
�����������
	�����
������������������������������! "���"�"#$�%	��&�
�'�"�!��()�����
$+�,�.-

Kasper Østerbye
Norwegian Computing Center, Postboks 114 Blindern, 0314 OSLO, Norway.

Kasper.Osterbye@nr.no

Johnny Olsson
WM-data, Hermodsvej 22, 8230 Åbyhøj, Århus, Denmark,

jooln@wmdata.com

Abstract. The popularity of UML has bought a new abstraction mechanism, as-
sociations, into the realm of object-oriented programming. Associations are
used in the analysis and design phases of software development. We have used
UML in a paper and pencil redesign of a large existing system where the goal
was to move from a relational model to an object-oriented model. Our experi-
ence has shown us that the concept of associations in UML is very useful, but
also that there are several shortcomings regarding their expressive power. Scat-
tered associations are global association structures whose definition is scattered
throughout a UML diagram. We have identified two kinds of scattered associa-
tions. A structural association is a scattered association that defines the struc-
ture of a set of objects, and a co-variant association is a scattered association
that describes pair-wise parallel inheritance hierarchies.

1 Introduction
The graphical modelling language UML [Rational, 1998] has brought associations
into object-oriented modelling, and seem to complement the existing modelling capa-
bilities well. A hallmark of object-oriented modelling has been its closeness to human
conceptualisation, with objects representing nouns, and methods/functions/procedures
representing verbs. Associations can be said to model the word class, transitive verbs,
with one object being the subject and the other the object, e.g. WM-data employs
Johnny. When we talk about the association in general, we will often use a substanti-
ated verb, e.g. employment.

In a model of a large system concerning administration of students, student programs,
teaching, exam planning, and public scholarships, we have encountered the situation
that the same association ties together elements of different types. We call the situa-
tion “scattered associations”, as the typical characteristic is that the same association
type is used many places in the same class diagram.

Our experiences are drawn from an experiment where we used an extension of
Smalltalk that provides linguistic support for associations [Østerbye et al, 1998]. The
extension builds on the DSM model developed by Rumbaugh and others [Rumbaugh,
1987][Shan et al, 1989].

The system from which the experiences are drawn will be presented first, followed by
a discussion of the notion of scattered associations. Two different types of scattered
associations are identified, structural and co-variant scattering. The general principles
behind these two are presented, and several possible solutions are discussed.

2 The STADS rule checker
The case deals with one aspect of a large generic administration system called
STADS1. The selected part deals with describing educations and the courses and ex-
ams that constitute these educations. It deals with describing the concrete career of in-
dividual students, and, it deals with describing the rules that make up the passing crite-
ria and structural constraints of the educations themselves. The analysis and design of
the STADS system is further described in [Olsson et al. 1998].

To provide a framework for describing educations, concepts ranging from government
regulations and degrees, to courses and individual exams have been defined. Each of
these concepts can be described using rules. For an individual exam, the rule might
state the passing grade, for a course it might specify the minimum grade average
needed for its constituent grades. The rules associated with a degree might state that a
certain number of courses must be passed, or that all exams must be passed with a
certain minimum grade. The career of a specific student is the courses actually fol-
lowed by the student. Most educations are structured with required as well as volun-
tary courses. The career of each student therefore varies in structure as well as in
grade results, even if they might end up with the same degree.

Associations have played an important role in describing the STADS rule checker.
They have been used to describe the association between the different descriptive
elements (degrees etc.), the association between the corresponding career elements,
and to associate career elements with their descriptions. Associations are also used to
associate descriptive elements to their rules, and to associate individual dispensations
from the rules with career elements for the student who has the dispensation. The
above diagram gives a fuller picture of the model.

The class diagram contains two main hierarchies, the right on rooted in Description
Element, and the left in Career Element. A descriptive element is an element that de-

1 STADS is a short for ’STudieADminstrationsSystem’ (Education Administration System in Danish). The
system concerns administration of students, student programs, teaching, exam planning, and public scholar-
ships. STADS has been developed since 1993. The first universities started to use the system in 1996. As
the system gets more developed, more universities are taking in into use. The system is implemented on a
Oracle 7 platform and works for UNIX as well as VMS

/10 2 354 6 798 6 :9;<>= 05?,0 ;@8

A@45: B@45C ?,?�0 <ED>FE3 C 856 : ; GH0 B5F>= C@8 6 :@;

A94 :5B@C5?+?,0<@= 0 ?�0 ;98

I@05C@35J>6 ;5BC53 8 6 K 6 85L <@M9C ?,NC 3 856 K 6 8 L O 45:>FE7

P C54 0 054<E= 05?+05;@8

PRQ A@45: B>45C ?�?,0PHQ <9D@F93 C 856 : ;

PHQ A94 :5B@C ?�?,0<9= 0 ?�05;@8

PRQ I@05C@3 J96 ;5BC 3 856 K 6 8 LP1Q <9M@C5?�NC 3 856 K 6 8 LPRQ O 45:@F97

Simpl ified class diagram for the STADS System. “ C_” is short for Career

S 2 256 B@;50@DGHF@= 0/H6 2 790 ;92 C 8 6 :E;

scribes an element of an education. A career element is a part of the career for a spe-
cific student. It is worth to notice that the career elements are not instances of the de-
scriptive elements. The reason is that the descriptive elements are tangible objects in
the domain of the system. The users of the system are used to having such things as
course descriptions in their problem domain. This is an example of the object-oriented
analysis pattern “ item-description” described in [Coad, 1992].

In the diagram, there is an association between Career element and Description
element. The two hierarchies are nearly parallel, for each descriptive element, there is
a corresponding career element. The association between Career element and De-
scription element is interpreted in a pair wise fashion, e.g. associating Exam_activity
to C_Exam_activity, Programme to C_Programme etc. Just as the career-description
association is intended to work in a pair wise fashion, the assigned rule and dispensa-
tions are supposed to work in a pair wise manner. All rules are associated to descrip-
tions, and dispensations are associated to rules as well as the career element for a spe-
cific student. A dispensation must associate to a career element that corresponds to the
descriptive element of its rule.

2.1 Experiences
As a first step in implementation, each association on the UML diagram must be given
a name. To come up with meaningful names for each association was very hard, and
in the end we just settled for a simple systematic naming involving the first part of
each participating class. We believe, however, that the problem has a more profound
explanation. The element hierarchies have both a specializations structure, and a con-
tainment structure. The containment structure is described using aggregation and sim-
ple association in the diagram. Many of the associations in both career and description
are containment associations, and a compelling idea is to interpret these unnameable
associations as making up a single association (one for career and one for description),
which exactly defines the containment structure. This is also reflected by the observa-
tion that we were lacking a proper object, which captured the containment structure of
a programme and a career, throughout the work with the STADS system.

A programme element can be part of both a programme and a group (which is a mod-
elling concept used to provide some reuse of rules and descriptions). If we move up-
wards in the containment hierarchy, this leaves us with a typing problem because the
type of the object is not known when we traverse the containment association, we
know that it is either a program or a group.

An implementation of associations should allow us to move from one object to the
other using role names specified as part of the association definition. The association
binding career elements to program elements raised the problem that the return type of
the roles is different for each matching pair of specialised element type.

3 Scattered associations
As mentioned in the previous section, our overall experience of using UML for mod-
elling was a mixed blessing. There are two points where we have encountered prob-
lems. In both the description part and the career part of the model, the different ele-

ments make up a hierarchical containment structure. We need a way to view this
structure as a single property of the model, but as it is represented in the UML dia-
gram, its definition is scattered all over the diagram.

Another problem is the association that binds career elements to their associated de-
scription elements. This association needs to be refined (not done in the diagram) to
specify that career programmes are associated to programmes, that career groups are
associated to groups, that is, the two hierarchies are parallel. Two problems arise from
this. First it would be incredible tiresome to create all the actual associations in the
diagram. Second, and more serious, the semantics of this is not quite simple to work
out. Again, we believe that this pattern of associations across parallel inheritance hier-
archies is a reoccurring pattern, and it is addressed in section 3.2.

3.1 Containment associations
The career elements are organised into a career structure, as are the description ele-
ments. In both cases this containment structure is made up from a number of individu-
ally defined associations. However, it was our experience that we needed to be able to
talk about the containment structure as such, as it in many situations provide the right
level of abstraction. At an intuitive level, we feel that the containment association can
be decomposed into the individual associations. That is, one can talk about the same
association at different levels.

We feel that the containment structure is in nature a scattered association. Our solution
is to assume that an association can be defined more than one place in a class diagram.
This mean that the containment association associates exams to programs, programs to
educations etc. This works well in most cases, but a problem arise when the same
class of objects can participate two different places in the containment structure, e.g.
an exam can be part of a program or of a group.

To solve the problem, we extend the simple Relation definition to allow several
clauses as in:

Relation EducationSctructure is
(element: Education ↔ regulation: Regulation OR super_education: Education) AND

(program: Program ↔ group: Education 0:M) AND
(element: ProgElement ↔ program: Program OR group: Group 0:M)

This states that an education is associated to either a regulation, or to another educa-
tion (itself being a sub-education). In the actual STADS system the OR’s are actually
not exclusive, as the education structure is hierarchical, though not tree structured (it
is a directed a-cyclic graph). The above seem like a solution at the moment, but the
introduction of Boolean connectives indicates to us that the final solution has not yet
been reached.

3.2 Covariant associations
The exact semantics of the association between career elements and descriptive ele-
ments is so that it does not associate arbitrary career elements to arbitrary description
elements. This association is indeed the association that establishes that the two hier-

archies are parallel. The problems relate to uncertain semantics of associations in con-
nection with specialisation. If we assume that association A associate class C to class
X. Then one will expect that A also associate a subclass D of C to the X class. If Y
and Z are specializations of X, then A might associate a D object to both an X, Y, and
Z object. This seems a reasonable way to interpret the interplay between an associa-
tion and class inheritance.

But in the case of parallel hierarchies, the situation is such that A should be con-
strained in some way so that the general element to element association will not en-
able all possible associations, but can be restricted in the proper way.

As before, the fundamental question is if this the restricted association is a new asso-
ciation, or if it is a restriction of the existing one. However, it seems that in defining a
new association for each parallel pair the general picture is easily lost, e.g. the new
relation need to specify that it is a elaboration of the general one. Another problem is
that the general one still exists but is useless, as all concrete associations will be done
using new associations. We therefore believe that it is most promising to find a way to
restrict the existing association. That way we can maintain the view that there is really
only one association, which “does the right thing”.

The title of the section indicates a hybrid solution, which has its origin in virtual
classes as known from BETA [Madsen et al. 1993]. If the general relation is described
as associating a virtual career element to a virtual description element, then new con-
crete associations can bind these appropriately. In a concrete syntax, this might be:

Relation Description
(career: virtual CareerElement ↔ description: virtual DescriptionElement).

Without full understanding of what specialisation of associations is, Description could
then be specialized as:

Relation ExamDescription is-a Description
(career: bind CareerExam ↔ description: bind Exam)

The term covariant in the title refers to the idea that both association ends are special-
ised simultaneously.

In [Shan et al, 1989] access methods are automatically compiled into the classes that
are associated. This means that a method for accessing the description will be com-
piled into the CareerElement class. If the type of association endpoints is declared
virtual, the return type of the description access method is virtual, and the ExamDe-
scription association overrides this virtual to return an Exam element rather than a De-
scriptionElement. The notion of virtual classes seems to provide an elegant solution
for covariant associations. However, no appropriate solution has been found for nota-
tions that does not support virtual classes.

4 Conclusion
During our work in modelling the STADS rule checker using the UML diagram nota-
tion, we found associations to be quite natural. However, we came across two situa-
tions in which the notation seemed in adequate in its support for associations. The

common theme in these two situations was that a number of associations seemed
really to be only constituents of a larger association, which could not be expressed in
UML. The two situations were named structural associations and covariant associa-
tion, and their general term is scattered associations. For both kinds of associations
linguistic solutions were proposed.

In the case of structural associations, we propose to expand the notion of a binary as-
sociation, so that the same association can be used to associate different kinds of ob-
jects. The concrete proposal introduced Boolean connectives. While this seem to solve
the problem, it is not quite satisfactory, as we believe that a linguistic solution which
captures the solution in a combination of aggregation and inheritance will ultimately
prove more elegant.

Such a solution present itself for covariant association. Here the problem was how to
relate parallel hierarchies. Here a proper linguistic solution did arise. By declaring the
endpoints of an association virtual, these endpoints can then be further bound in spe-
cializations of a general association.

However, it is important to point out that specialisation of associations has no known
well-defined semantics. We believe that work like this may aid in laying down the ex-
perience needed to define such semantics.

Acknowledgements. This work has been supported by the Danish Centre for Infor-
mation Technology in the subproject “COT project 74.1” .

5 References

[Coad, 1992] P. Coad, Object-Oriented Patterns, 1992, Communications of the ACM,
September 1992, pp. 152-159.

[Madsen et al. 1993] O. L. Madsen, B. Møller-Pedersen and K. Nygaard. Object-
Oriented Programming in the BETA Programming language. Addison-Wesley,
1993.

[Olsson et al. 1998] J. Olsson, K. H. Nielsen, K. Østerbye, A. R. Lassen. Objektori-
enteret Analyse og Design af udvalgte dele af STADS. Technical report COT/4-03.
1998. Centre for IT-research, Aarhus University, Ny Munkegade, Bygn. 540, 8000
Århus C, Denmark. (In Danish).

[Rumbaugh, 1987] J. Rumbaugh. Relations as Semantic Constructs in an Object Ori-
ented Language, Proceedings of OOPSLA’87. Pages 466-481.

[Shan et al, 1989] A. V. Shan, J. Rumbaugh, J. H. Hamel, and R. A. Borsari. DSM:
An Object-Relationship Modelling Language. Proceedings of OOPSLA’89. Pages
191-202.

[Rational, 1998] UML resource center, http://www.rational.com/uml/.

[Østerbye et al, 1998] K. Østerbye, A. R. Lassen, J. Olsson. Object Relational Model-
ling. Technical report, COT/4-04, 1998. Centre for IT-research, Aarhus University,
Ny Munkegade, Bygn. 540, 8000 Århus C, Denmark.

