓi). (2)

Here zΓi is short hand notation for the configuration of the set of cells in Γi. The
set Γi is denoted the sequential neighbourhood of cell i. The joint probability

p(z) = ∏
i=1,...,N

p(zi|zΓi) (3)

defines a Markov mesh model with respect to the set of sequential neighbourhoods
{Γi}i=1,2,...,N . For a stationary Markov mesh model the probability p(zi|zΓi)
depends only on the configuration zΓi , not the location i.

Simulation from a Markov mesh model is easily done once all conditional
probabilities p(zi|zΓi) are specified. Define a path that visits each cell once and
only once, in the order i = 1,2, ...,N. Scan the path once, and for each cell i draw its
variable conditioned on the previously simulated cells {z j : j ∈ Γi}. The resulting
configuration z by construction follows the well defined probability distribution
∏i p(zi|zΓi). Since each full configuration is created by scanning the path only
once, it is time efficient to simulate many configurations from the distribution.

A stationary Markov mesh model is, however, in general not consistent with data.
The reason is that update of any cell i does not condition on data located along the
future path from cell i. Hence it may happen that when the simulation hits a data



point w the fixed value zw may be inconsistent with the probability p(zw|zΓw). In
the following we propose several modifications of the original Markov mesh model
to condition to data. The main focus of the discussion is on hard data, i.e. well
observations, but the methodology applies also to soft conditioning. We assume
throughout the paper that the sequential probabilities p(zi|zΓi) of the prior Markov
mesh model are known, and will henceforth denote them PS(zi|zΓi) to distinguish
them from other probabilities.

Data Conditioning in Unilateral Markov Mesh Model

The challenge is to set up a conditional probability for cell i that honors both the
previously visited cells and the future data. Let Wi be the set of well data along the
future path from cell i;

⋃
i Wi is the set of all data cells. The general expression

p(zi|z j<i,zWi) =
p(zi|z j<i,zWi)

p(zi|z j<i)
p(zi|z j<i), (4)

can be consider as a factorization of the posterior probability into well likelihood
(leftmost factor) and prior probability (rightmost factor). We propose to use
the unconditional Markov mesh probability as prior information, whereas the
likelihood is approximated via indicator kriging. That is, for p(zi|z j<i,zWi) we
use the approximation

P(zi|z j<i,zWi) =
Z(zi|z j<i,zWi)

Z(zi|z j<i)
PS(zi|zΓi)≡Ψ(zi|z j<i,zWi)PS(zi|zΓi), (5)

where Z(zi|z j<i) is the optimal predictor for zi found by indicator kriging (Journel)
conditioned on cells in the past of i, Z(zi|z j<i,zWi) is the optimal predictor
conditioned also on future data points, and PS is the original Markov mesh
probability. In the presence of soft and hard data Z denotes the indicator prediction
using both types of data. Far away from any wells we expect Ψ ≈ 1, and hence
the new model gives statistics similar to the prior Markov mesh model. If cell i
has a non-zero correlation with a future well, the kriging function Ψ affects the
overall probability P. A positive correlation implies that Z(zi|z j<i,zWi) increases
the probability for zi to be updated to the same facies as the well, a negative
correlation decreases the well’s contribution to this probability. The overall effect
of the well is modified by the past cells’ influence on the predictors.

For the indicator kriging to conform with the prior Markov model, the correlations
used by the kriging algorithm should be consistent with the correlations of the prior
model. If the prior model is established by using a training image, the correlations
of the training image will be suitable for use in the kriging. It is in general not
necessary to include in Ψ cells beyond the variogram range. But less obvious is the
question of whether all candidate cells ( j < i or j ∈Wi) with a non-zero correlation
to point i need to be taken into account. The general answer to this question is no.
This problem is discussed more in the results section of this paper.

Simulation from the modified Markov model is just as straightforward as
simulation from the prior model. The resulting configuration then follows the



distribution

P(z) = ∏
i=1,...,N

P(zi|z j<i,zWi) = ∏
i=1,...,N

Ψ(zi|z j<i,zWi)PS(zi|zΓi). (6)

Iterative Method

The modified Markov mesh model is well suited for iterations. A main motivation
for establishing an iterative method is to render possible local update in an already
existing grid configuration, typically as a result of new well data. Iterations can also
be used to wash away unwanted kriging effects during the initial establishment of
a reservoir configuration, to ensure that it is consistent with the statistics of the
prior model. We propose to use a Metropolis Hastings algorithm, where proposal
configurations are established via block update based on the modified Markov
model in the previous section, and the accept probability ensures that sampling
is done from the prior model conditioned on data. In the following we describe one
step in the Markov chain of the Monte Carlo simulation.

Let ν be a label for the existing configuration of the grid, i.e. the grid configuration
is zν . The proposal configuration will be denoted µ . Pick according to some rule a
connected set of cells B⊆G, where G is the full grid. If the set B includes data cells
or cells that for some other reason are supposed to have fixed facies throughout the
iterations, let the set of these cells be denoted B0. Let B1 = B\B0, and define ∂B1
as the set of cells in G\B1 that according to the prior model may be affected by a
change in the set B1. That is, j ∈ ∂B1 iff ∃k ∈ Γ j : k ∈ B1. Then (B0∪∂B1)∩( j > i)
is the union of the set of future cells within B that we want to condition on, and the
set of future cells from position i that according to the prior model are affected by
a change in the set B1. The new configuration µ is established as follows: scan
through the part of the path (according to the order of cell indices, 1,2, ...,N) that
are within B1, and for each cell i ∈ B1 draw its new facies value zi for configuration
µ from the probability

Ψ(zi|z j<i,zWi∪{(B0∪∂B1)∩( j>i)})PS(zi|zΓi); (7)

for all cells in G \B1 let the facies be as in the state ν . This defines the proposal
configuration µ .

Acceptance or rejection of the configuration ν is done with probability

α = min(
qν PS(zµ)
qµ PS(zν)

,1), (8)

where qµ is the probability for suggesting the new configuration µ , starting from
ν , qν is the probability for suggesting the old configuration ν , starting from µ , and
PS(zµ) and PS(zν) are the prior Markov mesh probabilities. Since all suggest states
conform with data, this accept probability ensures that sampling is done from the
prior model conditioned on data. The accept probability can be rewritten as

α = min

((
∏
i∈B1

Ψ(zi)|ν
Ψ(zi)|µ

)(
∏

i∈B0
⋃

∂B1

PS(zi)|µ
PS(zi)|ν

)
,1

)
. (9)



In the notation of equation 9 the conditional dependencies in the function
arguments are suppressed for readability.

Evaluation Criteria

The prior Markov mesh model is assumed to provide a correct description of
the unconditional reservoir. Hence evaluation of the success or failure of the
modified model should be done relative to the prior model. We henceforth use
the expression ’conditional marginal probabilities’ to mean ’marginal probabilities
in the conditional case’, and present two criteria for evaluation:

– The conditional marginal probabilities of the modified models, be it the
unilateral modified Markov mesh model or the iterative model, should be
identical to the conditional marginal probabilities of the prior model. We
obtain the latter by rejection sampling, i.e. by making many realizations
from the prior, but only keeping the ones that match the data at hand;

– The size, shape and spatial distribution of objects should be the same in the
modified models as in the unconditional prior Markov mesh model.

In the results and discussion section of this paper we apply the criterion on
conditional marginal probabilities by computing all relevant probabilities. The
criterion on object characteristics we apply by visually comparing individual grid
configurations of the modified models with grid configurations of the prior Markov
model.

Implementation

We have chosen to use a shell search algorithm to identify the conditional cells to
use in the expression Ψ(zi|z j<i,zWi), see equation 5. Two independent parameters
are defined: N1 is the maximum number of conditional cells along the future path,
and N2 is the maximum number of conditional cells along the past path. The
algorithm is:

– Search outwards from i in cubic shells;
– From each shell include in the set of future conditioning variables each cell j

that satisfies j ∈Wi∪{(B0∪∂B1)∩ ( j > i)}. If unilateral simulation without
iterations is carried out, the set B0∪∂B1 = /0, and hence the criterion reduces
to j ∈Wi;

– From each shell include in the set of past conditioning variables each cell j
that satisfies j < i.

The procedure continues until both limits N1 and N2 have been reached, or until the
candidate cells from shell search are outside the variogram range of cell i. If not all
candidate cells in a shell can be included due to the limits N1 and/or N2, the cells to
include are randomly chosen among the candidates.



Figure 1: Random sample from prior model A (left) and B (right).

RESULTS AND DISCUSSION

We will in this section consider two different prior models. One model, denoted
model A, describes a situation with channel objects embedded in a background.
The channels are mainly running east-west, but with a slight mean tilt relative to
the horizontal axis. Most channels are connected all the way through the grid, but
can occasionally be broken. Channels can also merge and split. The other model,
model B, describes a situation with more limited connectivity, characterized by
irregular objects spread out against a uniform background. The objects are more
elongated in the horizontal than the vertical direction. In each model there are two
categorical values for zi; we describe the background with zi = 0 and the embedded
objects with zi = 1. Both models are 2-dimensional. Figure 1 displays random
samples of each prior model.

We consider three different cases of data: isolated well data with zw = 1 (object
facies); isolated well data with zw = 0 (background facies); two neighbouring
well data points, describing a transition from zw = 0 to zw = 1. For selected
combinations of prior model and data type we compare the results of the unilateral
modified Markov mesh model to the prior model. The iterative method is illustrated
and discussed at the end of the section.

Unilateral Modified Markov Mesh Model

We study the two unilateral modified models, A and B, conditioned on isolated
wells and on neighbouring wells. Conditional marginal probabilities and object
characteristics are discussed.

Conditional Marginal Probabilities

Figure 2 displays the conditional marginal probabilities for model A, conditioned
on object well (top row) and background well (bottom row). In each case the well
is located at position (126,126) in the grid. The rejection sampling (left column)
illustrates, for each well type, the prior model’s tilt relative to the horizontal axis,



Figure 2: Model A, conditional marginal statistics, displayed as the cell-wise probability p(zi = 1). Left
column: rejection sampling from prior; middle column: indicator kriging with respect to the
well only; right column: indicator kriging with respect to the well and two cells in the past
path. Top row: isolated object facies well; bottom row: isolated background facies well.

and displays close to a perfect point-wise reflection symmetry around the well
point. Column two and three display the results of two different experiments: in
column two the maximum number of past conditional cells used in the indicator
kriging, N2, was set to 0, while in column three it was set to 2. The parameter N1
was in both columns set to 1, i.e. we always condition on the well if it is within the
correlation cut-off limit. In addition, both experiments used simple kriging. The
simulation path is from the top left corner of each figure, each row being simulated
from left to right.

The results clearly show that the indicator kriging used to modify the original
Markov mesh model successfully conditions on the data considered. When kriging
is done with respect only to the well data (second column) the skewed symmetry of
the prior model is broken, and the conditioning along the path leading up to the well
(above the well in the figure) creates a vertical symmetry line. This discrepancy
with the prior model, as judged from comparison to the rejection sampling in the
leftmost column, is eliminated in the third column. Here the tilt relative to the
horizontal axis is restored. This is attributed to the fact that in the simulations of
the third column, also two already simulated cells were taken into account by the
indicator kriging. This softens the impact of the well and allows the prior model’s
tilt to survive. For all four simulations from the modified Markov model (second
and third column, top and bottom row), when the unilateral scan of the path is past
the well, the statistics is governed by the prior model.

Figure 3 displays results for conditioning on a channel edge, i.e. a transition from
a z = 0 well to a z = 1 well. Comparison to rejection sampling (left) shows that the
main features are well reproduced by the modified model (right). In particular the
results are good close to the wells.



Figure 3: Model A, conditioning on two neighbouring wells, one with z = 0 in position (101,100),
the other with z = 1 in position (101,101). Cell-wise probability p(zi = 1). Left: rejection
sampling; Right: Modified unilateral Markov mesh model.

Figure 4: Model B, cell-wise probability p(zi = 1). Left: rejection sampling for isolated wells; Right:
unilateral simulation conditioned on two isolated wells.

Results for model B are shown in 4. The figure illustrates conditioning on two
isolated wells, and results for rejection sampling are included for comparison.
Indicator kriging was performed with respect to the future wells and two cells
from the past path. Apart from minute discrepancies on symmetry and extension,
the results of the modified Markov mesh model are in good agreement with the
rejection sampling.

Object Characteristics

Figure 5 shows two random samples from simulations using the modified unilateral
Markov mesh models. Conditioning is done with respect to a well in grid cell
(100,100), in the middle of each figure. Model A is illustrated to the left, model B
to the right in the figure. Comparing these two samples with the samples from the
unconditional Markov mesh models, see figure 1, there is no observable statistical



Figure 5: Random samples when conditioning on object facies well in cell (100,100), the well being
indicated with a circle. Left: Modified Markov mesh model A; right: Modified Markov mesh
model B.

difference between the samples of the prior models and the modified models.

Local update

The iterative model can be used to perform local update of an existing realisation.
We illustrate this in figure 6. The left hand side of the figure shows an example of
an initial grid configuration that was randomly drawn from prior. This realization
is to be updated with respect to a new well in grid position (120, 120). The well
position is indicated with a circle at the center of the figure. The value of the well is
supposed to be z = 1, which is not in agreement with the initial grid configuration.
Local update is to be carried out in an area A defined by the rectangular box
shown in the initial grid. All cells outside A are fixed. The iterative method
described previously is now applied on this problem. Block updates are performed
using equations 7 and 9. The region B used to generate a suggestion state for
the Metropolis-Hastings algorithm is for each element of the Monte Carlo chain a
randomly drawn rectangle, and the cells that satisfy i∈ B∩A are updated according
to the algorithm.

The middle grid of figure 6 displays a snapshot of the grid during the iterative
process. The channels have now been adjusted such that they are consistent with
the well data. In addition the channels nicely match the fixed part of the grid outside
the marked rectangle.

At the right hand side of figure 6 we display the cell-wise statistics of the grid after
3000 iterations. The figure illustrate that along the edges of the update rectangle A
the probabilities follow the conditioning provided by the cells outside the rectangle.
Also conditioning to the well is good. The other areas of the local update rectangle
provide evidence that the mixing of the iterative process is satisfactory. This
conclusion follows from the fact that the cell-wise statistics tend to smear out and
match the marginal probability p(z = 1), only broken by areas with a higher channel
probability, areas that to a large extent obviously follow from the edge and well
conditioning.



Figure 6: Left: Initial grid configuration before local update; middle: snapshot of the grid configuration
during iterative process; right: cell-wise probability p(zi = 1) after 3000 iterations. The well
position is indicated, but not conditioned to, in the initial grid. The iterative process conditions
on the well, which has facies zw = 1. The rectangle marks the area of local update.

CONCLUDING REMARKS

We have proposed two methods for extending Markov mesh models to also include
data conditioning, be it hard or soft data. Both methods have been illustrated
by examples, and the results evaluated with respect to rejection sampling and
object characteristics. The results are good, and establish a sound basis for further
utilization of the proposed methods.
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