
A functional reconstruction of
anti-unification

��

�
�
��� �� ����� ���

�

�
�
�� �� ���� ��

�
�
�
�� �� ���� ��

�

DART/04/04

Bjarte M. Østvold

2004-04-19

NR Norwegian Computing Center
APPLIED RESEARCH AND DEVELOPMENT NOTE

NR Norwegian Computing Center
APPLIED RESEARCH AND DEVELOPMENT

NR Note

Title: A functional reconstruction of anti-unification

Author: Bjarte M. Østvold

Date: 2004-04-19
Year: 2004
Note no.: DART/04/04

Abstract: In 1970 both Plotkin and Reynolds defined the anti-unification of a set of literal clauses,
that is, atomic formulas or negated atomic formulas. They gave similar imperative anti-unification
algorithms and proved the algorithms correct.

We formulate an alternative anti-unification algorithm using recursive equations and prove its
correctness. This functional-style algorithm gives a modular view of anti-unification, where each
equation captures a different computational aspect. Modularity makes the algorithm well-suited
as a starting point for designing related algorithms. It can easily be converted into a program in a
functional programming language.

Keywords: anti-unification, unification, term lattice

Target group: All

Availability: Open

Project:

Project no.:

Research field: Theoretical computer science

No. of pages: 20

Norwegian Computing Center
Gaustadalléen 23, P.O. Box 114 Blindern, NO-0314 Oslo, Norway
Telephone: +47 2285 2500, telefax: +47 2269 7660, ���������������	

Copyright c� 2004 by Norwegian Computing Center, Oslo, Norway

All rights reserved. Printed in Norway.

A functional reconstruction of anti-unification

Bjarte M. Østvold1,2

1 Norwegian Computing Center∗
2 Department of Informatics, University of Oslo

Abstract

In 1970 both Plotkin and Reynolds defined the anti-unification of a
set of literal clauses, that is, atomic formulas or negated atomic formulas.
They gave similar imperative anti-unification algorithms and proved the
algorithms correct.

We formulate an alternative anti-unification algorithm using recursive
equations and prove its correctness. This functional-style and determin-
istic algorithm can easily be converted into a program in a functional
programming language.

Contents

1 Introduction 4

2 Preliminaries 4
2.1 Terms . 4
2.2 Substitution . 5
2.3 Generalisation of terms . 7

3 Machinery 8
3.1 Term sequences . 8
3.2 Inverse substitution . 10

4 Anti-unification 12
4.1 Definition of least generalisation . 12
4.2 The Plotkin-Reynolds imperative algorithm 13
4.3 The functional algorithm . 13

5 Correctness of the functional algorithm 14
5.1 Termination and invariants . 14
5.2 Generalisation property . 16
5.3 Least property . 17

∗Email: bjarte@nr.no. Postal address: Norwegian Computing Center, PO Box 114 Blin-
dern, NO-0314 Oslo, Norway.

3

1 Introduction

Anti-unification, the dual operation of unification in the lattice of terms, is part
of the core techniques used in program synthesis from incomplete information,
for instance in inductive logic programming [5] and in synthesis of functional
programs [8].

Back in 1970 Plotkin and Reynolds [6, 7] gave essentially the same definition
of anti-unification and the same imperative algorithm. We pick up their trail
and give an anti-unification algorithm formulated as recursive equations.

The present algorithm differs from previous ones in several respects. It is
functional and deterministic, for easy conversion into a program in a functional
programming language, and it is more detailed, especially in the treatment of
substitution. The latter is important for making such conversion as simple
as possible. Huet’s anti-unification algorithm from 1976, treated in detail by
Lassez et al. [2], is also functional, but non-deterministic. Also, Huet’s algorithm
does not lead directly to a functional implementation in the case of anti-unifying
n terms; our algorithm, however, may be implemented directly in this case. We
also believe such an implementation to be quite efficient, though at present there
is no analysis of the algorithm’s behaviour.

Plotkin calls a term being the anti-unification of a set of terms for a least
generalisation and we do the same. Plotkin and Reynolds study literal clauses,
that is, atomic formulas or negated atomic formulas. We only study terms, not
literals, but the difference is not significant: the algorithms view the inputs sim-
ply as syntactic objects and do not assign any meaning to symbols. Therefore,
a formula P (· · ·), where P is a predicate symbol, can be interpreted as a term
with a function symbol fP . Similarly, the formula ¬P (· · ·) can be interpreted
as term with a function symbol f¬P . Plotkin also extended his algorithm to
more general logical clauses, but we do not follow up this.

2 Preliminaries

Our notational convention is as follows: x, y, z for variables; f, g, h for function
symbols; c, d for nullary function symbols, called constant symbols; s, t, u, v for
terms; T for sets of terms; θ, σ, ρ for substitutions; and n, m, k, l for natural
numbers. We also permit subscripts, etc. To get a more readable notation we
drop the brackets after constant symbols, writing just c instead of c().

2.1 Terms

The arity, also called rank, of a symbol f is a natural number, A(f). A ranked
alphabet is a finite set of symbols, each with unique arity. If Σ is a ranked
alphabet then Σn denotes the ranked alphabet of all n-ary symbols in Σ.

Def. 2.1 (Terms, T(Σ,X)) Let Σ be a ranked alphabet and let X be a set of
symbols, called variables, such that Σ ∩ X = ∅. The set of Σ, X-terms, denoted

4

T(Σ,X), is the smallest set such that:

X ⊆ T(Σ,X)

f ∈ Σn ∧ t1 ∈ T(Σ,X) ∧ · · · ∧ tn ∈ T(Σ,X) =⇒ f(t1, . . . , tn) ∈ T(Σ,X) (1)

In the case n = 0 equation (1) is to be interpreted as Σ0 ⊆ T(Σ,X). When a
term t is headed by a function symbol, t = f(. . .), we use head(t) to denote
that function symbol. Note that the following is not a valid term: f(a, f(b))
since f must have unique arity.

Def. 2.2 (Syntactic equivalence, s ≡ t) ≡ is the smallest relation on terms
such that

x ≡ x

t1 ≡ s1 ∧ · · · ∧ tn ≡ sn =⇒ f(t1, . . . , tn) ≡ f(s1, . . . , sn) if A(f) = n

Trivially, ≡ is an equivalence relation.
The set of variables in a term is defined as follows.

Def. 2.3 (Term variables, V(t))

V(x) = {x}
V

(
f(t1, . . . , tn)

)
= V(t1) ∪ · · · ∪ V(tn)

Note in particular that V(c) = ∅. We allow the shorthand V(t1, . . . , tn) =
V(t1) ∪ · · · ∪ V(tn). If V(t) = ∅ then t is called a ground term.

We define two syntactic measures on terms, for use in inductive proofs.

Def. 2.4 (Term height, H(t); term size, S(t))

H(x) = 0 S(x) = 0

H
(
f(t1, . . . , tn)

)
= 1 + max

{
H(t1), . . . ,H(tn)

}

S
(
f(t1, . . . , tn)

)
= 1 + S(t1) + · · · + S(tn)

Note specifically that H(c) = S(c) = 1.

2.2 Substitution

A binding is a pair of a term t and a variable x, written t/x. A binding set,
denoted B, is a finite set of bindings, {t1/x1, . . . , tn/xn}, such that variables
x1, . . . , xn are distinct. In particular the empty set is a binding set, and it is
written as {}.

A binding set can be interpreted as a function from the set of variables to the
set of terms. By that interpretation we say that a binding set {t1/x1, . . . , tn/xn}
is injective when t1, . . . , tn are distinct. The empty binding set {} is injective
by definition.

We define domain and range of binding sets, and some related notation.

5

Def. 2.5 (Domain, D(B); range, R(B))

D
(
{t1/x1, . . . , tn/xn}

)
= {x1, . . . , xn}

R
(
{t1/x1, . . . , tn/xn}

)
= V(t1, . . . , tn)

(_/x) ∈ B if ∃t
(
(t/x) ∈ B

)
(t/_) ∈ B if ∃x

(
(t/x) ∈ B

)

For convenience we sometimes write (_/x)
∈ B and (t/_)
∈ B with the obvious
meaning. Note that, for any binding set B, if (_/x) ∈ B holds then x is unique.
The same is true of (t/_) ∈ B only if B is injective.1

A binding set is called a substitution, denoted θ, if it satisfies the following,
called the well-formedness criterion for substitutions:

D(θ) ∩R(θ) = ∅. (2)

In particular the empty binding set {} is a substitution, called the empty sub-
stitution. We also use σ, ρ to denote substitutions.

Def. 2.6 (Substitution, tθ)

xθ = s if (s/x) ∈ θ

xθ = x if (_/x)
∈ θ

f(t1, . . . , tn)θ = f(t1θ, . . . , tnθ)

As expected, the following properties hold for substitution:

t{} = t

s{t1/x1, . . . , tn/xn} =
(
· · ·

(
s{t1/x1}

)
· · ·

)
{tn/xn} (3)

The first is trivial. Regarding the latter, the well-formedness criterion (2) en-
sures that an arbitrary ordering of substitutions on the right-hand side of (3)
may be used.

Ex. 2.7 (Parallel substitution on binding sets) The definition for substi-
tution works equally well for all binding sets, even though binding sets do not
in general satisfy the well-formedness criterion (2). But equation (3)—that
breaks substitution application into a sequence of applications—does not hold
in this case. Instead, such an operation on binding sets can be seen as a parallel
substitution, where variables in the range are replaced simultaneously:

f(x, y){y/x, x/y} = f
(
x{y/x, x/y}, y{y/x, x/y}

)
= f(y, x) �

In the following we only consider substitutions, never general binding sets.
The following example illustrates that some transformations of terms can

only be achieved by applying a series of substitutions.
1Our definition of range is similar to that of Lassez et al. [2]; other definitions are also in

use.

6

Ex. 2.8 Consider the terms f(x, y) and f(y, x). There is no way we can trans-
form one into the other using a single substitution. In particular, {y/x, x/y} is
not well-formed by condition (2). By applying a series of substitutions, however,
the transformation can be achieved:

((
f(x, y){z1/x, z2/y}

)
{y/z1, x/z2}

)
. �

For our results on anti-unification we only need a weak notion of substitution
composition: the composition of θ and σ, written θσ, is defined only if ρ = θ∪σ
is a substitution and then θσ = ρ. This form of composition is associative, and
so we may write θ1θ2 · · · θn.

An injective substitution on the form {y1/x1, . . . , yn/xn} is called a renam-
ing substitution, that is, y1, . . . , yn are distinct. We can now define a useful
equivalence relation on terms. Informally, s ≡α t if s and t differ only in the
choice of variable names.

Def. 2.9 (α-equivalence, s ≡α t) Let s, t be terms. Then s ≡α t if there
exist renaming substitutions θ1, . . . , θn, θ′1, . . . , θ

′
n′ such that

sθ1 . . . θn ≡ t ∧ tθ′1 . . . θ′n′ ≡ s. (4)

Lemma 2.10 Relation ≡α is an equivalence relation.

We leave out the elementary proof.
We now present, without proof, a result about applying series of substitu-

tions.

Lemma 2.11 For any term t and substitutions σ1, . . . , σn there exists a substi-
tution θ such that tσ1 · · ·σn ≡α tθ.

This lemma means that, as long as concrete variable names are immaterial, one
may as well use single substitutions in the place of series of substitutions. We
exploit this fact when designing the algorithm in Sec. 4.3.

2.3 Generalisation of terms

Intuitively a term s is more general than a term t if t may be obtained from s
by applying a series of substitutions, that is, t is obtained by instantiating s.
The next definition makes this precise.

Def. 2.12 (Term generality order: �, �) Relations �,� are the smallest
relations on terms such that

s � t if ∃θ1 · · · θn(sθ1 · · · θn ≡ t)
s � t if s � t ∧ t
� s

Lemma 2.13 If s � t then t
� s.

7

Proof. By induction on n = H(t) (Def. 2.4).
Basic step: n = 0, meaning t = x. Then the only possibility is s = y. Have
y � x, x
� y as required.
Induction hypothesis: The lemma holds for n ≤ k.
Induction step: Must prove the case n = k + 1. Consider t = f(t1, . . . , tm),
H(t) = k + 1. There are two cases for s.

(i) s = x. Then x � f(t1, . . . , tm), f(t1, . . . , tm)
� x as required.
(ii) s = f(s1, . . . , sm). By induction si � ti, ti
� si for i = 1, . . . , m and from

this s � t, t
� s follows as required. �

Note that the converse does not hold: take incomparable terms, for example
c, d.

We obtain the next lemma from Plotkin [6]. It establishes the anti-symmetry
of � with respect to the set of term equivalence classes modulo ≡α.

Lemma 2.14 s � t ∧ t � s ⇐⇒ s ≡α t.

3 Machinery

This section introduces some theoretical machinery that will be useful in later
sections. We make sequences of terms into syntactic objects and extend some
previously defined concepts, notably substitution and generality orders, to these
objects. The motivation for this is to be able to manipulate sequences of terms
while preserving the order in which they are listed. This again allows for a
detailed algorithm, from which an implementation anti-unfying n terms can be
derived straightforwardly. We also introduce inverse substitution, the dual of
substitution.

3.1 Term sequences

A term sequence is a tuple of terms, written (t1, . . . , tn), n ≥ 0; in particular
() denotes the empty term sequence. The symbolic notation for term sequences
is derived from that of terms by adding ¯ to term meta-variables; for example,
s̄, t̄ denote term sequences. We consider a term t and a term sequence t̄ to be
unrelated, that is, we may use both meta-variables in an expression without
implying any relationship between t and t̄. The length |t̄| of a term sequence t̄
is a natural number defined thus: |(t1, . . . , tn)| = n. While term sequences serve
more important purposes we sometimes use them to obtain a more compact
notation for terms, writing f(t̄) for a term f(t1, . . . , tn).

In addition we allow an equivalent notation for sequences as an abstract
datatype. In this notation :: is the infix sequence constructor. As an example
we have the following correspondence between the sequence notations: (s, t) =
s :: t ::(). This is useful in definitions recursing over sequences.

The set of variables in a term sequence is defined as follows.

8

Def. 3.1 (Term sequence variables, V(t̄))

V
(
()

)
= ∅

V
(
(x, . . . , x)

)
= {x}

V
(
f(t1 :: t̄1), . . . , f(tn :: t̄n)

)
= V

(
(t1, . . . , tn)

)
∪ V

((
g(t̄1), . . . , g(t̄n)

))
,

A(g) = A(f) − 1

V
(
t̄
)

= ∅ otherwise

Note the trick of introducing a new function symbol g on the right-hand side in
the equation where the function symbol f is on the left-hand side, and taking
A(g) = A(f) − 1. This allows the definition to be recursive.

Ex. 3.2

V
(
(f(x), f(x))

)
= x V

(
(f(x), f(y))

)
= ∅ if x
= y

V
(
(. . . , c, . . .)

)
= ∅ V

(
(f(. . .), g(. . .))

)
= ∅ if f
= g �

Syntactic measures on term sequences, for use in inductive proofs:

Def. 3.3 (Term sequence height, H(t̄); term sequence size, S(t̄))

H
(
()

)
= 0 S

(
()

)
= 0

H
(
(t1, . . . , tn)

)
= max

{
H(t1), . . . ,H(tn)

}
(n > 0)

S
(
(t1, . . . , tn)

)
= S(t1) + · · · + S(tn) (n > 0)

Sometimes, we drop the ‘term’ prefix in ‘term sequence’ since they are the only
kind of sequence considered.

We now define binding and substitution for term sequences. The syntac-
tic objects sequence binding and sequence substitution are analogous to those
for terms, but the definition of substitution application requires more care.
A sequence binding is a pair of a term sequence t̄ and a variable x, written
t̄/x. A sequence binding set, denoted B̄, is a finite set of sequence bindings
{t̄1/x1, . . . , t̄n/xn} such that variables x1, . . . , xn are distinct.

The definitions of sequence domain, sequence range and the related notation
are trivial extensions of those for terms (Def. 2.5). A sequence binding set is
a sequence substitution, denoted θ̄, if it satisfies the following, called the well-
formedness criterion for sequences substitutions:

D(θ̄) ∩R(θ̄) = ∅ and
if θ̄ = {t̄1/x1, . . . , t̄n/xn} then |t̄1| = · · · = |t̄n|

(2̄)

In particular the empty set is a sequence substitution, called the empty sequence
substitution, and written as {}.2 We use σ̄, ρ̄ to denote sequence substitutions.

The notion of length is extended to sequence substitutions by taking
|{t̄1/x1, . . . , t̄n/xn}| = |t̄1| while |{}| is assumed to be such that equation |t̄| =

2That {} is also the empty term substitution does not create problems.

9

|{}| holds for any t̄.3 We say that a term sequence t̄ and a sequence substitution
θ̄ are compatible when |t̄| = |θ̄|. Note that the empty sequence substitution {}
is compatible with all term sequences.

Def. 3.4 (Term sequence substitution, t̄θ̄) Expression t̄θ̄ is only well-formed
when θ̄ is compatible with t̄.

(x, . . . , x)θ̄ = s̄ if (s̄/x) ∈ θ̄

(x, . . . , x)θ̄ = (x, . . . , x) if (_/x)
∈ θ̄
(
f(t1 :: t̄1), . . . , f(tn :: t̄n)

)
θ̄ =

(
f(s1 :: s̄1), . . . , f(sn :: s̄n)

)

where (s1, . . . , sn) = (t1, . . . , tn)θ̄

and
(
g(s̄1), . . . , g(s̄n)

)
=

(
g(t̄1), . . . , g(t̄n)

)
θ̄,

A(g) = A(f) − 1
t̄θ̄ = t̄ otherwise

The remarks regarding composition and notation following Def. 2.6 also apply
here.

Ex. 3.5 This example illustrates that application of a sequence substitution
to a sequence t̄ cannot in general be reduced to application of corresponding
regular substitutions on individual terms of t̄.

(
f(x), f(x)

){
(c, d)/x

}
=

(
f(c), f(d)

)

(
f(x), g(x)

){
(c, d)/x

}
=

(
f(x), g(x)

)
�

We extend � (Def. 2.12) to term sequences as follows:

Def. 3.6 (Term sequence generality orders: �)

(s1, . . . , sn) � (t1, . . . , tn) if s1 � t1 ∧ · · · ∧ sn � tn

s̄ � t̄ if s̄ � t̄ ∧ t̄
� s̄

We allow the shorthand s � (t1, . . . , tn) meaning (s, . . . , s) � (t1, . . . , tn).

3.2 Inverse substitution

Informally, inverse substitution takes a term t and a substitution θ and returns
a term tθ−1 where, for each binding (s/x) and each occurrence of s in t, that
occurrence is replaced with x. Some conditions must be met for inverse substi-
tution to be defined.

Def. 3.7 (Inverse substitution, tθ−1) Expression tθ−1 is only well-formed
when θ is injective and D(()θ) ∩ V(t) = ∅.

tθ−1 = x if (t/x) ∈ θ

f(t1, . . . , tn)θ−1 = f(t1θ−1, . . . , tnθ−1) if (f(t1, . . . , tn)/_)
∈ θ

yθ−1 = y if (y/_)
∈ θ

3It can be argued we should replace the length function with a relation; however, this
would not any anything significant new insights.

10

As expected, the following properties hold for inverse substitution:

t{}−1 = t

s{t1/x1, . . . , tn/xn}−1 =
(
· · ·

(
s{t1/x1}−1

)
· · ·

)
{tn/xn}−1

The first is trivial. The second follows from well-formedness (2) and injectivity
of θ.

Ex. 3.8

g(c){c/x}−1 = g(x)

g(c){g(c)/x}−1 = x

f(y, c){y/x}−1 = f(x, c)

f(c, h(c, y)){c/x}−1 = f(x, h(x, y))

f(x, c){c/x}−1 undefined

Note that f(c, g(c)){c/xg(c)/y}−1 = f(x, y) and not f(x, g(x)) since the second
binding matches before the subterms of g are examined. �

We extend the concept of inverse substitution to term sequences.

Def. 3.9 (Inverse term sequence substitution, tθ−1) Expression t̄θ̄−1 is
only well-formed when θ̄ is injective, compatible with t̄ and D(()θ̄) ∩ V(t̄) = ∅.

t̄θ̄−1 = (x, . . . , x) if (t̄/x) ∈ θ̄
(
f(t1 :: t̄1), . . . , f(tn :: t̄n)

)
θ̄−1 =

(
f(s1 :: s̄1), . . . , f(sn :: s̄n)

)

if ((f(t1 :: t̄1), . . . , f(tn :: t̄n))/_)
∈ θ̄

where (s1, . . . , sn) = (t1, . . . , tn)θ̄−1

and
(
g(s̄1), . . . , g(s̄n)

)
=

(
g(t̄1), . . . , g(t̄n)

)
θ̄−1,

A(g) = A(f) − 1

t̄θ̄−1 = t̄ otherwise

Similar properties to those for regular inverse substitution hold.
Inverse substitution has many notable properties, especially in relation to

substitution. We only need the following, which can be generalised to sequences.

Lemma 3.10 Let t be arbitrary, let θ be injective and such that V(t)∩D(()θ) =
∅. Then tθ−1 � t.

Proof. By induction on n = H(t).
Basic step: n = 0, meaning t = x. There are two cases:

(i) (x/_)
∈ θ. Here xθ−1 = x and the lemma trivially holds since x � x.
(ii) (x/y) ∈ θ. Now xθ−1 = y and y � x holds.

11

Induction hypothesis: The lemma holds for n ≤ k.
Induction step: Must prove the case n = k + 1. Consider t = f(t1, . . . , tm),
H(t) = k + 1. Two cases:

(i) (t/_)
∈ θ. We get:4

f(t1, . . . , tm)θ−1 ==
{
Def. 3.7

}

f(t1θ−1, . . . , tmθ−1) �
{
induction

}

f(t1, . . . , tm)
(ii) (t/y) ∈ θ. Now tθ−1 = y and y � t holds. �

4 Anti-unification

We have now developed enough theory to define anti-unification, or the least
generalisation, of a set of terms, and to give algorithms to compute it.

4.1 Definition of least generalisation

The next definition and example are adapted from Plotkin [6].

Def. 4.1 (Least generalisation, lg(T)) Let T be a non-empty set of terms.
A term s is a least generalisation of T , denoted s ∈ lg(T), if the following
properties hold:

∀t ∈ T (s � t) (generalisation)

∀u
(
∀t ∈ T (u � t) =⇒ u � s

)
(least)

Ex. 4.2

f
(
z1, x, g(z1, z2)

)
∈ lg

({
f
(
c, x, g(c, x)

)
f
(
d, x, g(d, y)

)})
�

Ex. 4.3 One can have s1 � t and s2 � t without s1, s2 being comparable by �:
take s1 = f(x, c), s2 = f(c, y), t = f(c, c). �

The least condition implies the following.

¬∃u
(
∀t ∈ T (u � t) ∧ s � u

)
(5)

That is, there can be no term u such that u is a generalisation of T and a least
generalisation s is strictly more general that u. Note that (5) does not imply
the least condition; Example 4.3 shows why.

Proof. We use the shorthand s � T for ∀t ∈ T (s � t).
∀u(u � T =⇒ u � s) =⇒

{
Lem. 2.13

}

∀u(u � T =⇒ s
� u) ⇐⇒
{
Logic

}

∀u(u
� T ∨ s
� u) ⇐⇒
{
Logic

}

¬∃u¬(u
� T ∨ s
� u) ⇐⇒
{
Logic

}

¬∃u(u � T ∧ s � u) ⇐⇒
{
Logic

}
�

4Inspired by Bird and de Moor [1] we sometimes write proof in a calculational style.

12

Assumption: |t̄| = n, n > 0.

1. (s1, . . . , sn) := t̄, θ̄ := {}.

2. If s1 = · · · = sn then halt with s1 as the answer.

3. Let w be the leftmost-highest position at which s1, . . . , sn differ. Perform
u1 := s1[w], . . . , un := sn[w].

4. If ((u1, . . . , un)/x) ∈ θ̄ then perform s1[w] := x, . . . , sn[w] := x, and
go to 2.

5. Let z be a fresh variable, and perform θ̄ := θ̄{(u1, . . . , un)/z}, s1[w] :=
z, . . . , sn[w] := z, and go to 2.

Figure 1: Imperative anti-unification algorithm.

The next lemma establishes that lg(T) is unique modulo variable renaming.

Lemma 4.4 (Uniqueness of lg(T) modulo ≡α) Let T be a non-empty term
set. If s1, s2 ∈ lg(T) then s1 ≡α s2.

Proof. By definition s1 � s2 and s2 � s1 so the lemma follows directly from
Lemma 2.14. �

4.2 The Plotkin-Reynolds imperative algorithm

Fig. 1 shows the imperative algorithm, adapted from Reynolds [7, Theorem 1].
The notation s[w] means the subterm of s at position w. Leftmost-highest
position means the position leftmost and closest to the head of the term.

4.3 The functional algorithm

Let t̄ be a term sequence (t1, . . . , tn), n > 0. Then the least generalisation of
the term set {t1, . . . , tn} is au(t̄) where au(t̄) is computed by the functional
anti-unification algorithm given in Fig. 2. Expression 〈a, b〉 denotes a pair of
objects a, b, and fst, snd are operations for de-constructing pairs: fst

(
〈a, b〉

)
=

a; snd
(
〈a, b〉

)
= b.

The algorithm in Fig. 2 expects the term sequences t̄ to consist of ground
terms, but it can be adapted to sequences of general terms as follows: Replace
all occurrences of a variable x in t̄ with a new constant cx before using the
algorithm and, after using the algorithm, replace cx by x in the result.

Equation (7) covers the case auθ̄((c, . . . , c), θ̄). This equation could be re-
placed with the more specific

auθ̄

(
(c, . . . , c), θ̄

)
= 〈c, θ̄〉

but (7) may be more efficient.

13

Assumptions for au(t̄): |t̄| > 0.
Assumptions for auθ̄(t̄, θ̄): |t̄| > 0, θ̄ injective, θ̄ compatible with t̄.

au(t̄) = s where s=fst
(
auθ̄(t̄, {})

)
(6)

auθ̄

(
(t, . . . , t), θ̄

)
= 〈t, θ̄〉 (7)

auθ̄

((
f(t1 :: t̄1), . . . , f(tn :: t̄n)

)
, θ̄

)
=

〈
f(s :: s̄), θ̄′′

〉
(8)

if (7) does not apply

where 〈s, θ̄′〉=auθ̄

(
(t1, . . . , tn), θ̄

)

and 〈g(s̄), θ̄′′〉=auθ̄

((
g(t̄1), . . . , g(t̄n)

)
, θ̄′

)
, A(g) = A(f) − 1

auθ̄(t̄, θ̄) = 〈x, θ̄〉 if (7) and (8) do not apply and (t̄/_) ∈ θ̄ (9)
where (t̄/x) ∈ θ̄

auθ̄(t̄, θ̄) = 〈z, θ̄{t̄/z}〉 if (7), (8) and (9) do not apply (10)
where z is a fresh variable

Figure 2: Functional anti-unification algorithm.

Note that the assumption θ̄ injective and condition (t̄/_) ∈ θ̄ ensures that
(t̄/x) ∈ θ̄ uniquely determines x in equation (9). Later we prove that the
assumptions always hold given that they hold initially, and that all substitutions
computed by the algorithm are well-formed (Lemma 5.3, cases i and ii).

5 Correctness of the functional algorithm

In this section we prove that the functional anti-unification algorithm (Fig. 2)
complies with the definition of least generalisation (Def. 4.1). To to this we start
by proving termination of the algorithm and that it preserves certain invariants
(Sec. 5.1), and then we go on to prove the two properties required for a least
generalisation (Secs. 5.2, 5.3).

5.1 Termination and invariants

The termination of au follows trivially from the following lemma about auθ̄.

Lemma 5.1 (Termination) Let t̄ be non-empty and let θ̄ be compatible with
t̄. Then the computation auθ̄(t̄, θ̄) terminates.

Proof. Note first that θ̄, the second argument to auθ̄, only determines whether
or not (9) applies and does not affect non-termination.

Consider the first argument to auθ̄. Size, Def. 3.3, induces a well-founded
relation on term sequences since term sequences are tuples of finite terms. For
auθ̄ equation (8) is the critical one since this equation only is recursive. Both

14

recursive calls in (8) apply to sequences with strictly smaller size,

S
(
(t1, . . . , tn)

)
< S

((
f(t1 :: t̄1), . . . , f(tn :: t̄n)

))
,

S
((

g(t̄1), . . . , g(t̄n)
))

< S
((

f(t1 :: t̄1), . . . , f(tn :: t̄n)
))

.

This means that auθ̄ cannot be called indefinitely. �

We take advantage of this fact in the following by proving properties of auθ̄ (and
au) by induction over the number of calls to auθ̄.5

We need the following relation on substitutions later.

Def. 5.2 (Substitution order, θ ≥ σ) θ ≥ σ if ∃ρ(θ = σρ).

The definition of substitution order generalises straightforwardly to term se-
quences substitutions.6 The order is transitive by substitution composition.

Next we prove some invariants for arguments to and results from auθ̄. The
purpose of this lemma is to ensure that we may apply the induction hypothesis
in the proofs of Lemma 5.4 and Lemma 5.6.

Lemma 5.3 (Invariants) Let t̄ be non-empty and let θ̄ be injective, compatible
with t̄ and such that V(t̄) ∩ D(()θ̄) = ∅. If 〈s̄, σ̄〉 = auθ̄(t̄, θ̄) then the following
holds.

(i) σ̄ is well-formed and σ̄ ≥ θ̄;
(ii) σ̄ is injective;
(iii) σ̄ is compatible with t̄;
(iv) V(t̄) ∩ D(()σ̄) = ∅.

Proof. (Sketch)

(i) Substitution θ̄ is passed as argument to auθ̄ and a possibly differing sub-
stitution is in the returned tuple. Equations (7) and (9) pass θ̄ on directly.
Equation (10) passes the composition θ̄{t̄/z}. This is a well-formed substi-
tution since z is a fresh variable and θ̄ is well-formed by assumption. Also,
θ̄{t̄/z} ≥ θ̄. Equation (8) does not itself pass or compute a substitution
different from θ̄ but recursive calls may do so; this is handled by induction
on the number of calls to auθ̄.

(ii) By assumption θ̄ is injective. The only equation that adds to θ̄ is (10),
and it does so provided that (9) does not apply. In this case (t̄/_)
∈ θ̄ and
therefore θ̄{t̄/z} is also injective. An induction on the number of calls to
auθ̄ is needed for (8).

(iii) By assumption θ̄ is compatible with t̄. The only equation that adds to θ̄
is (10), and θ̄{t̄/z} is also compatible with t̄. Induction on the number of
calls to auθ̄ completes the argument.

5Reynolds does the same in his correctness proof (Theorem 2) [7]. Alternatively one could
do well-founded induction over S(t̄) as described for instance by Mitchell [4, §1.8.3].

6Remark that substitution order here is syntactical, that is, it compares just the substitu-
tion objects themselves. A semantical order would be based on the effect of substitutions on
terms.

15

(iv) By assumption V(t̄)∩D(()θ̄) = ∅. Since σ̄ ≥ θ̄ and only fresh variables are
added, the property holds. �

Observation: The algorithm does not rely on the concrete order in which terms
are listed in t̄ and θ̄. That is, the order that terms are listed in t̄ is immaterial
to the result computed by au.

5.2 Generalisation property

We reformulate the generalisation property from Def. 4.1 with sequences instead
of sets: Let t̄ be non-empty. Then the least generalisation s of t̄ must satisfy
the following:

s � t̄ (generalisation)

A direct inductive proof of our generalisation result, Theorem 5.5, does not
work due to the accumulated argument θ̄ in the algorithm. Instead we prove
a slightly more general result, Lemma 5.4, and derive the theorem as an easy
consequence of the lemma.

Lemma 5.4 Let t̄ be non-empty and let θ̄ be injective, compatible with t̄ and
such that V(t̄) ∩ D(()θ̄) = ∅. Then fst

(
auθ̄(t̄, θ̄)

)
� t̄.

Proof. Without loss of generality assume that |t̄| = 2, that is, t̄ = (t1, t2) for
terms t1, t2. Termination of auθ̄ is already established. The proof is by induction
on the number n of recursive calls to auθ̄.
Basic step: n = 0. There are three cases to consider, corresponding to conditions
for applying the non-recursive equations (7), (9) and (10). Equation (8) does
not apply as it involves recursive calls to auθ̄, that is, n > 0.

(i) t̄ = (t, t).
fst

(
auθ̄

(
(t, t), θ̄

))
� (t, t) ==

{
(7)

}

fst
(
〈t, θ̄〉

)
� (t, t) ==

{
Def. of fst

}

t � (t, t) ==
{
Def. 3.6

}

True
(ii) t̄ = (t1, t2), t1
= t2, (t̄/x) ∈ θ̄.

fst
(
auθ̄(t̄, θ̄)

)
� t̄ ==

{
(9)

}

fst
(
〈x, θ̄〉

)
� t̄ ==

{
Def. of fst

}

x � t̄ ==
{
Def. 3.6

}

True
(iii) t̄ = (t1, t2), t1
= t2, (t̄/_)
∈ θ̄, head(t1)
= head(t2). (The latter is not used

here.)
fst

(
auθ̄

(
t̄, θ̄

))
� t̄ ==

{
(10), V(t̄) ∩ D(()θ̄) = ∅

}

fst
(〈

z, θ̄{t̄/z}
〉)

� t̄ ==
{
Def. of fst

}

z � t̄ ==
{
Def. 3.6

}

True

16

Induction hypothesis: The lemma holds for n ≤ k.
Induction step: Must prove the case n = k + 1, that is, computations involving
k + 1 recursive calls to auθ̄; only (8) is relevant since it is the only recursive
equation. We have t̄ =

(
f(t1 :: t̄1), f(t2 :: t̄2)

)
, f(t1 :: t̄1)
= f(t2 :: t̄2).

fst
(
auθ̄

((
f(t1 :: t̄1), f(t2 :: t̄2)

)
, θ̄

))
�

(
f(t1 :: t̄1), f(t2 :: t̄2)

)

==
{

(8)
}

fst
(〈

f(s :: s̄), θ̄′′
〉)

�
(
f(t1 :: t̄1), f(t2 :: t̄2)

)

where 〈s, θ̄′〉=auθ̄

(
(t1, t2), θ̄

)

and
〈
g(s̄), θ̄′′

〉
=auθ̄

((
g(t̄1), g(t̄2)

)
, θ̄′

)

==
{

Def. of fst
}

f(s :: s̄) �
(
f(t1 :: t̄1), f(t2 :: t̄2)

)

==
{

notation
}

(
f(s :: s̄), f(s :: s̄)

)
�

(
f(t1 :: t̄1), f(t2 :: t̄2)

)

==
{

Def. 3.6, notation
}

s � (t1, t2) ∧ g(s̄) �
(
g(t̄1), g(t̄2)

)

==
{

Def. of fst, s, s̄
}

fst
(
auθ̄

(
(t1, t2), θ̄

))
� (t1, t2)

∧ fst
(
auθ̄

((
g(t̄1), g(t̄2)

)
, θ̄′

))
�

(
g(t̄1), g(t̄2)

)

==
{

Lem. 5.3, ind. hyp. & logic
}

True �

It is possible to prove a more general result with Lemma 5.4 as a special
case. That result would tighten the bound on the computed term as follows:
Assume t̄ non-empty, θ̄ injective and compatible with t̄. Then

〈s, θ̄′〉 = auθ̄(t̄, θ̄) =⇒ (s, . . . , s)θ̄′ ≡ t̄

where ≡ is defined on sequences in the obvious way. To prove this a more
involved induction hypothesis must be used, similar to that of Lemma 5.6.
However, we do not need such generality to derive the theorem below.

We are ready to prove the generalisation property, representing the first part
of Def. 4.1.

Theorem 5.5 (Generalisation) Let t̄ be non-empty. Then au(t̄) � t̄.

Proof. Immediate from (6) and Lemma 5.4 by taking θ̄ = {}. �

5.3 Least property

We reformulate the least property from Def. 4.1 with sequences instead of sets:
Let t̄ be non-empty. Then the least generalisation s of t̄ must satisfy the follow-
ing:

∀u(u � t̄ =⇒ u � s) (least)

17

As in the previous section we prove a more general result and then derive The-
orem 5.7, the theorem stating the least property. One could try to to proceed
as in Sec. 5.2: Replacing s with fst

(
auθ̄(t̄, θ̄)

)
in the above formula, we get

∀u
(
u � t̄ =⇒ u � fst

(
auθ̄(t̄, θ̄)

))
(11)

and then one may proceed to prove this equation. But taking t̄ = (c, . . . , c),
θ̄ = {t̄/x} and u = c gives a counterexample to (11). We need to take into
account the effect of the initial argument θ̄ to auθ̄. The formulation of the next
lemma is inspired by the fact that fst

(
auθ̄(t̄, θ̄)

)
� t̄θ̄−1. Since we do not use

this fact, we leave out its proof.

Lemma 5.6 Let t̄ be non-empty and let θ̄, σ̄ be injective, compatible with t̄ and
such that V(t̄) ∩ D(()θ̄) = ∅ and V(t̄) ∩ D(()σ̄) = ∅. If 〈s, ρ̄〉 = auθ̄(t̄, θ̄) and
σ̄ ≥ ρ̄ then the following holds:

∀u
(
(u, . . . , u) � t̄σ̄−1 =⇒ u � s

)
(†)

Proof. Without loss of generality assume that t̄ = (t1, t2). The proof is by
induction on the number n of recursive calls to auθ̄. In the various cases we
refer to corresponding cases in the proof of Lemma 5.4 for the value of 〈s, ρ̄〉.
Also, we know from Lemma 5.3, case i that ρ̄ ≥ θ̄.
Basic step: n = 0. There are three cases to consider, corresponding to conditions
for applying the non-recursive equations (7), (9) and (10).

(i) t̄ = (t, t). From the proof of Lemma 5.4, case i we have 〈s, ρ̄〉 = 〈t, θ̄〉 and
(†) may be specialised:
∀u

(
(u, u) � (t, t)σ̄−1 =⇒ u � t

)
==

{
Def. 3.6

}

∀u
(
(u, u) � (t, t)σ̄−1 =⇒ (u, u) � (t, t)

)
==

{
Lem. 3.10 & trans. of �

}

True
(ii) t̄ = (t1, t2), t1
= t2, (t̄/x) ∈ θ̄. By assumption σ̄ injective, and since

ρ̄ ≥ θ̄ and ≥ is transitive, we have σ̄ ≥ θ̄. This, together with (t̄/x) ∈ θ̄,
implies that (t̄/_)
∈ (σ̄ \ θ̄). By the proof of Lemma 5.4, case ii we have
〈s, ρ̄〉 = 〈x, θ̄〉 and we may specialise (†):
∀u

(
(u, u) � t̄σ̄−1 =⇒ u � x

)
==

{
(t̄/_)
∈ (σ̄ \ θ̄)

}

∀u
(
(u, u) � t̄θ̄−1 =⇒ u � x

)
==

{
Def. 3.9

}

∀u
(
(u, u) � (x, x) =⇒ u � x

)
==

{
Def. 3.6, pred. logic

}

∀u
(
u � x =⇒ u � x

)
==

{
pred. logic

}

True
(iii) t̄ = (t1, t2), t1
= t2, (t̄/_)
∈ θ̄, head(t1)
= head(t2). By the proof of

Lemma 5.4, case ii 〈s, ρ̄〉 = 〈z, θ̄{t̄/z}〉 where z fresh, that is, z
∈ D(()θ̄).
Now (†) specialised is:
∀u

(
(u, u) � t̄σ̄−1 =⇒ u � z

)
==

{
σ̄ inj., σ̄ ≥ θ̄{t̄/z}, z
∈ D(()θ̄)

}

∀u
(
(u, u) � t̄{t̄/z}−1 =⇒ u � z

)
==

{
Def. 3.9

}

∀u
(
(u, u) � (z, z) =⇒ u � z

)
==

{
Def. 3.6

}

∀u
(
u � z =⇒ u � z

)
==

{
pred. logic

}

True

18

Induction hypothesis: The lemma holds for n ≤ k.
Induction step: Must prove the case n = k + 1. Only the recursive equation (8)
is relevant. We have t̄ =

(
f(t1 :: t̄1), f(t2 :: t̄2)

)
, f(t1 :: t̄1)
= f(t2 :: t̄2). Further-

more:

〈s, ρ̄〉
==

{
proof of Lem. 5.4

}

〈
f(s′ :: s̄′), θ̄′′

〉

where 〈s′, θ̄′〉=auθ̄

(
(t1, t2), θ̄

)

and
〈
g(s̄′), θ̄′′

〉
=auθ̄

((
g(t̄1), g(t̄2)

)
, θ̄′

)

==
{

Lem. 5.3, assumptions
}

〈
f(s′ :: s̄′), θ̄′′

〉

where 〈s′, θ̄′〉=auθ̄

(
(t1, t2), θ̄

)

∧ θ̄′ inj., comp. to (t1, t2), V((t1, t2)) ∩ D(()θ̄′) = ∅, θ̄′ ≥ θ̄

and
〈
g(s̄′), θ̄′′

〉
=auθ̄

((
g(t̄1), g(t̄2)

)
, θ̄′

)

∧ θ̄′′ inj., comp. to
(
g(t̄1), g(t̄2)

)
, V

((
g(t̄1), g(t̄2)

))
∩D(()θ̄′′) = ∅,

θ̄′′ ≥ θ̄′

Transitivity of ≥ gives θ̄′′ ≥ θ̄. By assumption σ̄ ≥ θ̄′′ so we have σ̄ ≥ θ̄′ and
σ̄ ≥ θ̄. Now (†) specialised is:

∀u
(
(u, u) �

(
f(t1 :: t̄1), f(t2 :: t̄2)

)
σ̄−1 =⇒ u � f(s′ :: s̄′)

)
(12)

Observation: In general if u � f(t̄)θ−1 then either u is a variable or on the
form f(ū). This follows directly from Def. 3.9. Using the observation on the
antecedent inside (12) there are two possibilities:

(i) u = y. Then we get

∀y
(
(y, y) �

(
f(t1 :: t̄1), f(t2 :: t̄2)

)
σ̄−1 =⇒ y � f(s′ :: s̄′)

)

which, using Def. 2.12, holds since y � t for any t.
(ii) u = f(v :: v̄) for some v, v̄. Then:

∀v, v̄
((

f(v :: v̄), f(v :: v̄)
)
�

(
f(t1 :: t̄1), f(t2 :: t̄2)

)
σ̄−1

=⇒ f(v :: v̄) � f(s′ :: s̄′)
)

==
{

Def. 3.9, Def. 3.6
}

∀v, v̄
(
(v, v) � (t1, t2)σ̄−1 ∧

(
g(v̄), g(v̄)

)
�

(
g(t̄1), g(t̄2)

)
σ̄−1

=⇒ v � s′ ∧ g(v̄) � g(s̄′)

whereA(g) = A(f) − 1
)

==
{

Ind. hyp. twice, pred. logic
}

True �

19

Now the least property, the second part of Def. 4.1, may be proved straight-
forwardly.

Theorem 5.7 (Least) Let t̄ be non-empty.
Then ∀u

(
(u, . . . , u) � t̄ =⇒ u � au(t̄)

)
.

Proof.

∀u
(
(u, . . . , u) � t̄ =⇒ u � au(t̄)

)

==
{

(6)
}

∀u
(
(u, . . . , u) � t̄ =⇒ u � s

)
where 〈s, _〉=auθ̄(t̄, {})

==
{

Lem. 5.6, θ̄ = σ̄ = {}
}

True �

Acknowledgements

A discussion with Arild B. Torjusen inspired Def. 2.1. The reviewers of LOPSTR
2003 provided detailed and valuable feedback (the submission was rejected).

References

1. R. Bird and O. de Moor. The algebra of programming. International series
in computer science. Prentice Hall, 1996.

2. J.-L. Lassez, M. J. Maher, and K. Marriott. Unification revisited. In
J. Minker, editor, Foundations of deductive databases and logic programming,
chapter 15. Morgan Kaufmann, 1988.

3. B. Meltzer and D. Michie, editors. Machine Intelligence, volume 5. Edinburgh
University Press, 1970.

4. J. C. Mitchell. Foundations for Programming Languages. Foundations of
Computing Series. The MIT Press, 1996.

5. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19, 20:629–679, 1994.

6. G. D. Plotkin. A note on inductive generalization. In Meltzer and Michie
[3], pages 153–163.

7. J. C. Reynolds. Transformational systems and the algebraic structure of
atomic formula. In Meltzer and Michie [3], pages 135–151.

8. U. Schmid. Inductive Synthesis of Functional Programs – Learning Domain-
Specific Control Rules and Abstract Schemes. Number 2654 in Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2003. In press.

20

