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1 Introduction

Multivariate modelling is a rapidly growing field in statistics. In particular, the in-
terest for and use of copulae has positively boomed since the late 1990’s. That has
entailed the development of a number of hierarchical, copula-based structures,
among those the pair-copula construction (PCC) proposed by Joe (1996). This
structure has later been explored and considered by Bedford and Cooke (2001,
2002), Kurowicka and Cooke (2006) and Aas et al. (2009).

PCCs are treelike constructions, having pair-copulae as building-blocks. Delight-
fully simple as these structures are, they no doubt owe their popularity to high
flexibility and the ability to model a wide scope of dependencies (Hobæk Haff
et al., 2010; Joe et al., 2010). Accordingly, several estimators for PCC parameters
have been proposed, e.g. Aas et al. (2009); Czado and Min (2010); Joe and Xu
(1996); Kolbjørnsen and Stien (2008) and more recently, Hobæk Haff (2010). The
aim of this work is to compare alternative estimation procedures. A PCC is in fact
a multivariate copula. All standard copula parameter estimators are therefore ap-
plicable also to PCCs. We are mainly interested in estimation procedures that are
less model specific than method of moments type estimators, typically inversion
of Kendall’s τ coefficients (Clayton, 1978; Genest, 1987; Genest and Rivest, 1993;
Oakes, 1982).

Among the more general approaches, the most relevant are semiparametric (SP)
estimation, inference function for margins estimation and maximum likelihood,
of which the latter two depend on the specified margins. Our focus is on the de-
pendence parameters. Moreover, the effect of margins on the estimation of cop-
ula parameters has already been extensively studied (Joe, 2005; Kim et al., 2007).
Hence, out of the above three, we will only consider the semiparametric estima-
tor, that will serve as a benchmark. Along with the contending stepwise semi-
parametric (SSP) estimator, it is one of the most commonly used estimators for
PCCs.

As one would expect, the malleability of pair-copula constructions does not come
without a price. Even low dimensional structures are rather extensive in param-
eters, and the number grows quickly with the number of variables. SP estima-
tion consists in estimating all parameters simultaneously, which generally re-
quires numerical optimisation. Hence, it is very likely that it will be numerically
challenging and time consuming with increasing dimension. The SSP estimator,
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which is designed for PCCs, performs the estimation in several steps. That in-
creases the speed considerably, but reduces its asymptotic efficiency.

There exist expressions for the asymptotic covariance matrices of these estimators
(see for instance Genest et al. (1995); Hobæk Haff (2010)). However, they involve
multiple integrals, which in practice are incalculable. Therefore, we base the com-
parison on an extensive simulation study.

The paper is organised as follows. Section 2 presents the model, i.e. PCCs, whereas
the two estimators are introduced in Section 3. The results of the simulation study
are exhibited in Section 4. Finally, we summarise and discuss the results in Section
5.
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2 Model

Consider a d-variate stochastic vector X = (X1, . . . , Xd)
T from an absolutely

continuous distribution F1...d with strictly increasing margins F1, . . . , Fd. Using
Sklar’s theorem (Sklar, 1959), as well as the chain rule, the probability density
function (pdf) ofX may be expressed as

f1...d(x1, . . . , xd) =
d∏
l=1

fl(xl) · c1...d(F1(x1), . . . , Fd(xd)), (2.1)

where fl, l = 1, . . . , d, are the corresponding marginal pdfs and c1...d the copula
density. Likewise, it can be factorised as

f1...d(x1, . . . , xd) = f1(x1)f2|1(x2|x1) . . . fd|1...d−1(xd|x1, . . . , xd−1). (2.2)

The related pair-copula construction (PCC) results from expressing the factors on
the right hand side of (2.2) in terms of pair-copula densities and marginal pdfs,
through the repeated use of (2.1). Applying (2.1) in two dimensions, the second
factor f2|1(x2|x1) is given by

f2|1(x2|x1) = f2(x2)c12(F1(x1), F2(x2)).

Correspondingly,

f3|1,2(x3|x1, x2) = f3|2(x3|x2)c13|2(F1|2(x1|x2), F3|2(x3|x2))

= f3(x3)c23(F2(x2), F3(x3))c13|2(F1|2(x1|x2), F3|2(x3|x2)),

where c13|2 is the copula density for the distribution of the pair (X1, X3) condi-
tioning on X2. As one continues with the remaining factors of (2.2), one finally
obtains a product of marginal pdfs and pair-copula densities, i.e. a PCC.

All components of the structure, both marginal and pair-copula densities, can be
chosen completely freely, i.e. from different families. The resulting distribution is
guaranteed to be valid. Despite its simple building blocks, the pair-copula con-
struction is therefore an exceptionally flexible model, able to portray a wide range
of dependence structures (Joe et al., 2010).

There are numerous ways of factorising f1...d and of substituting the factors with
pair-copula densities, each resulting in a valid PCC. A large subset of these be-
longs to the family of regular vines, introduced by Bedford and Cooke (2001,
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2002), which again comprises canonical (C) and drawable (D) vines. Five dimen-
sional examples of the latter two are shown in Figure 2.1. For a more thorough
introduction to vines and pair-copula constructions, see for instance Aas et al.
(2009).
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Figure 2.1. Five-dimensional D-vine (to the left) and C-vine (to the right).

For simplicity, we will hereafter restrict our attention to D-vines. The correspond-
ing pdf is given by

f1..d(x1, . . . ,xd) =

d∏
l=1

fl(xl)
d−1∏
j=1

d−j∏
i=1

ci,i+j|vij

(
Fi|vij

(xi|xvij
), Fi+j|vij

(xi+j|xvij
)
)
,

(2.3)

where vij denotes the index set {i + 1, . . . , i + j − 1}. In the double product over
the pair-copula densities, j runs over the levels of the structure, for instance
T1 to T5 in Figure 2.1, and i over the copulae at each level. Note that except-
ing the ground level, the arguments of the pair-copulae are conditional distribu-
tions, whose number of conditioning variables increases by one with each level.
For inference to be possible in practice, one has to make the assumption that
these so-called conditional pair-copulae depend on the conditioning variables
only through their arguments, thus obtaining a simplified PCC. Take for example
c13|2(F1|2(x1|x2), F3|2(x3|x2)), which is given by

c13|2(F1|2(x1|x2), F3|2(x3|x2)) =
f13|2(x1, x3|x2)

f1|2(x1|x2)f3|2(x3|x2)
.
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If C13|2 is a Gaussian copula with parameter ρ, one must assume that ρ is constant
over all values of x1. This is generally not the case, but Hobæk Haff et al. (2010)
showed that this is not a very restricting assumption, and that a general PCC may
be very well approximated by a simplified one.

Assume now that we have n independent observations x1, . . . ,xn from the model
(2.3), and that we wish to estimate the corresponding parameters. The log-likelihood
function is given by

l(α,θ;x1, . . . ,xn) =
n∑
k=1

d∑
l=1

log fl(xlk;α)+

n∑
k=1

d−1∑
j=1

d−j∑
i=1

log ci,i+j|vij

(
Fi|vij

(xik|xvij ,k;α,θ),

Fi+j|vij
(xi+j,k|xvij ,k;α,θ);θ

)
,

(2.4)

where α and θ are the marginal and dependence parameters, respectively. The
computation of (2.4) requires calculation of the conditional distributions that are
arguments of the pair-copulae. Using the simplifying assumption, one may ex-
press them as functions of two other conditionals with one conditioning variable
less. As shown by Joe (1997)

Fi|v∪j(xi|xv∪j) =
∂Cij|v(ui, uj)

∂uj

∣∣∣∣
ui=Fi|v(xi|xv),uj=Fj|v(xj |xv)

, (2.5)

where i, j are distinct indices, and v is a non-empty set of indices, that contains
neither i nor j. Likewise, Fi|v and Fj|v can be expressed as bivariate functions
of conditional distributions with a conditioning set reduced by one, and so on.
Hence, all the necessary conditional distributions in (2.4) are nested functions of
the margins F1, . . . , Fd. The log-likelihood function can therefore be written as

l(α,θ;x1, . . . ,xn) = lM(α;x1, . . . ,xn) + lC(θ;u1(α), . . . ,un(α)), (2.6)

where uk(α) = (F1(x1k;α), . . . , Fd(xdk;α)).
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3 Estimators

The estimators we wish to compare are two of the most commonly used ones
for pair-copula constructions, namely the semiparametric and the stepwise semi-
parametric estimators.

3.1 The semiparametric estimator
The semiparametric (SP) estimator was introduced by Genest et al. (1995), and for
censored data by Shih and Louis (1995). Later, it has been generalised by Tsuka-
hara (2005). Dependence on the chosen margins is removed by replacing the para-
metric cdfs Fi(·,α) in (2.6) with non-parametric ones Fin(·). If one is interested in
estimating measures, such as Kendall’s τ , Spearman’s ρ or tail dependence coeffi-
cients, that are functions only of the dependence parameters, the SP estimator is a
very natural choice. Not only is it more robust to misspecified margins, it avoids
specifying margins altogether.

Define the pseudo observations

uikn = Fin(xik) =
1

n+ 1

n∑
j=1

I(xik ≤ xij), i = 1, . . . , d, k = 1, . . . , n,

where I(·) is the indicator function, and the pseudo log-likelihood function as

lC,P (θ;x1, . . . ,xn) = lC(θ;u1n, . . . ,unn), (3.1)

with lC as defined in (2.6) and ukn = (u1kn, . . . , udkn). This is the sum over all log-
copula densities, plugging in the pseudo observations. The SP estimator is now
simply the maximiser of lC,P with respect to θ, i.e.

θ̂
SP

= argmax
θ
{lC,P (θ;x1, . . . ,xn)}.

This estimation procedure is thoroughly described for D-vines in Aas et al. (2009),
whereas the large sample properties of the estimator for PCCs are described for
instance in Hobæk Haff (2010).

Although the pseudo log-likelihood function can be expressed directly as a func-
tion of the empirical margins, it is in practice computed iteratively, level by level.
At a given level, the necessary pair-copula arguments are computed by apply-
ing the functions (2.5) to the arguments from the preceding level. Thus, they are
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successive transformations of the pseudo observations. More specifically, the ar-
guments of level l are the result of l − 1 such transformations.

Previous studies have shown that the SP estimator performs well for copulae
compared to alternative estimators, such as maximum likelihood, inference func-
tion for margins and the minimum distance estimator (Kim et al., 2007; Tsuka-
hara, 2005). However, these studies have focussed on bivariate examples. As
mentioned earlier, the number of parameters of a pair-copula construction grows
quickly with the number of variables. For instance, a five dimensional D-vine
consisting of t-copulae has 20 parameters (not counting the margins). With an ad-
ditional dimension, the number of parameters increases to 30. Thus, for a medium
to high number of variables, the optimisation of the pseudo log-likelihood func-
tion becomes numerically demanding and time consuming.

3.2 The stepwise semiparametric estimator
By performing the estimation in several steps, one can speed up the procedure
considerably. This is the main idea of the stepwise semiparametric (SSP) estima-
tor, which is designed for PCCs. It was suggested in Aas et al. (2009), and more
formally introduced by Hobæk Haff (2010). The latter also explores its large sam-
ple characteristics.

The SSP estimator is very similar to the SP one. The difference is that the PCC
parameters are estimated level by level, plugging in parameters from previous
levels at each step. Let

lC,l =
n∑
k=1

l∑
j=1

d−j∑
i=1

log ci,i+j|vij
.

This is the sum of all log-copula densities up to and including level l, over all
observations. Note that lC,d−1 = lC for the top level l = d−1. Now, let θl denote the
parameters of all pair-copulae at level l. Then, lC,l is a function of the parameters
θ1, . . . ,θl from level 1 up to l, but not of θl+1, . . . ,θd−1 from the following levels.
Analogously to (3.1), define the l-level pseudo log-likelihood function lC,P,l as

lC,P,l(θ1, . . . ,θl;x1, . . . ,xn) = lC,l(θ1, . . . ,θl;u1n, . . . ,unn), (3.2)

i.e. by substituting the parametric margins for the empirical ones. At the top level,
(3.2) is simply the pseudo log-likelihood function from (3.1), when seen as a func-
tion of θ. Nonetheless, the SSP top level estimates are different from the SP ones.
The estimation procedure is as follows:

• maximise lC,P,1(θ1;x1, . . . ,xn) over θ1 to obtain θ̂
SSP

1 .

• for level l = 2, . . . , d− 1
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maximise lC,P,l(θ̂
SSP

1 , . . . , θ̂
SSP

l−1 ,θl;x1, . . . ,xn) over θl
to obtain θ̂

SSP

l .

For a detailed estimation algorithm and description of how to compute lC,P,l,
l = 1, . . . , d − 1, see Hobæk Haff (2010). Note that when none of the copulae
constituting the structure share parameters, as in the models we use for the com-
parison of estimators (Section 4), the optimisation is done for each pair-copula,
individually. Also, the necessary pair-copula arguments at a given level are com-
puted by iterative transformations of the pseudo observations, just as for the SP
estimator (see Section 3.1). The difference is that the parameters plugged into the
transformations are final estimates, while they are part of the simultaneous opti-
misation in SP estimation.

The SSP estimator does not take into account information the next levels might
have on the parameters. Obviously, it is asymptotically less efficient than the SP
estimator. Nonetheless, it is sensible to use SSP in any case, to get start values for
the SP estimation. The question is, how much precision does one really gain by a
subsequent SP estimation? Is it worth the extra time spent?
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4 Comparison

We want to study how the SP and SSP estimators perform for pair-copula con-
structions, both in terms of computing time and finite sample bias and variance.
As earlier mentioned, we concentrate on the subgroup of D-vines. More specifi-
cally, we base all experiments, but one, on five dimensional D-vines (as depicted
in Figure 2.1), varying the copula types. As explained earlier, the effect of the
choice of margins on the dependence parameter estimates has already been ex-
tensively studied. Therefore we let the margins be uniform U [0, 1] in all the ex-
periments.

The object of the study is to explore how the estimators’ performance is affected
by the type and degree of dependence, the number of observations n and the
correctness of the model. We also include one large dimensional example.

4.1 Type of dependence
By type, we mean presence, or not, of tail dependence and dependence asymme-
try. We account for this by considering three copula families, namely

• the Gaussian (no tail dependence),

• the Student’s t (tail dependence)

• and the Clayton copula (lower, but not upper tail dependence),

combined in four different models. The first three of these consist of only one of
the copula types, whereas the last is a mix of all three types (see Figure 4.1).

Moreover, we have varied the degree of dependence by means of different pa-
rameter values. More specifically, we let the correlation parameter ρ of the Gaus-
sian and Student’s t copulae take the values {0.2, 0.5, 0.8}, corresponding to low,
medium and high dependence, respectively. To facilitate comparison, we chose
to consider the values {0.294, 1, 2.88} for the parameter α of the Clayton copulae,
that give the same Kendall’s τ coefficients as the ρ values above. Furthermore, we
fixed the number of degrees of freedom of the Student’s t copulae to ν = 6, which
ensures a rather strong tail dependence.

In all experiments, we have generated n = 5000 independent samples of the
model in question, which is a relatively large sample size compared to most appli-
cations, estimated the parameters using SP and SSP, and repeated this N = 1000
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Figure 4.1. Models used for the comparison. The first three, (a), (b), (c), consist of only
one of the three types of copulae, Gaussian (G), Student’s t (T) and Clayton (C), respec-
tively, while the last, (d), is a mix of the three.
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times. The measures we have compared are

• the finite sample bias Bias(θ̂i, θi) = 1
N

∑N
k=1(θ̂ik − θi),

• the mean squared error MSE(θ̂i, θi) = 1
N

∑N
k=1(θ̂ik − θi)2

• and the CPU time,

the former two being computed for each parameter θi, i = 1, . . . , |θ|. All compu-
tations were programmed in R, version 2.11.1, and run on a computer with 72
GB RAM, 8 CPU kernels and hyperthreading, that allows for 16 simultaneous
threads.

The results are summarised in Table 4.1 for Models 4.1a, 4.1b and 4.1c, and in Ta-
ble 4.2 for Model 4.1d. In the former table, the results are averaged over each of
the four levels of the structure, while they are presented per copula in the latter.
Starting with the models consisting of copulae of the same type (Table 4.1), the
bias and MSE of two estimators decrease with the degree of dependence. The rea-
son is probably that the log-likelihood function steepens at stronger dependence.
Further, the two measures appear to be rather constant over the four levels at
low and medium dependence, while they increase with the level at high depen-
dence. As explained in Section 3, the arguments of pair-copulae above the ground
level are obtained though iterative transformations of the original pseudo obser-
vations. These transformations are functions of copulae at lower levels, and there-
fore depend on their parameters. The increasing estimator variance with level
number may indicate a stronger sensitivity to repeated transformations when
the degree of dependence is high. Note that the SP and SSP estimates for the
Gaussian PCC are virtually the same. This is as anticipated, since both estimators
are semiparametrically efficient for that particular model (Hobæk Haff, 2010). Of
course, the SSP estimator is asymptotically less efficient than the SP estimator
for the Student’s t and Clayton vines. This is reflected in higher bias and MSE.
The difference is however mostly moderate to small, which indicates that the SSP
estimator performs well relative to SP. Furthermore, the computing time of the
former is much lower. The factor ranges from order 10−1 to 10−3 in favour of SSP.
As one would expect, the most marked time gain is obtained for the Student’s t
vine, whose parameter vector is twice the size of the other two models’.

Figures 4.2 and 4.3 show bias and MSE ratios for the parameter estimates of
Model 4.1b and 4.1c as functions of the values of ρ and α, respectively, averaged
over each of the four levels of the structure. These plots strengthen the impres-
sions from Table 4.1. For the Student’s t vines (Model 4.1b), the bias and MSE
ratios appear to increase with the degree of dependence. Moreover, the increase
is largest at the top levels. This means that the SP estimator performs better rel-
ative to the SSP one with growing dependence, especially for the higher level

Comparing estimators for pair-copula constructions 14



parameters. The reason may be the earlier suggested stronger sensitivity to re-
peated transformations, which are likely to affect the SSP estimator more, due to
its sequential nature. For the Clayton vines (Model 4.1c) on the other hand, the
bias and MSE ratios seem to grow with the dependence up to a certain point,
before they start decreasing again. There is no apparent reason for this different
behaviour. It could relate to characteristics of the Clayton copula, but may also be
artifacts.

For the mixed vine of Model 4.1d (Table 4.2), the results are rather similar. The
overall degree of dependence is medium. As expected, the bias and MSE are
rather constant over the different levels for copulae of the same type. Again the
SSP estimator performs quite well compared to the SP estimator in terms of effi-
ciency, while its CPU time is drastically lower.

4.2 Number of observations n
The experiments in Section 4.1 were based on a large number of observations. To
see how the two estimators perform on samples of smaller size, we repeated the
simulations from Models 4.1a, 4.1b and 4.1c, reducing n, first to 500, and then to
50. The results from the simulations with medium dependence are summarised
in Table 4.3. As the sample size decreases, we expect the estimators’ variance
to increase and finally explode. For n = 500, the finite sample bias and MSE
of the correlations ρ and the parameters α are actually not discouragingly high.
Estimation of the degrees of freedom parameters ν apparently requires a larger
sample size. As n decreases to 50, none of the parameters are well estimated.
Once more, the efficiency of the SSP estimator is rather good compared to the SP
estimator, except for ν. Actually, the SSP estimator appears to suffer less under
reduced sample size than its competitor. That could relate to the fact that the
numerical optimisations are performed for each copula individually, as opposed
to all at once. Also, the computing time of the former is lower.

4.3 Robustness
Since they are based on the empirical margins, both the SP and the SSP estimators
are robust to deviations from the chosen marginal distributions. However, their
properties do rely on the correctness of the specified dependence structure.

As described in Aas et al. (2009), selecting the pair-copulae constituting the PCC
for a given dataset is a levelwise procedure. At the ground level, it consists in
a set of bivariate copula selection problems, that may be handled for instance
with copula goodness-of-fit tests (Berg, 2009; Genest et al., 2009). However, as
one proceeds into the structure, one must condition on the pair-copulae chosen
at preceding levels to be able to compute the necessary conditional distributions,
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SP
Degree of dependence Low Medium High
Model Par. Level Bias MSE Bias MSE Bias MSE

Gaussian ρ

1 1.09 · 10−2 1.85 · 10−4 8.49 · 10−3 1.12 · 10−4 3.96 · 10−3 2.44 · 10−5

2 1.09 · 10−2 1.87 · 10−4 8.31 · 10−3 1.08 · 10−4 4.16 · 10−3 2.75 · 10−5

3 1.09 · 10−2 1.86 · 10−4 8.82 · 10−3 1.20 · 10−4 4.26 · 10−3 2.88 · 10−5

4 1.09 · 10−2 1.85 · 10−4 8.41 · 10−3 1.13 · 10−4 9.48 · 10−3 1.17 · 10−4

CPU 1.79 · 10−2 5.33 · 10−2 4.05 · 10−1

Student’s t

ρ

1 1.18 · 10−2 2.18 · 10−4 9.31 · 10−3 1.35 · 10−4 4.64 · 10−3 3.42 · 10−5

2 1.19 · 10−2 2.19 · 10−4 9.30 · 10−3 1.36 · 10−4 4.71 · 10−3 3.43 · 10−5

3 1.19 · 10−2 2.18 · 10−4 9.26 · 10−3 1.35 · 10−4 4.74 · 10−3 3.57 · 10−5

4 1.20 · 10−2 2.27 · 10−4 9.75 · 10−3 1.49 · 10−4 1.09 · 10−2 1.53 · 10−4

ν

1 4.88 · 10−1 3.79 · 10−1 3.96 · 10−1 2.54 · 10−1 3.86 · 10−1 2.41 · 10−1

2 4.81 · 10−1 3.76 · 10−1 4.29 · 10−1 3.07 · 10−1 3.10 · 10−1 1.56 · 10−1

3 4.96 · 10−1 4.04 · 10−1 4.58 · 10−1 3.51 · 10−1 3.08 · 10−1 1.52 · 10−1

4 5.09 · 10−1 4.28 · 10−1 5.17 · 10−1 4.50 · 10−1 3.01 · 10−1 1.45 · 10−1

CPU 1.66 1.97 1.08

Clayton α

1 1.66 · 10−2 4.28 · 10−4 2.65 · 10−2 1.09 · 10−3 5.91 · 10−2 5.41 · 10−3

2 1.62 · 10−2 4.21 · 10−4 2.37 · 10−2 8.94 · 10−4 5.68 · 10−2 4.85 · 10−3

3 1.67 · 10−2 4.31 · 10−4 2.63 · 10−2 1.10 · 10−3 1.24 · 10−1 1.95 · 10−2

4 1.67 · 10−2 4.46 · 10−4 2.78 · 10−2 1.24 · 10−3 6.12 · 10−1 3.83 · 10−1

CPU 1.88 · 10−2 6.49 · 10−2 6.07 · 10−2

SSP
Degree of dependence Low Medium High
Model Par. Level Bias MSE Bias MSE Bias MSE

Gaussian ρ

1 1.09 · 10−2 1.84 · 10−4 8.47 · 10−3 1.12 · 10−4 3.98 · 10−3 2.45 · 10−5

2 1.09 · 10−2 1.87 · 10−4 8.31 · 10−3 1.08 · 10−4 4.16 · 10−3 2.75 · 10−5

3 1.09 · 10−2 1.86 · 10−4 8.82 · 10−3 1.20 · 10−4 4.27 · 10−3 2.90 · 10−5

4 1.09 · 10−2 1.85 · 10−4 8.41 · 10−3 1.13 · 10−4 9.49 · 10−3 1.17 · 10−4

CPU 1.63 · 10−3 2.98 · 10−3 1.67 · 10−2

Student’s t

ρ

1 1.24 · 10−2 2.40 · 10−4 9.67 · 10−3 1.47 · 10−4 4.76 · 10−3 3.57 · 10−5

2 1.22 · 10−2 2.32 · 10−4 9.62 · 10−3 1.44 · 10−4 4.79 · 10−3 3.54 · 10−5

3 1.20 · 10−2 2.22 · 10−4 9.32 · 10−3 1.38 · 10−4 5.00 · 10−3 3.99 · 10−5

4 1.20 · 10−2 2.27 · 10−4 9.76 · 10−3 1.50 · 10−4 1.33 · 10−2 2.17 · 10−4

ν

1 5.13 · 10−1 4.26 · 10−1 5.13 · 10−1 4.22 · 10−1 5.31 · 10−1 4.70 · 10−1

2 5.06 · 10−1 4.15 · 10−1 5.03 · 10−1 4.26 · 10−1 5.15 · 10−1 4.38 · 10−1

3 5.10 · 10−1 4.30 · 10−1 4.94 · 10−1 4.08 · 10−1 5.06 · 10−1 4.38 · 10−1

4 5.11 · 10−1 4.35 · 10−1 5.18 · 10−1 4.47 · 10−1 5.23 · 10−1 4.68 · 10−1

CPU 1.22 · 10−2 1.41 · 10−2 6.38 · 10−3

Clayton α

1 1.72 · 10−2 4.57 · 10−4 2.90 · 10−2 1.32 · 10−3 5.76 · 10−2 5.29 · 10−3

2 1.66 · 10−2 4.40 · 10−4 2.77 · 10−2 1.21 · 10−3 5.72 · 10−2 5.06 · 10−3

3 1.70 · 10−2 4.47 · 10−4 2.83 · 10−2 1.27 · 10−3 1.24 · 10−1 1.93 · 10−2

4 1.67 · 10−2 4.48 · 10−4 2.81 · 10−2 1.29 · 10−3 6.96 · 10−1 4.93 · 10−1

CPU 1.74 · 10−3 1.35 · 10−3 3.90 · 10−4

Table 4.1. Results from simulations of n = 5000 observations from Model 4.1a, 4.1b and
4.1c (see Figure 4.1), i.e. consisting of only one copula type, with low (ρ = 0.2, α = 0.294),
medium (ρ = 0.5, α = 1) and high (ρ = 0.8, α = 2.88) dependence.
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(c) Model 2: Bias ratio of ν̂
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(d) Model 2: MSE ratio of ν̂

Figure 4.2. Bias and MSE ratios (to the left and right, respectively) of the parameter
estimates ρ̂ (top row) and ν̂ (bottom row) of Model 4.1b as a function of ρ, averaged over
each of the four levels.
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SP SSP
Copula Par. Bias MSE Bias MSE

12 ρ 7.66 · 10−3 9.04 · 10−5 8.63 · 10−3 1.17 · 10−4

23
ρ 8.08 · 10−3 1.01 · 10−4 9.42 · 10−3 1.35 · 10−4

ν 2.94 · 10−1 1.34 · 10−1 5.23 · 10−1 4.43 · 10−1

34 α 2.55 · 10−2 1.04 · 10−3 2.79 · 10−2 1.26 · 10−3

45 ρ 7.18 · 10−3 8.04 · 10−5 8.27 · 10−3 1.07 · 10−4

13|2
ρ 9.13 · 10−3 1.28 · 10−4 9.60 · 10−3 1.45 · 10−4

ν 4.15 · 10−1 2.71 · 10−1 4.84 · 10−1 3.80 · 10−1

24|3 α 2.81 · 10−2 1.25 · 10−3 2.87 · 10−2 1.31 · 10−3

35|4 ρ 7.84 · 10−3 9.68 · 10−5 8.82 · 10−3 1.21 · 10−4

14|23
ρ 9.80 · 10−3 1.53 · 10−4 1.01 · 10−2 1.62 · 10−4

ν 4.86 · 10−1 3.80 · 10−1 5.14 · 10−1 4.23 · 10−1

25|34 α 2.76 · 10−2 1.19 · 10−3 2.79 · 10−2 1.22 · 10−3

15|234 ρ 8.15 · 10−3 1.07 · 10−4 8.19 · 10−3 1.09 · 10−4

CPU 3.04 · 10−1 8.10 · 10−4

Table 4.2. Results from simulations of n = 5000 observations from Model 4.1d (see Figure
4.1), i.e. consisting of different copula types, with medium (ρ = 0.5, α = 1) dependence.
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Figure 4.3. Bias and MSE ratios (to the left and right, respectively) of the parameter
estimates α̂ for Model 4.1c as a function of α, averaged over each of the four levels.
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SP
Degree of dependence n=500 n=50
Model Par. Level Bias MSE Bias MSE

Gaussian ρ

1 2.73 · 10−2 1.15 · 10−3 9.09 · 10−2 1.25 · 10−2

2 2.71 · 10−2 1.16 · 10−3 9.10 · 10−2 1.30 · 10−2

3 2.69 · 10−2 1.15 · 10−3 9.24 · 10−2 1.35 · 10−2

4 2.68 · 10−2 1.16 · 10−3 9.75 · 10−2 1.55 · 10−2

CPU 2.10 · 10−4 1.70 · 10−4

Student’s t

ρ

1 3.00 · 10−2 1.43 · 10−3 9.90 · 10−2 1.50 · 10−2

2 3.04 · 10−2 1.44 · 10−3 9.82 · 10−2 1.52 · 10−2

3 2.99 · 10−2 1.42 · 10−3 1.04 · 10−1 1.69 · 10−2

4 3.13 · 10−2 1.53 · 10−3 1.05 · 10−1 1.78 · 10−2

ν

1 1.48 4.91 20.3 2030

2 1.56 6.03 24.6 2430

3 1.79 8.57 27.9 2930

4 2.10 12.0 30.0 3020

CPU 9.44 · 10−3 1.35 · 10−3

Clayton α

1 8.21 · 10−2 1.06 · 10−2 2.93 · 10−1 1.42 · 10−1

2 7.97 · 10−2 1.00 · 10−2 2.75 · 10−1 1.25 · 10−1

3 8.46 · 10−2 1.09 · 10−2 2.88 · 10−1 1.33 · 10−1

4 9.41 · 10−2 1.31 · 10−2 3.41 · 10−1 1.81 · 10−1

CPU 4.50 · 10−4 1.00 · 10−5

SSP
Degree of dependence n=500 n=50
Model Par. Level Bias MSE Bias MSE

Gaussian ρ

1 2.72 · 10−2 1.16 · 10−3 9.18 · 10−2 1.30 · 10−2

2 2.72 · 10−2 1.16 · 10−3 9.16 · 10−2 1.31 · 10−2

3 2.69 · 10−2 1.15 · 10−3 9.22 · 10−2 1.34 · 10−2

4 2.68 · 10−2 1.16 · 10−3 9.74 · 10−2 1.55 · 10−2

CPU 2.00 · 10−5 1.00 · 10−5

Student’s t

ρ

1 3.13 · 10−2 1.54 · 10−3 1.01 · 10−1 1.56 · 10−2

2 3.11 · 10−2 1.51 · 10−3 9.88 · 10−2 1.52 · 10−2

3 3.04 · 10−2 1.46 · 10−3 1.03 · 10−1 1.67 · 10−2

4 3.16 · 10−2 1.54 · 10−3 1.04 · 10−1 1.86 · 10−2

ν

1 2.60 142.00 89.0 24900

2 2.35 82.2 97.0 27100

3 2.98 203.00 111.00 31300

4 2.62 52.7 127.00 35900

CPU 3.00 · 10−5 < 1.00 · 10−18

Clayton α

1 9.01 · 10−2 1.28 · 10−2 3.23 · 10−1 1.74 · 10−1

2 9.03 · 10−2 1.27 · 10−2 2.83 · 10−1 1.30 · 10−1

3 8.97 · 10−2 1.24 · 10−2 2.88 · 10−1 1.27 · 10−1

4 1.01 · 10−1 1.52 · 10−2 3.55 · 10−1 1.79 · 10−1

CPU 3.00 · 10−5 1.00 · 10−5

Table 4.3. Results from simulations of n = 500 and n = 50 observations from Model
4.1a, 4.1b and 4.1c (see Figure 4.1), i.e. consisting of only one copula type, with medium
(ρ = 0.5, α = 1) dependence.
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that are pair-copula arguments (as explained in Section 3). One would therefore
expect the difficulty of finding adequate copulae to increase with the level num-
ber.

We wish to explore how the two estimators perform when the specified model
deviates from the true model. In order to do that, we have perturbed the original
models (from 4.1). More specifically, we have mixed the copulae of each of the
two models 4.1b and 4.1c with the copulae of Model 4.1a, using the same degree
of dependence and a fixed mixing probability p. For instance, the pair (u1, u2) of
observations is drawn from a Student’s t-copula (Clayton copula) with probabil-
ity 1 − p and from a Gaussian copula with probability p. In all experiments, we
used n = 5000 and medium dependence, letting the mixing probability take each
of the values {0.05, 0.1, 0.2}. The results are summarised by level in Table 4.4.

Both the SP and the SSP estimators of the correlation parameters of Model 4.1b
perform almost as well as in the non-perturbed case (Table 4.1). The reason for
this is probably that the correlations of the model we are mixing with have the
same values. The corresponding degrees of freedom estimates are however de-
creasingly accurate as the mixing probability grows. That is also the case for the
parameters of the Clayton copulae of Model 4.1c, as one would expect. Moreover,
the computing times of both estimators grow with the mixing probability, due to
the need for extra iterations before convergence. Finally, the difference between
the performance of the SP and the SSP estimators is reduced with an increasing
degree of perturbation, maybe because the latter uses information only from pre-
ceding levels, and not from the following. Hence, when the model assumptions
are not completely accurate, the gain from using the SP estimator seems to be
smaller.

4.4 Large dimension d
As mentioned earlier, the SP estimator is computationally too demanding and
time consuming for high dimensional problems. Our belief is that the SSP might
be a good alternative in such cases. We have therefore tried it on a 50 dimensional
D-vine of Student’s copulae with ρ = 0.2, corresponding to low dependence. This
model has as many as 2450 parameters. Optimising over so many parameters
simultaneously would not only be highly time consuming, but also numerically
dubious. We have therefore only considered the SSP estimator for this model.
Moreover, we let n = 5000 and N = 1000 as in the experiments of Section 4.1.

Figure 4.4 displays the bias and MSE of the parameter estimates ρ̂ and ν̂, averaged
over each level. These are rather low up to level 20 for ρ̂ and up to level 30 for
ν̂, after which they explode. This is due to numerical problems with the repeated
transformations of the original data. After a certain level, the computed estimates
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SP
Degree of dependence p = 0.05 p = 0.1 p = 0.2

Model Par. Level Bias MSE Bias MSE Bias MSE

Student’s t

ρ

1 9.17 · 10−3 1.32 · 10−4 9.37 · 10−3 1.36 · 10−4 9.24 · 10−3 1.34 · 10−4

2 9.45 · 10−3 1.40 · 10−4 9.43 · 10−3 1.40 · 10−4 9.39 · 10−3 1.36 · 10−4

3 9.28 · 10−3 1.35 · 10−4 9.49 · 10−3 1.43 · 10−4 9.57 · 10−3 1.43 · 10−4

4 1.03 · 10−2 1.59 · 10−4 9.88 · 10−3 1.52 · 10−4 9.87 · 10−3 1.55 · 10−4

ν

1 4.94 · 10−1 4.10 · 10−1 7.73 · 10−1 9.20 · 10−1 1.67 3.47

2 5.25 · 10−1 4.77 · 10−1 7.48 · 10−1 9.16 · 10−1 1.49 2.92

3 5.75 · 10−1 5.76 · 10−1 7.68 · 10−1 9.99 · 10−1 1.43 2.79

4 5.95 · 10−1 6.22 · 10−1 8.05 · 10−1 1.11 1.45 2.97

CPU 1.84 · 10−1 2.22 · 10−1 8.03 · 10−1

Clayton α

1 4.90 · 10−2 3.29 · 10−3 8.83 · 10−2 8.95 · 10−3 1.65 · 10−1 2.86 · 10−2

2 3.82 · 10−2 2.11 · 10−3 6.50 · 10−2 5.19 · 10−3 1.21 · 10−1 1.57 · 10−2

3 4.34 · 10−2 2.67 · 10−3 7.43 · 10−2 6.67 · 10−3 1.34 · 10−1 1.92 · 10−2

4 6.67 · 10−2 5.66 · 10−3 1.15 · 10−1 1.47 · 10−2 1.95 · 10−1 3.96 · 10−2

CPU 5.92 · 10−3 9.79 · 10−3 3.30 · 10−2

SSP
Degree of dependence p = 0.05 p = 0.1 p = 0.2

Model Par. Level Bias MSE Bias MSE Bias MSE

Student’s t

ρ

1 9.55 · 10−3 1.42 · 10−4 9.63 · 10−3 1.44 · 10−4 9.47 · 10−3 1.41 · 10−4

2 9.72 · 10−3 1.48 · 10−4 9.73 · 10−3 1.48 · 10−4 9.62 · 10−3 1.43 · 10−4

3 9.38 · 10−3 1.38 · 10−4 9.61 · 10−3 1.46 · 10−4 9.62 · 10−3 1.44 · 10−4

4 1.03 · 10−2 1.61 · 10−4 9.93 · 10−3 1.53 · 10−4 9.89 · 10−3 1.56 · 10−4

ν

1 5.87 · 10−1 5.89 · 10−1 7.75 · 10−1 1.02 1.50 3.24

2 5.91 · 10−1 6.21 · 10−1 7.92 · 10−1 1.07 1.47 3.02

3 6.19 · 10−1 6.72 · 10−1 8.30 · 10−1 1.14 1.48 3.05

4 6.09 · 10−1 6.34 · 10−1 8.34 · 10−1 1.15 1.50 3.10

CPU 1.22 · 10−3 1.60 · 10−3 5.71 · 10−3

Clayton α

1 3.17 · 10−2 1.58 · 10−3 4.20 · 10−2 2.58 · 10−3 7.57 · 10−2 6.80 · 10−3

2 3.83 · 10−2 2.17 · 10−3 6.19 · 10−2 4.89 · 10−3 1.16 · 10−1 1.45 · 10−2

3 5.23 · 10−2 3.71 · 10−3 9.26 · 10−2 9.80 · 10−3 1.67 · 10−1 2.90 · 10−2

4 8.20 · 10−2 8.06 · 10−3 1.45 · 10−1 2.25 · 10−2 2.52 · 10−1 6.51 · 10−2

CPU 3.57 · 10−4 4.20 · 10−4 1.13 · 10−3

Table 4.4. Results from simulations of n = 5000 observations from Model 4.1b and 4.1c
mixed with Model 4.1a (see Figure 4.1), also with medium dependence, for different mix-
ing probabilities p.
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in practice tend towards independence, i.e. partial correlations of approximately
0 and a high number of degrees of freedom. The subsequent decrease (and in-
crease for ρ̂) of the bias and MSE seems unintuitive. The correlation estimates ρ̂
appear to fluctuate around 0, whereas the estimates ν̂ are almost halved on aver-
age. Actually, there is not that much difference between a bivariate t-copula with
100 and 200 degrees of freedom. Hence, this may just be an artifact. Note that
what we are trying to estimate at these levels, is conditional dependence with a
very high number of conditioning variables. It is not that surprising that it is dif-
ficult to estimate such higher order dependencies. The question is of course, how
different is the estimated distribution from the true distribution?

In a pair-copula construction of dimension d, only d−1 of the pairwise dependen-
cies are modelled unconditionally. For instance, in this 50-dimensional D-vine,
the dependence between U1 and U40 is modelled through C1,40|2...39, i.e. condition-
ally on 38 variables, as well as conditionals in lower levels, involving a subset of
the 40 variables in question. In most applications, it is the unconditional depen-
dence, or at least lower order dependencies, one is interested in. As long as the
bottom levels are well estimated, one may hope that the imprecise estimates for
the top levels do not affect the lower order dependencies too much.

To study this, we have generated 3 × n = 5000 from one of the estimated Stu-
dent’s t-vines, and compared certain characteristics of these samples to those of
samples from the true distribution. More specifically, we have computed all (un-
conditional) pairwise empirical Kendall’s τ coefficients based on 50, 000 samples
from the true distribution, which should be rather close to the true coefficients,
as well as for the simulations from the estimated distribution. We have also cal-
culated the 90%, 95%, 97.5% and 99% quantiles of ui + uj , for all pairs (i, j). These
are displayed in Figure 4.5 and 4.6, respectively. The values are averaged over
the level the corresponding conditional dependence belongs to. For instance, the
dependence between U1 and U40 is modelled conditionally at level 39. The quan-
tiles and Kendall’s τ coefficients for this pair therefore contribute to the mean at
level 39 in the plots. As expected, the Kendall’s τ coefficients and quantiles corre-
sponding to the lower levels of the structure appear to be close to the true values.
However, they are fairly good also for the pairs modelled in the top levels, even
though the conditional dependence between these pairs has been highly under-
estimated. Hence, the parameter estimates for the upper levels do not seem to
have that much effect on the lower order dependencies. This is an argument for
truncating large structures after a certain level, letting the top level copulae be
independence copulae Brechmann et al. (2010).

Since the bias and MSE curves were rather different from what we had antici-
pated, we repeated the above experiments with a t-copula of dimension d = 50,
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all pairwise correlations set to 0.2 and ν = 6. That is actually a special case
of a D-vine with t-copulae. At a given level l, the correlation parameters are
the corresponding partial correlations, and the number of degrees of freedom
is ν + l − 1 = 5 + l. We simulated from this D-vine as described earlier, and
estimated its parameters using the SSP estimator. Since the correlation parame-
ters decrease with each level, whereas the degrees of freedom increase, it is more
natural to consider the relative bias and MSE in this case, i.e. Bias(θ̂i, θi)/θi and
MSE(θ̂i, θi)/θ

2
i . These are shown in Figure 4.7. We have also computed the av-

erage Kendall’s τ coefficients and quantiles per level, based on simulations from
estimated distributions, displayed in Figure 4.8 and 4.9, respectively. This is an
unnecessarily cumbersome way of estimating the parameters of a t-copula. The
purpose of this experiment was only to investigate whether either the simula-
tion or the estimation routines are flawed on an example for which we know the
true Kendall’s τ coefficients and quantiles. We note that the results are reassuring.
The relative bias and MSE, increased steadily with the level of the structure, as
one would expect. Moreover, all the pairwise Kendall’s τ coefficients fluctuated
around the true value of about 0.128, and likewise for the quantiles.
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Figure 4.4. Bias and MSE of the parameter estimates of the Student’s t-vine in 50 dimen-
sions, with low dependence (ρ = 0.2), averaged over each level.
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Figure 4.5. Empirical pairwise Kendall’s τ coefficients for 50, 000 samples from the
true distribution (connected line) and three samples generated from the estimated vine
(dashed and dotted lines), averaged over the level the corresponding modelled condi-
tional dependence belongs to.
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Figure 4.6. Estimated 90%, 95%, 97.5% and 99% quantiles for 50, 000 samples from the
true distribution (connected lines) and three samples generated from the estimated vine
(dashed and dotted lines), averaged over the level the corresponding modelled condi-
tional dependence belongs to.
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Figure 4.7. Bias and MSE of the parameter estimates of the Student’s t-vine in 50 dimen-
sions, with low dependence (ρ = 0.2), averaged over each level.
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Figure 4.8. Empirical pairwise Kendall’s τ coefficients for three samples generated from
the estimated vine (dashed and dotted lines), averaged over the level the corresponding
modelled conditional dependence belongs to, and the corresponding true coefficients
(connected line).
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Figure 4.9. Estimated 90%, 95%, 97.5% and 99% quantiles for three samples generated
from the estimated vine (dashed and dotted lines), averaged over the level the corre-
sponding modelled conditional dependence belongs to, and the corresponding true quan-
tiles (connected line).
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5 Conclusion

There are various estimators for the parameters of a pair-copula construction.
The aim of this work has been to study and compare two of the most common
ones, namely the semiparametric and stepwise semiparametric estimators. Both
of these are based on transforming the original data with their empirical distri-
bution functions. Whereas the SP procedure consists in estimating all parameters
simultaneously, the SSP procedure addresses one level at a time, plugging in es-
timates from preceding levels.

In order to compare the two estimators, we have carried out a simulation study
based on D-vines, a subset of PCCs. Except for one example, all the considered
models are five-dimensional. Moreover, they are based on at least one out of three
copula types, namely the Gaussian, the Student’s t and the Clayton copulae. Vary-
ing the degree of dependence and the sample size, we have studied the effect on
the two estimators.

Generally, the finite sample bias and MSE of the SSP estimator are higher than its
competitor’s, reflecting its lower asymptotic efficiency. The difference between
the two estimators increases, in favour of SP, with the degree of dependence, and
also with the level when the dependence is strong. Most likely, this is due to SSP’s
greater sensitivity towards the repeated transformations of the pseudo observa-
tions. Nonetheless, the performance of the SSP estimator is overall rather good
compared to SP. Moreover, the former is consistently faster than the latter, espe-
cially when the number of parameters is high, as one would expect.

When the sample size decreases, both estimators’ variances increase. Based on
500 observations, the parameter estimates for the five-dimensional vines are still
rather precise, whereas n = 50 is not enough. Also, the difference between the
estimators becomes smaller with the sample size. That is also the case when the
model is not correctly specified. Neither the SP nor the SSP estimators are partic-
ularly robust towards misspecification of the pair-copulae constituting the PCC,
but the former appears to suffer more than the latter. Hence, the gain from using
the more time consuming SP estimator is reduced for small samples and inaccu-
rate model assumptions.

For high dimensional problems, the SP estimator is simply too expensive, and
would probably be numerically unstable, whereas SSP estimation still is doable.
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Used on a 50-dimensional Student’s t-vine, the resulting estimates are quite good
up to level 20−30. After that, the finite sample bias and MSE explode. Estimation
of such high order dependencies is unfortunately numerically highly challenging.
However, this does not seem to affect the corresponding lower order dependen-
cies. Despite the erroneous estimates for the top levels, the estimated distribution
is in fact rather similar to the true one. This is an incentive to truncate large struc-
tures after a certain level, letting the copulae of the top levels be the independence
copula.

Overall, the SSP estimator well suited to set start values for the SP one in small
to medium sized problems. Furthermore, the extra time spent on SP estimation
is not necessarily worthwhile, especially when the dependence is not too strong,
the sample size is low, or the model is partly misspecified. When the number
of parameters becomes large, SSP estimation is the only alternative in practice.
Of course, we have not considered cases of extreme dependence, for which the
SSP estimator is likely to be outperformed. Also, we have restricted our attention
to D-vines. The relative behaviour of the two estimators for C-vines and other
regular vines may be a subject for future work.
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