
Developing a Validation
Authority Service

for Apache

NR Norsk Regnesentral
ANVENDT DATAFORSKNING

NOTAT/NOTE
Norwegian Computing Center/Applied Research and Development

IMEDIA/03/02

Developing
a Validation

Authority Service
for Apache

Wolfgang Leister
Ole Aamot
Eirik Maus

Anund Lie (PKI CS)

Oslo
March 2002

with Authority Key Hash
X509 V3

OCSP

ApacheBrowser

mod_ssl

Custromer Webshop Validsign

OCSP−responder

CRL

CC

NR Norsk Regnesentral
ANVENDT DATAFORSKNING

Notat / Notat

Tittel/Title: Dato/Date: March
Developing a Validation Authority Service for Apache År/Year: 2002

Notat nr/:
Note no: IMEDIA/03/02

Forfatter/Author:
Wolfgang Leister, Ole Aamot, Eirik Maus
Anund Lie (PKI Consulting Services as)

Sammendrag/Abstract:

Certificates are used in many applications. These certificates issued by a certificate authority
must be checked by a relying party, in order to establish a chain of trust. One task thereby is
to check whether certificates are revoked. In the SSL-enabled Apache server this is done by
checking certificate revocation lists (CRL). We present a service which can check the status for
a certificate online over OCSP, instead of accessing static files. A prototype is implemented for
the Apache module mod ssl using the OCSP protocol towards a validation authority service.

Emneord/Keywords: PKI, OpenSSL, Apache, Mozilla, certificate, signature, OCSP, X.509

Målgruppe/Target group: Validsign AS, PKI Consulting AS, NR

Tilgjengelighet/Availability: open

Prosjektdata/Project data: PKI-Validsign

Prosjektnr/Project no: 320080

Antall sider/No of pages: 26

Norsk Regnesentral/Norwegian Computing Center

Gaustadalléen 23, Postboks 114, N-0314 Oslo, Norway

Telefon (+47) 22 85 25 00, telefax (+47) 22 69 76 60

IMEDIA/03/02 Validation Authority Service

Contents

1. Description of the Validation Authority service 1
1.1. Problem description . 1
1.2. The situation today . 2
1.3. The Validation Authority service . 3
1.4. Additional Problem Areas . 3
1.5. Description of the prototype . 4
1.6. Software Overview . 4

1.6.1. Apache HTTPD Server . 4
1.6.2. Apache SSL module . 4
1.6.3. OpenSSL . 5
1.6.4. ssldump . 5
1.6.5. Mozilla . 5

2. Checking Client Certificates in the Web Server 5
2.1. Using files for CRL check . 6
2.2. Using OCSP for CRL check . 6
2.3. Sending certificates to CRL server . 8
2.4. The OCSP Responder . 8

3. Contributing to Open Source 9

4. Results and Further Work 10

A. Manuals 11
A.1. Installation . 11

A.1.1. Overview of modules . 11
A.1.2. OpenSSL library with OCSP support 11
A.1.3. Apache HTTPD with SSL support . 11

A.2. Launching Apache with SSL support . 11
A.2.1. Building the ssldump utility for traffic analysis 11

A.3. Certificates . 12
A.3.1. Managing PKI Certificates with OpenSSL, Mozilla and Apache 12
A.3.2. Self Signed SSL CA Certification Authority 12
A.3.3. Generating Test Certificates using a Self Signed CA 13
A.3.4. /opt/bin/generate-cert.sh . 13
A.3.5. /opt/bin/revoke-cert.sh . 14

A.4. Configuring Certificates In a Web Browser . 14
A.4.1. Managing Certificate Revocation Lists with OpenSSL 14

A.5. Test Case . 15

B. Implementation 19
B.1. mod ssl/pkg.sslmod/libssl.module . 19
B.2. mod ssl/pkg.sslmod/mod ssl.c . 19
B.3. mod ssl/pkg.sslmod/mod ssl.h . 19
B.4. mod ssl/pkg.sslmod/ssl engine kernel.c . 19
B.5. mod ssl/pkg.sslmod/ssl engine config.c . 24

compiled: 25th March 2002 5

Validation Authority Service IMEDIA/03/02

4 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

Developing a Validation Authority Service for Apache

Wolfgang Leister Ole Aamot Eirik Maus Anund Lie

Certificates are used in many applications. These certificates issued by a certificate
authority must be checked by a relying party, in order to establish a chain of trust.
One task thereby is to check whether certificates are revoked. In the Apache
browser this is done by checking certificate revocation lists (CRL). We present a
service which can check the status for a certificate online over OCSP, instead of
accessing static files. A prototype is implemented for the Apache module mod ssl
using the OCSP protocol towards a validation authority service.

The following report presents the results of a recent project between NR and PKI Consulting
Services / ValidSign AS. The document describes the implementation of a validation authority
service, including the parts implemented in a prototype.

1. Description of the Validation Authority service

The validation authority service (VAS) is intended to provide the state of certificates whether
they are revoked. This type of information is essential for both users (e.g., customers) and web
sites (e.g., web shop, Internet bank). While the currently implemented certificate revocation
lists (CRL[2]) have to be updated manually, the validation authority service can deliver up-
to-date information. More on the concept of a validation authority service and its business
model is beyond the scope of this document (see [3]).

1.1. Problem description

A public key infrastructure (PKI) provides the technical framework to support applications
with the following security capabilities: user authentication, data confidentiality, data integ-
rity, non-repudiation, and key management. In the implementation cryptographic methods
are used. Public key cryptography uses key pairs, one of which is public, while the other
is private. By binding the public key to some property, certificates are issued and signed
digitally by a certificate authority (CA). These certificates are used on the Web in order to
achieve the security capabilities mentioned above.

Introductions to the subject of PKI can be found in several text books and white papers
[4], [5], [6], [7], [8]. There are several implementations of PKI. One of these implementations
is OpenSSL. An introduction is given in [9] and [10].

It is expected that many Certificate Authorities (CA) and corresponding Registration Au-
thorities (RA) operate in the same and/or overlapping domains. Therefore, End Entities (EE)
may be forced to use certificates from several CAs to establish the level of trust needed, e.g.,
for Internet-banking, web-based shopping, authorisation, or tax reporting to public sector.

It is worth noticing that an End Entity has a certificate and the Relying Party trusts a
certificate. In a simple business scenario involving buying and selling the buyer is playing the
role as EE towards RP (relying party). But the buyer also wants to validate certificates used
by the seller, so the buyer also plays the role of RP, and vice versa.

When EE and RP interact based on PKI, the RP needs to decide whether to accept the
EE’s certificate or not. A certificate is valid in a limited time frame. The time period is

compiled: 25th March 2002 1

Validation Authority Service IMEDIA/03/02

stated in the certificate, but within this period the certificate can be suspended or revoked.
An RP needs to validate each certificate it wants to accept. This validation is done by using
a certificate revocation list (CRL[2]), an online validation check (e.g., OCSP[11], Online
Certificate Status Protocol) or other access to the CA who has issued the certificate. Today
the RPs need to establish certificate validation towards all relevant CAs.

When we speak of validation, we refer to the validation of the certificate itself, which
includes checking syntax, dates, the signature of the issuer and revocation information. Other
issues of validation, e.g., whether the use of a certificate corresponds to the certificate policy
governing the certificate in question, or the authorisation of the holder of the certificate is
beyond the scope of our purposes.

For our purposes, the main challenge consists in the following:

From a juridical and organisational point of view the RP needs a simple mechanism
to validate certificates from different CAs.

There are other challenges within the setting of PKI, which are very essential [3]. However,
these are are beyond the scope of this technical note. We concentrate on the implementation
of a validation authority service. Note, such a service can hide the complexity of a many-to-
many relationship from the RP. The functionality of the service is for our point of view to
supply technical validation of certificates, which is reasonably well covered by standards.

To both RPs and EEs the area of use for a certain certificate is of very high importance.
Especially when trust is built based on use of PKI alone, there is also a need for categorising
the strength of the certificate and if relevant, authorisation information based on the certific-
ate. With the approx. 140 root certificates shipped with Windows 2000 in mind, we believe
that the average RP and EE will not have the ability to distinguish between them without a
reliable service helping them.

By implementing a validation authority service, we introduce one more infrastructure ele-
ment to trust. But at the same time we reduce the individual RP’s dependence on knowledge
of the large number of CAs, trust structures between CAs, validation paths and strengths of
certificates.

1.2. The situation today

In todays situation all certificates can be issued by many (several hundred) certificate au-
thorities (CA). There is no unified policy in web browsers how to handle certificates. E.g.,
one of the web browsers comes with a list of signatures of about 150 certificate authorities,
who have payed to be included in the browser’s standard distribution. The web browser can
verify the signature of the issuer on the certificate of the web site by trying to find the issuer
in the issuer list of accepted CAs. If the issuer is not found the user receives a warning that
the issuer is unknown.

However, it is still possible for the user to accept the certificate in question by accepting
the certificate manually. It is known that one of the web browsers puts the issuer then into
the list of approved issuers, whether it is a new, unknown one or possibly one that previously
has been deleted due to missing trustworthy. To our knowledge, none of the browsers checks
whether the web site’s certificate is revoked.

For web sites the only possibility has been that the client certificate comes from an ap-
proved issuer (CA) (in this case the user has to use many passwords and certificates). Altern-
atively, the web site has to check all existing issuers whether the user has a valid certificate.
For this purpose the web site has to check with all the existing issuers, whether a certificate is

2 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

(still) valid. Such a solution is usually too expensive for web sites, and therefore this solution
is rather rare.

1.3. The Validation Authority service

The Validation Authority Service (VAS) maintains data on revoked certificates from all is-
suers. Both web sites and clients (browsers) can communicate with the VAS using the OCSP
(Open Certificate Status Protocol). The service can also classify the Certificate Policy (CP)
of the issuers. This includes the terms on which the certificate is issued, and a grade scale
for the user. The service is supposed to be available for both users and sites to validate the
certificates. Instead of implementing the validation routines in the browser or server, only a
call from the client to the VAS server will be necessary.

Usage case 1: Verifying client certificate

The web site uses the VAS to check whether the user’s certificate is valid. To achieve this
we have to “shortcut” the SSL-module of the web server, and send the certificate for further
checking to the VAS server.

In this scenario we have to ensure that both partners do authentication towards each
other. Mechanisms of OCSP, the use of SSL, secure lines or other mechanisms are required
to exclude intruders into this communication.

Usage case 2: Verifying the web site certificate

In this case the client (web browser) checks the certificate of the web site. For an example,
this could be used by web shops (especially for first-time buyers). This makes a change in
the SSL-module of the client necessary, which has to be configured to talk to the VAS server
instead of verifying the certificates based on local (and probably outdated) file information
only.

There are several levels of validation services. The most basic one is online revocation
check (ORC), which is supported by OCSP v1. With this service, it is still the responsibility of
the relying party to build and check the validation chain from the certificate to be validated
up to a trusted root. Other proposed protocols (e.g., OCSP v2 [12], SCVP [13], XKMS
[14]) offer higher level services such as delegated path discovery (DPD) and delegated path
validation (DPV), where larger parts of the certificate validation process are delegated to the
validation service. So far, OCSP v1 is the only protocol with an official status, and therefore
this prototype primarily targets online revocation check.

1.4. Additional Problem Areas

A certificate for a web site or for a user does not need to be issued by a CA directly, but
could have been issued by a registration authority (RA) to which the CA has transferred its
rights. In this case the RA’s certificate will be issued by the CA. Possibly the RA can have
delegated this further to other parties. In such a way a “hierarchy of trust” is built up, and
it will be necessary to process a chain of certificates.

In other cases several CAs could sign their certificates mutually to ensure their trustworthy
to each other. In this case graphs of trust are built between equal partners. These graphs
have to be processed until a trustworthy signature can be found. Note the problem with the
termination of the verification process while processing the graph.

compiled: 25th March 2002 3

Validation Authority Service IMEDIA/03/02

1.5. Description of the prototype

The prototype shows the principles of the concept of VAS within the context of web sites.
The prototype shows that client certificates can be checked on the browser using the VAS.
The use of the VAS in browsers in order to check the web site’s certificate would be possible.
However, we leave this for further exploration within a future project.

The prototype does not comprise of all the functionality of a working VAS. The main
focus was put on checking whether certificates have been revoked. The prototype has its
focus to validate a given certificate towards a given CRL, implementing OCSP servers and
clients, and integrate these with a web site (e.g., a web shop).

1.6. Software Overview

We study several components and software packages that are available to implement the
functionality of the VAS. An overview on the software will be given in the following. Much of
the work was done on open source software, as the source code is available. The source code
can be altered and adapted to our needs. It is intended to donate our work back to the open
source community.

For the prototype we intend to use the Apache HTTPD server on a Linux platform. The
module mod ssl which is the OpenSSL-module that will be used for the SSL connections will
be altered in order to contain the code for the OCSP client. The OpenSSL package will be
used as far as possible within the project. For all these parts the source code is available.

This section presents software and other elements worth being mentioned. The software
in the following list is especially important for our work:

• Apache HTTPD Server
• Apache SSL module (we use mod ssl)
• OpenSSL
• ssldump (produces log files of SSL sessions)
• Mozilla

1.6.1. Apache HTTPD Server

The Apache HTTPD server (see http://httpd.apache.org/) is used to implement the Web
site in our project. Apache is published under the Apache Software License, Version 1.1
(see http://www.apache.org/LICENSE), and falls under the Free and Open Source Software
labels.

We use Apache version 1.3.22, which is checked in in the project repository. We did not
make changes in this part of the software.

1.6.2. Apache SSL module

mod ssl is the OpenSSL module for the Apache HTTPD server (see http://www.modssl.
org/). The software resides in a separate directory, and is maintained separately. However,
during compilation the code is copied into the Apache directory.

We use mod ssl, version 2.8.5. This can be regarded as a extension to Apache, which
handles ssl requests. This software is checked in in the project repository. This module has
been subject to changes from our side in order to include code for the validation of Client
certificates.

4 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

mod ssl is published under a BSD-style license (see http://www.modssl.org/source/
exp/mod_ssl/pkg.mod_ssl/LICENSE).

1.6.3. OpenSSL

We use a development snapshot of OpenSSL 0.9.7. (Daily experimental snapshots are available
from ftp://ftp.openssl.org/snapshot/) We could observe problems with this snapshot.
However, we need the snapshot, because OCSP is only implemented in the newer snapshots.

We did not make changes in this software. However, we need some of the implementation
in order to program OCSP functionality. We link against the library to implement the OCSP
validation functionality in mod ssl.

The OpenSSL package contain strong cryptography, so even if it is created, maintained
and distributed from liberal countries in Europe (where it is legal to do this), it falls under
certain export/import and/or use restrictions in some other parts of the world.

1.6.4. ssldump

The program ssldump is used to produce dumps of the communication to the mod ssl module
of Apache (or general SSL applications) in a human readable form. The program can be
found on http://www.rtfm.com/ssldump/ and downloaded at no cost. The software is also
included with a Book on SSL and TLS [1]

Some changes (see A.2.1) had to be made due to a compilation error against the OpenSSL
0.9.7 development snapshot.

1.6.5. Mozilla

Mozilla is a web browser that is chosen to implement the server certificate with on the client.
We have not identified the changes to be made to Mozilla so far. See 4.

2. Checking Client Certificates in the Web Server

We implement the VAS including the calls to the VAS within the SSL-enabled Apache server.
We followed the this work plan in order to be able to check the revocation state of certificates
within Apache:

• Install Apache, mod ssl, and OpenSSL source code, and make sure compilation works
well. See A.1 for details.

• Generate a CA certificate signed by CA, and install a client certificate on client and
server. See A.3.1 for further details.

• In mod ssl we locate where the verification of the client certificate takes place. The client
certificate is sent from the client to the server in the SSL negotiation. The verification
towards the CRL in mod ssl was then added with a query to the VAS, using the OCSP
protocol. Likewise the reply from the VAS was received and processed in order to
produce an answer for the verification of the client certificate.

• The VAS responder was be implemented. Its task is to receive an OCSP request, check
the certificate towards CRL, and give the reply of the validation by OCSP back to the
server.

compiled: 25th March 2002 5

Validation Authority Service IMEDIA/03/02

Browser Apache

CRL

CC mod_ssl

Custromer Webshop Validsign

CRL−responder

Figure 1: Original implementation of CRL check

2.1. Using files for CRL check

The checking of the CRL is performed in the mod ssl package in the file
mod ssl/pkg.sslmod/ssl engine kernel.c. The function to check the certificate to-
wards the CRL is done in the function ssl callback SSLVerify CRL, which is called by
ssl callback SSLVerify.

The routine ssl callback SSLVerify CRL does the following:

• Extracts subject and issuer (X.509) of current certificate.
• Retrieves and verifies the signature of CRL.
• Check date of CRL to make sure it’s not expired.
• Try to retrieve a CRL corresponding to the issuer of the current certificate in order to

check for revocation.
• Check if the current certificate is revoked by this CRL.

The function ssl callback SSLVerify CRL is called twice: first for the (current cer-
tificate’s) issuer certificate and then for the current certificate itself. This implies that
ssl callback SSLVerify is called twice. Therefore, we have to be prepared to check both
certificates.

In Figure 1 we show how the original implementation does the CRL check on files. In the
following sections we describe how this CRL check can be done outside of the web server by
using another server that checks on revocation.1

2.2. Using OCSP for CRL check

Instead of checking the CRL directly, we use the OCSP [11] in order to send information
from the current certificate to a server, which does the CRL checking2. The server answers
with the CRL-status of the certificate in question. This service is implemented as an online
revocation check (see Section 1.3). The API within the existing program is not altered.

This concept is illustrated in Figure 2. The mod ssl module of apache produces an OCSP
request, which is sent to a OCSP responder. The OCSP responder checks the certificate
against its database and answers back with one of the responses ok, invalid or unknown.

For the implementation code from the application program ocsp in the applications dir-
ectory of OpenSSL is used. OCSP needs four values for the request, that have to be retrieved
from the certificate:

1It is intended to move more of the certificate processing to this server at a later stage.
2The RFC 2560 defines the OCSP version 1.

6 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

with Authority Key Hash
X509 V3

OCSP

ApacheBrowser

mod_ssl

Custromer Webshop Validsign

OCSP−responder

CRL

CC

Figure 2: CRL check for X.509 V3 certificates using OCSP

• certificate serial number,
• issuer name hash,
• issuer key hash,
• hash algorithm.

The certificate’s serial number, issuer name, and hash algorithm can be retrieved from the
certificate, and thus the the key hash of the issuer name is available. In the original ocsp-
application, the issuer key hash is retrieved from the issuer certificate. However, the issuer
certificate is not available at this point in the mod ssl program.

To build an OCSP v1 query, an identification of the certificate issuer (issuer key hash
of the public key) is required. The way mod ssl is organized, we had substantial technical
difficulties getting access to this information. This illustrates that ORC puts greater demands
on the client than DPV.

We extracted the issuer key hash value from the X.509 V3 authority key identifier extension
in the certificate to be validated. However, this will not always work. (Even if present, the
authority key identifier could be something different from a usable key hash.) A better
strategy would be to extract the public key from the real issuer certificate and generate the
hash from that, but we had problems accessing it from the validation callback in OpenSSL.

Different certificate profiles and issuers use this field in different ways. Therefore this value
should be used with caution. For more discussion on this subject see also Peter Gutmans
X.509 Style Guide [15].

For certificates with the X.509 V3 extensions keyid we implemented a request to an OCSP
responder. The response is retrieved by the function OCSP resp find status and wrapped
into a routine that uses the same API as the original CRL code.

The task of an OCSP responder was performed by the program ocsp of the application
directory of OpenSSL using the parameters for the server mode.

The use of the issuer certificate in the web server (apache) is not desirable by two reasons:
(a) The issuer certificate is not available at this point in the program. A bigger rewrite action
of the code would be necessary to achieve this. However, the issuer certificate would be
accessible at some point. For practical reasons in an ideal situation it should not be necessary
that the web server has access to this certificate. (b) Therefore it is a wish to do even more
of the certificate processing outside the server, and put more functionality into the OCSP
responder.3

3The issuer certificate is still necessary for certificate processing. How to remove the necessity of the issuer
certificate in the web server will be looked at at a later stage.

compiled: 25th March 2002 7

Validation Authority Service IMEDIA/03/02

Response

Certificate

OCSP

ApacheBrowser

mod_ssl

Custromer Webshop Validsign

OCSP−responder

CRL−responder

CRL

CC

Figure 3: CRL check by sending the certificate to the VAS server

2.3. Sending certificates to CRL server

An alternative implementation was done by sending the entire client certificate to a CRL
responder. The certificates are available in DER representation and can be written to a BIOS
data structure (i.e. TCP connection, or file). As return value an integer value is sent, from
which the three possible states can be retrieved. This services is referred to as delegated path
validation (DPV) (see Section 1.3).

The routine ssl callback SSLVerify CRL is called twice, one time for the issuer cer-
tificate and thereafter for the client certificate. For DPV this is unwanted behavior. The
reason for that is that the callback is implemented for online revocation check, while the
current method implements a DPV. The proper hook into OpenSSL would be the use of
SSL CTX set cert verify callback(), which is currently not used within mod ssl.

On the CRL-server side we implemented a small server application that receives a certi-
ficate in DER format. The end of the transmission is recognised by the END CERTIFICATE
line. The certificate is written to a temporary file, and the ocsp application is called (which
can check towards a OCSP responder or towards files).

2.4. The OCSP Responder

The OpenSSL OCSP application is located in openssl/apps/ocsp.c. The OCSP Response
verification follows the rules specified in RFC 2560. The call syntax of the application is to
some extent described in man1/ocsp.1 (http://www.openssl.org/docs/apps/ocsp.html).

The OCSP responder locates the certificate and checks the signature of the OCSP request
using the responder certificate’s public key. Then the certificate is verified on the OCSP
responder certificate, building up a certificate chain in the process. If this initial verification
should fail the OCSP application halts with an error.

The locations of the trusted certificates used to build the chain can be specified by the
CAfile and CApath options. Otherwise they will be looked up in the standard OpenSSL
certificates directory.

If the issuing CA certificate in the request matches to the OCSP responder certificate
the OCSP verification succeeds. Otherwise, the OCSP responder certificate’s CA is checked
against the issuing CA certificate in the request. If there is a match and the OCSPSigning
extended key usage is present in the OCSP responder certificate then the OCSP verification
succeeds. If this fails, the root CA of the OCSP responders CA is checked to see whether it
is trusted for OCSP signing in the next step. If so the OCSP verification succeeds.

We used the following parameters to launch the OpenSSL OCSP responder application

8 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

with our Self Signed CA SSL Certificate (see A.3.2):

/opt/bin/openssl ocsp \
-CA /opt/CA/cacert.pem \
-index /opt/CA/index.txt \
-rsigner /opt/CERTS/cert-ocsp-responder-crt.pem \
-rkey /opt/CERTS/cert-ocsp-responder-privkey.pem \
-nmin 1 \
-validity_period 1 \
-status_age 1 \
-port 9091

3. Contributing to Open Source

The implementation had two concerns:
• implementation of the functionality.
• integration of the code with mod ssl.

The integration with mod ssl can be done in several ways:
• Use of a macro definition for changes in the code.
• The use of the EAPI.
• The use of vendor extensions.
Generally, the EAPI and the vendor extensions are not well-documented, as there is no

manual or complete code that can be used as a reference. There are some explanations in the
file README.EAPI of mod ssl, including a partial implementation in the directory pkg.eapi.
The naming conventions of the functions are not very obvious. The EAPI implementation is
invented by the implementor of mod ssl, Ralph S. Engelschall.

The EAPI is a library that makes it possible to register procedure calls with a string.
Functions are called by using this string in a special call-function. This functionality imple-
ments a sort of “late binding” for functions that might be implemented in dynamically linked
libraries.

We found that the EAPI is not very widely used within the code base. We also noticed a
tendency that the EAPI is used less in newer versions.

The EAPI is used to implement the VENDOR EXTENSIONS, which are standardised calls to
functions that a vendor might specify. The calls of these vendor extensions are built into
ssl engine kernel. However, these calls are not at suitable locations in the code for our
purposes. Unfortunately, we only found calls to ap hook use, but no implementations of the
callbacks.

The EAPI is also used in ssl engine ext. However, the calls in ssl engine ext are
different from those elsewhere in the code.

The API to the EAPI is somewhat difficult to understand. The first parameters include
the following values:
• a string that denotes the procedure to be called.
• a bit string that describes the type and number of parameters for in-values.
• a bit string that describes the result values.
• standard parameters that always are used. These parameters could contain context

variables or other data types that are attached to the implemented module. However,
as there are no examples available, these mechanisms remain somewhat unclear to us.

compiled: 25th March 2002 9

Validation Authority Service IMEDIA/03/02

When using the EAPI separate modules can be implemented. This makes it possible to
define separate parameter files for each module. When using macros only, the parameters to
mod ssl and its extensions are in the file httpd.conf

For our implementation we decided to use a macro VALIDATION AUTHORITY, which de-
notes all the changes in the code necessary to implement the validation authority. The code
embraced by this macro includes the functionality, and the calls to read the parameters from
the configuration file. The configuration file includes the following new values:

UseVA: Set 1 to switch on, 0 to switch off. This switch does not affect the ordinary CRL
processing. The following switches are only in use, when UseVA is set to 1.

VAServiceType: Set 1 to use use the OCSP protocol for the validation authority service; set
2 to use the WVP protocol4. The default value is 1.

VAPath: Set the relative location path. The default value is ‘/’.

VAHost: Set the name of the host where the validation authority responder is located.

VAPort: Set the number of the port to the validation authority responder.

4. Results and Further Work

As a result of this current project we present a working Validation Authority Service. This
service consists of a configurable add-on in the mod ssl module of the Apache HTTPD Server
that interfaces the service. A simple Validation Authority Server was implemented, is based
on of OpenSSL.

We implemented two versions of the VAS. The first version only works with X.509 V3
extensions and uses OCSP, while the second version uses a very simple protocol, but should
work with any certificate. A test run example is documented in Appendix A.5 in detail,
including excerpts from the log files.

There were several issues not covered within the scope of the current project:

• The OCSP response is not signed. The code base of ocsp of OpenSSL contains func-
tionality that provides signing the OCSP response.

• There are several other protocols possible to exchange the certificate and revocation
status information between Apache and the validation authority server.

• At a next stage the answer could be extended to contain attributes to a certificate. This
functionality is discussed in [3] to some extent.

• The functionality of checking the revocation state can be implemented into web
browsers. The Mozilla web browser could be a candidate, as it is an open source
product. There are some indications that OCSP functionality already is integrated
into Mozilla (see http://www.mozilla.org/projects/security/pki/psm/help_20/
using_certs_help.html#using_certs_validation).

4This denotes a very simple protocol, whereby the certificate is sent to the VAS in DER encoding, and the
response is simply the letter ‘1’ for success and the letter ‘0’ for failure.

10 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

A. Manuals

A.1. Installation

A.1.1. Overview of modules

We maintained the critical software modules in CVS[16] on cvs.nr.no.
To obtain them, run

$ cvs -d :ext:$USER@cvs.nr.no:/nr/project/imedia/PKI-val/cvs co .

The latest versions of the modules at the time of this writing were available from

ftp://ftp.openssl.org/snapshot/openssl-0.9.7-stable-SNAP-20020313.tar.gz
http://www.apache.org/dist/httpd/apache_1.3.23.tar.gz
http://www.modssl.org/source/mod_ssl-2.8.7-1.3.23.tar.gz

A.1.2. OpenSSL library with OCSP support

$ cd openssl
$ sh config --prefix=/opt/
$ make
$ make test
$ make install
$ cd ..

A.1.3. Apache HTTPD with SSL support

$ cd mod ssl
$./configure --with-apache=../apache \

--with-ssl=../openssl \
--prefix=/opt/ \
--enable-shared=ssl

$ cd ..
$ cd apache
$ make
$ make install

We generated a self signed CA (A.3.2), issued a server certificate (A.3.1), and configured
it in /opt/conf/httpd.conf as described in Appendix A.5.

A.2. Launching Apache with SSL support

$ /opt/bin/apachectl startssl

A.2.1. Building the ssldump utility for traffic analysis

The following patch was necessary to build ssldump 0.9b2 from http://www.rtfm.com/
ssldump/ against our snapshot version of openssl from ftp://ftp.openssl.org/snapshot/.

compiled: 25th March 2002 11

Validation Authority Service IMEDIA/03/02

--- ssldump-0.9b2/ssl/ssl_rec.c Fri Nov 3 07:38:06 2000

+++ ssldump-0.9b2.oka/ssl/ssl_rec.c Fri Feb 8 11:11:58 2002

@@ -249,7 +249,7 @@

if(memcmp(mac,buf,l))

ERETURN(SSL_BAD_MAC);

+/* HMAC_cleanup(&hm); */

- HMAC_cleanup(&hm);

return(0);

}

--- ssldump-0.9b2/ssl/ssldecode.c Sat Sep 15 22:49:16 2001

+++ ssldump-0.9b2.oka/ssl/ssldecode.c Fri Feb 8 11:14:41 2002

@@ -52,7 +52,6 @@

#include <openssl/hmac.h>

#include <openssl/evp.h>

#include <openssl/x509v3.h>

+#include <openssl/md5.h>

#endif

#include ‘‘ssldecode.h’’

#include ‘‘ssl_rec.h’’

@@ -594,7 +593,7 @@

left-=tocpy;

}

+/* HMAC_cleanup(&hm); */

- HMAC_cleanup(&hm);

CRDUMPD(‘‘P_hash out’’,out);

We applied the patch after email discussions with the author and configured ssldump on
the server, to trace and verify SSL connections.

$./configure --prefix=/opt/ --with-openssl=/opt/

$ make install

$ sudo /opt/bin/ssldump -i eth0 >>/var/log/ssldump.log

A.3. Certificates

A.3.1. Managing PKI Certificates with OpenSSL, Mozilla and Apache

In the following we describe how to generate certificates for a Certification Authority (CA), a
Server and a Client in our simple trust chain. The client and server certificates are signed by
the CA. For our purposes, we decided to just be our own CA and sign requests and generate
new certificates ourselves.

If we had used an official CA to sign our certificates for us, we would send them a certificate
request, they would sign it, and send us a public key and a private key back. We would then
use the certificates and could jump directly over the steps described in the following two
sections.

A.3.2. Self Signed SSL CA Certification Authority

We choose to use self-signed certificates. We generated our CA using the CA.pl script provided
in OpenSSL. We put the public CA key in /opt/CA/cacert.pem and the private CA key in
/opt/CA/private/cakey.pem, copied the public CA key to /opt/CERTS/cacert.pem on the

12 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

web shop, and enabled it along with the Validation Authority parameters in /opt/conf/
httpd.conf using the SSLCACertificateFile statement.

A.3.3. Generating Test Certificates using a Self Signed CA

We created two shell scripts to assist the request generation and signing of certificates using
our Self Signed SSL CA Certificate.

A.3.4. /opt/bin/generate-cert.sh

#!/bin/sh

Author: Ole Aamot <oka@nr.no>

#

USAGE

generate-cert.sh <command> <identifier>

#

COMMANDS

create - Create new certificate request

sign - Sign certificate with CA private key

export - Export the certificate as PKCS12

all - Do all of the stuff above

#

REQUIRES

OpenSSL binary in /opt/bin/openssl

config in /opt/nr-ca.cnf

caroot in /opt/CA

ca key in /opt/CA/private/cakey.pem

cacert in /opt/CA/cacert.pem

set -e

case "$1" in

create)

echo "Creating certificate..."

/opt/bin/openssl req -config /opt/nr-ca.cnf \
-new -keyout /opt/CERTS/cert-$2-privkey.pem \
-out /opt/CERTS/cert-$2-req.pem \
-days 365

;;

sign)

echo "Signing certificate..."

/opt/bin/openssl ca -config /opt/nr-ca.cnf \
-keyfile /opt/CA/private/cakey.pem \

-cert /opt/CA/cacert.pem \
-in /opt/CERTS/cert-$2-req.pem \
-out /opt/CERTS/cert-$2-crt.pem

;;

export)

echo "Exporting PKCS12 ccertificate..."

/opt/bin/openssl pkcs12 -export \
-in /opt/CERTS/cert-$2-crt.pem \
-inkey /opt/CERTS/cert-$2-privkey.pem \
-out /opt/CERTS/cert-$2.p12

;;

all)

$0 create $2

$0 sign $2

$0 export $2

compiled: 25th March 2002 13

Validation Authority Service IMEDIA/03/02

;;

*)

echo "Usage $0 [create|sign|export|all] <ID>"

exit 1

;;

esac

exit 0

A.3.5. /opt/bin/revoke-cert.sh

#!/bin/sh

Author: Ole Aamot <oka@nr.no>

#

USAGE

revoke-cert.sh <filename>

#

REQUIRES

OpenSSL binary in /opt/bin/openssl

config in /opt/nr-ca.cnf

caroot in /opt/CA

ca key in /opt/CA/private/cakey.pem

cacert in /opt/CA/cacert.pem

set -e

/opt/bin/openssl ca -revoke $1 -config /opt/nr-ca.cnf

exit 0

We added our newly generated certificates for the SSL server in the /opt/CERTS/ dir-
ectory.

A.4. Configuring Certificates In a Web Browser

When we generated our new certificates with the scripts (mentioned in A.3.4), we also got a
PKCS12 encoded certificates for the server and the client that we imported into the Mozilla
web browser. We verified that client authentication worked against the server.

A.4.1. Managing Certificate Revocation Lists with OpenSSL

A CRL is a widely published list that contains serial numbers and time stamps of certificates
expired or revoked by a Certification Authority. The CRL was signed with the private CA
key using a secure one-way hash algorithm, such as md5WithRSAEncryption.

The casual way of updating a CRL database with new lists in OpenSSL seems to be to
add the new PEM-encoded X.509 CRLs for SSL to a safe repository and update it by running
make.

$ cp -a verisign.crl /opt/CRL

$ cd /opt/CRL/

$ make

To generate a new CRL using our CA (see A.3.2) we used

#!/bin/sh

set -e

/opt/bin/openssl ca \

14 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

-config /opt/nr-ca.cnf \
-gencrl \
-out /opt/CRL/nr-ca.crl

We found the following usage useful to view the ingredients of a particular CRL file in
plain text:

$ /opt/bin/openssl crl -noout -text -in /opt/CRL/nr-ca.crl

Certificate Revocation List (CRL):

Version 1 (0x0)

Signature Algorithm: md5WithRSAEncryption

Issuer: /C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no

Last Update: Feb 8 11:51:36 2002 GMT

Next Update: Mar 10 11:51:36 2002 GMT

Revoked Certificates:

Serial Number: 03

Revocation Date: Nov 28 16:49:10 2001 GMT

Serial Number: 09

Revocation Date: Nov 28 16:17:57 2001 GMT

Serial Number: 0B

Revocation Date: Dec 17 19:02:40 2001 GMT

Serial Number: 0C

Revocation Date: Dec 17 19:03:11 2001 GMT

Serial Number: 11

Revocation Date: Dec 19 12:20:05 2001 GMT

Serial Number: 12

Revocation Date: Dec 19 12:09:03 2001 GMT

Serial Number: 14

Revocation Date: Dec 19 12:34:49 2001 GMT

Serial Number: 15

Revocation Date: Dec 19 12:46:32 2001 GMT

Serial Number: 16

Revocation Date: Dec 19 12:50:46 2001 GMT

Serial Number: 17

Revocation Date: Dec 19 13:00:35 2001 GMT

Serial Number: 19

Revocation Date: Dec 19 13:04:46 2001 GMT

Serial Number: 1A

Revocation Date: Dec 19 13:23:24 2001 GMT

Signature Algorithm: md5WithRSAEncryption

6e:9e:7d:7c:04:97:a5:8c:57:c2:53:be:af:d7:91:8f:0d:d6:

14:82:58:77:12:07:3b:17:8e:5f:e2:9a:dc:29:8c:36:ff:37:

ac:7e:a1:79:02:0b:14:f9:b5:b0:5b:0b:f3:72:7f:75:48:01:

25:02:c6:2f:d2:c2:a5:3c:b6:3a:7a:e1:40:bc:7c:93:7b:86:

34:a1:e0:24:40:16:61:68:f9:c0:47:ec:34:9f:be:be:f5:a8:

95:b4:b5:16:60:11:a3:76:27:ac:de:a7:9c:cb:0f:09:dd:77:

66:88:cd:02:b2:e0:7c:70:05:10:5e:cb:38:fd:ac:49:81:e4:

65:e6

A.5. Test Case

For testing we used self-signed certificates, signed on valid.nr.no. The OCSP responder has
access to the data base of this CA. The RP (web shop) has access to the public key of the
CA. The Apache HTTPD server of the RP has to check whether the customer certificate is
valid by using the VA (validation authority).

In our tests we use the OCSP responder from openssl 0.9.7, which is installed on
valid.nr.no, port 9091. The customer “Valid Bay” (which is the RP in this example)
uses Apache/mod ssl. The page is accessed on https://perceptron.nr.no:8443/.

compiled: 25th March 2002 15

Validation Authority Service IMEDIA/03/02

In the following we demonstrate the steps when web shop customer Per Hansen accesses
Valid Bay.

1. “Valid Bay” configures the file /opt/conf/httpd.conf with the public key of Per
Hansen’s issuer, and the SSLVA* parameters for mod ssl, which have been defined for
the validation authority module. See the following example:

SSLCACertificateFile /opt/CERTS/cacert.pem

OCSP Validation Authority:

Validation Authority

SSLUseVA 1

SSLVAServiceType 1

SSLVAPath ’/’

SSLVAHost valid.nr.no

SSLVAPort 9091

Client Authentication (Type):

Client certificate verification type and depth. Types are

none, optional, require and optional_no_ca. Depth is a

number which specifies how deeply to verify the certificate

issuer chain before deciding the certificate is not valid.

SSLVerifyClient require

SSLVerifyDepth 10

2. A request for Per Hansen’s certificate is generated, the request is signed with the private
key of the CA, and a key pair for Per Hansen is generated. The certificate is exported
in PKCS12 format, which is imported into the web browser of Per Hansen. The steps
to achieve this are the following

$ /opt/bin/openssl req -config /opt/nr-ca.cnf \
-new -keyout per_hansen.key -out per_hansen.req -days 365

$ /opt/bin/openssl ca -config /opt/nr-ca.cnf \
-keyfile /opt/CA/private/cakey.pem \
-cert /opt/CA/cacert.pem -in per_hansen.req -out per_hansen.crt

$ /opt/bin/openssl pkcs12 -export -in per_hansen.crt \
-inkey per_hansen.key -out per_hansen.p12

$ scp per_hansen.p12 oka@naos.nr.no:

We also checked that Per Hansen cannot access Valid Bay on http://perceptron:
8443/ without a valid certificate. An excerpt from the log files is shown in the following:

[28/Feb/2002 15:26:20 02844] [error] SSL handshake failed (server perceptron.nr.no:8443,

client 127.0.0.1) (OpenSSL library error follows)

[28/Feb/2002 15:26:20 02844] [error] OpenSSL: error:140890C7:SSL

routines:SSL3_GET_CLIENT_CERTIFICATE:

peer did not return a certificate

[Hint: No CAs known to server for verification?]

3. Per Hansen imports per hansen.p12 into his Mozilla 0.9.8 browser (alternatively In-
ternet Explorer is possible):

Edit -> Preferences -> Privacy & Security -> Certificates

4. Per Hansen accesses Valid Bay https://perceptron:8443/ using the certificate. Then
the log file /opt/logs/ssl_engine_log on perceptron.nr.no looks as follows:

16 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

[28/Feb/2002 15:26:20 02844] [error] SSL handshake failed (server perceptron.nr.no:8443,

client 127.0.0.1) (OpenSSL library error follows)

[28/Feb/2002 15:26:20 02844] [error] OpenSSL: error:140890C7:SSL

routines:SSL3_GET_CLIENT_CERTIFICATE:peer

did not return a certificate [Hint: No CAs known to server for verification?]

[28/Feb/2002 15:30:31 02846] [info] Connection to child 3 established

(server perceptron.nr.no:8443, client 127.0.0.1)

[28/Feb/2002 15:30:31 02846] [info] Seeding PRNG with 1160 bytes of entropy

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: Checking certificate

with serial 0 (0x0) checking CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no with

subject /C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority:

OCSP_response_get1_basic(vsresp) at line 1824

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: OCSP_response arrived at line 1729

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: OCSP_response arrived at line 1735

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: good

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: OCSP_response: Got retval 1 at line 1835

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority for certificate sais: Result=1

[28/Feb/2002 15:30:32 02846] [warn] ValidationAuthority: Returning from VS_ContactVA_OCSP with 1

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority:

Checking certificate with serial 30 (0x1E) checking CRL from

issuer /C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no with

subject /C=NO/ST=Oslo/O=NR CA/OU=Per Hansen/CN=Per Hansen/Email=oka@nr.no

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: OCSP_response_get1_basic(vsresp) at line 1824

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: OCSP_response arrived at line 1729

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: OCSP_response arrived at line 1735

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: unknown

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority: OCSP_response: Got retval 1 at line 1835

[28/Feb/2002 15:30:32 02846] [info] ValidationAuthority for certificate sais: Result=1

[28/Feb/2002 15:30:32 02846] [warn] ValidationAuthority: Returning from VS_ContactVA_OCSP with 1

[28/Feb/2002 15:30:32 02846] [info] Connection: Client IP: 127.0.0.1,

Protocol: TLSv1, Cipher: RC4-MD5 (128/128 bits)

[28/Feb/2002 15:30:32 02846] [info] Initial (No.1) HTTPS request

received for child 3 (server perceptron.nr.no:8443)

[28/Feb/2002 15:30:36 02846] [info] Subsequent (No.2) HTTPS request

received for child 3 (server perceptron.nr.no:8443)

[28/Feb/2002 15:30:52 02846] [info] Connection to child 3 closed

with standard shutdown (server perceptron.nr.no:8443, client 127.0.0.1)

5. Per Hansen’s issuer revokes the certificate using the following call on valid.nr.no:

$ /opt/bin/openssl ca -config /opt/nr-ca.cnf -revoke per_hansen.crt

Note, the OCSP responer of openssl must be restartet every time when a certificate’s
status is changed, e.g., is revoked.

$ /opt/bin/openssl ocsp \
-CA /opt/CA/cacert.pem \
-index /opt/CA/index.txt \
-rsigner /opt/CERTS/cert-ocsp-responder-crt.pem \
-rkey /opt/CERTS/cert-ocsp-responder-privkey.pem \
-nmin 1 \
-validity_period 1 \
-status_age 1 \
-port 9091

6. Per Hansen accesses Valid Bay https://perceptron.nr.no:8443/ again (now with
the certificate revoked). The log file /opt/logs/ssl_engine_log shows the following:

[28/Feb/2002 16:01:33 02845] [info] Connection to child 2 established

(server perceptron.nr.no:8443, client 127.0.0.1)

[28/Feb/2002 16:01:33 02845] [info] Seeding PRNG with 1160 bytes of entropy

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority:

Checking certificate with serial 0 (0x0) checking CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no with subject

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response_get1_basic(vsresp) at line 1824

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response arrived at line 1729

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response arrived at line 1735

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: good

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response: Got retval 1 at line 1835

compiled: 25th March 2002 17

Validation Authority Service IMEDIA/03/02

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority for certificate sais: Result=1

[28/Feb/2002 16:01:38 02845] [warn] ValidationAuthority: Returning from VS_ContactVA_OCSP with 1

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: Checking certificate

with serial 30 (0x1E) checking CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no with subject

/C=NO/ST=Oslo/O=NR CA/OU=Per Hansen/CN=Per Hansen/Email=oka@nr.no

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response_get1_basic(vsresp) at line 1824

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response arrived at line 1729

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response arrived at line 1735

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: revoked

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority: OCSP_response: Got retval 0 at line 1835

[28/Feb/2002 16:01:38 02845] [info] ValidationAuthority for certificate sais: Result=0

[28/Feb/2002 16:01:38 02845] [warn] ValidationAuthority: Returning from VS_ContactVA_OCSP with 0

[28/Feb/2002 16:01:38 02845] [info] Certificate with serial 30 (0x1E) revoked per CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no

[28/Feb/2002 16:01:38 02845] [error] Certificate Verification: Error (0): ok

[28/Feb/2002 16:01:38 02845] [error] SSL handshake failed (server perceptron.nr.no:8443, client 127.0.0.1)

(OpenSSL library error follows)

[28/Feb/2002 16:01:38 02845] [error] OpenSSL: error:140890B2:SSL

routines:SSL3_GET_CLIENT_CERTIFICATE:no certificate returned

[28/Feb/2002 16:01:38 02844] [info] Connection to child 1 established (server perceptron.nr.no:8443, client 127.0.0.1)

[28/Feb/2002 16:01:38 02844] [info] Seeding PRNG with 1160 bytes of entropy

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: Checking certificate

with serial 0 (0x0) checking CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no with subject

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: OCSP_response_get1_basic(vsresp) at line 1824

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: OCSP_response arrived at line 1729

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: OCSP_response arrived at line 1735

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: good

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: OCSP_response: Got retval 1 at line 1835

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority for certificate sais: Result=1

[28/Feb/2002 16:01:39 02844] [warn] ValidationAuthority: Returning from VS_ContactVA_OCSP with 1

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: Checking certificate

with serial 30 (0x1E) checking CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no with subject

/C=NO/ST=Oslo/O=NR CA/OU=Per Hansen/CN=Per Hansen/Email=oka@nr.no

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: OCSP_response_get1_basic(vsresp) at line 1824

[28/Feb/2002 16:01:39 02844] [info] ValidationAuthority: OCSP_response arrived at line 1729

[28/

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority for certificate sais: Result=1

[28/Feb/2002 16:01:39 02846] [warn] ValidationAuthority: Returning from VS_ContactVA_OCSP with 1

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority: Checking certificate

with serial 30 (0x1E) checking CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no with subject

/C=NO/ST=Oslo/O=NR CA/OU=Per Hansen/CN=Per Hansen/Email=oka@nr.no

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority: OCSP_response_get1_basic(vsresp) at line 1824

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority: OCSP_response arrived at line 1729

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority: OCSP_response arrived at line 1735

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority: revoked

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority: OCSP_response: Got retval 0 at line 1835

[28/Feb/2002 16:01:39 02846] [info] ValidationAuthority for certificate sais: Result=0

[28/Feb/2002 16:01:39 02846] [warn] ValidationAuthority: Returning from VS_ContactVA_OCSP with 0

[28/Feb/2002 16:01:39 02846] [info] Certificate with serial 30 (0x1E) revoked per CRL from issuer

/C=NO/ST=Oslo/L=Oslo/O=NR CA/OU=IMEDIA/CN=Director/Email=d@nr.no

[28/Feb/2002 16:01:39 02846] [error] Certificate Verification: Error (0): ok

[28/Feb/2002 16:01:39 02846] [error] SSL handshake failed

(server perceptron.nr.no:8443, client 127.0.0.1) (OpenSSL library error follows)

[28/Feb/2002 16:01:39 02846] [error] OpenSSL: error:140890B2:SSL

routines:SSL3_GET_CLIENT_CERTIFICATE:no certificate returned

7. Per Hansen is refused access to Valid Bay. This is shown in the Mozilla browser with
the following message:

Could not establish an encrypted connection because your
certificate was rejected by perceptron. Error Code: -12224

18 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

B. Implementation

We introduced ValidationAuthority functionality in mod ssl 2.8.6. We also refer to the build
procedure stated in Appendix A.1.3.

B.1. mod ssl/pkg.sslmod/libssl.module

We set -DVALIDATION AUTHORITY in SSL CFLAGS to activate the introduced code on
compile time.

B.2. mod ssl/pkg.sslmod/mod ssl.c

Configuration parameters introduced in the ssl config cmds struct:

#ifdef VALIDATION_AUTHORITY

AP_SRV_CMD(UseVA, TAKE1,

"Switch Validation Authority off=0, on=1, both=2")

AP_SRV_CMD(VAServiceType, TAKE1,

"Choose Validation Authority Service Type: 1=OCSP, 2=WVP")

AP_SRV_CMD(VAPath, TAKE1,

"Relative location path, such as ’/’ or ’/cert.cgi’")

AP_SRV_CMD(VAHost, TAKE1,

"Host name of Validation Authority responder")

AP_SRV_CMD(VAPort, TAKE1,

"Port number of Validation Authority responder")

#endif

B.3. mod ssl/pkg.sslmod/mod ssl.h
#define VALIDATION_AUTHORITY 1

B.4. mod ssl/pkg.sslmod/ssl engine kernel.c
...

#if VALIDATION_AUTHORITY

#include <openssl/ocsp.h>

#endif /* VALIDATION_AUTHORITY */

/*

* Additionally perform CRL-based revocation checks

*/

if (ok) {

#if VALIDATION_AUTHORITY

if (sc->vsUseVA == 1) {

ok = ssl_callback_SSLVerify_VS(ok, ctx, s);

if (!ok) {

errnum = X509_STORE_CTX_get_error(ctx);

}

}

else {

#endif

ok = ssl_callback_SSLVerify_CRL(ok, ctx, s);

if (!ok)

errnum = X509_STORE_CTX_get_error(ctx);

#if VALIDATION_AUTHORITY

}

#endif

}

...

#if VALIDATION_AUTHORITY

/* The following routines uses OCSP.

* Note: Certificate extension X509V3 Authority Key Identifier is needed

*/

int VS_magic_hexval(unsigned char c) {

unsigned char cc;

if (!isalnum(c)) return (-1);

if (isdigit(c)) return c - ’0’;

cc = tolower(c);

return (cc - ’a’) +10;

}

int VS_magic_convert(unsigned char* instring, unsigned char* outstring) {

/* returns length */

unsigned char *pin = instring;

compiled: 25th March 2002 19

Validation Authority Service IMEDIA/03/02

unsigned char *pout = outstring;

int count = 0;

if (!instring) return (-1);

while (*pin) {

unsigned char sum = 0;

int val;

count += 1;

sum += (VS_magic_hexval(*(pin++)) << 4);

if (!*pin) break;

sum += (VS_magic_hexval(*(pin++)));

*(pout++) = (unsigned char) sum;

if (!*pin) break;

if (VS_magic_hexval(*pin) == (-1)) pin += 1;

}

return count;

}

/* generates an OCSP Certid of the given input values */

OCSP_CERTID *OCSP_cert_valid_new(const EVP_MD *dgst,

X509_NAME *issuerName,

unsigned char *issuerKey,

ASN1_INTEGER *serialNumber)

{

int nid;

unsigned int i;

unsigned char issuerKeyHash[200];

int issuerKeyHashLen;

X509_ALGOR *alg;

OCSP_CERTID *cid = NULL;

unsigned char md[EVP_MAX_MD_SIZE];

if (!(cid = OCSP_CERTID_new())) goto err;

alg = cid->hashAlgorithm;

if (alg->algorithm != NULL) ASN1_OBJECT_free(alg->algorithm);

if ((nid = EVP_MD_type(dgst)) == NID_undef)

{

OCSPerr(OCSP_F_CERT_ID_NEW,OCSP_R_UNKNOWN_NID);

goto err;

}

if (!(alg->algorithm=OBJ_nid2obj(nid))) goto err;

if ((alg->parameter=ASN1_TYPE_new()) == NULL) goto err;

alg->parameter->type=V_ASN1_NULL;

if (!X509_NAME_digest(issuerName, dgst, md, &i)) goto digerr;

if (!(ASN1_OCTET_STRING_set(cid->issuerNameHash, md, i))) goto err;

/* Calculate the issuerKey hash, excluding tag and length */

issuerKeyHashLen = VS_magic_convert(issuerKey, issuerKeyHash);

if (!(ASN1_OCTET_STRING_set(cid->issuerKeyHash, issuerKeyHash, issuerKeyHashLen))) goto err;

if (serialNumber) {

ASN1_INTEGER_free(cid->serialNumber);

if (!(cid->serialNumber = ASN1_INTEGER_dup(serialNumber))) goto err;

}

return cid;

digerr:

OCSPerr(OCSP_F_CERT_ID_NEW,OCSP_R_DIGEST_ERR);

err:

if (cid) OCSP_CERTID_free(cid);

return NULL;

} /* OCSP_cert_valid_new */

static int add_ocsp_vsigncert (OCSP_REQUEST *req, X509 *vcert, server_rec *s, OCSP_CERTID **vsvid)

{

OCSP_CERTID *vid;

EVP_MD *dgst;

X509_NAME *vcertAuthName = NULL;

X509_EXTENSION *vauthExtension = NULL;

ASN1_INTEGER *vcertSerial = NULL;

ASN1_OBJECT *vauthObject;

ASN1_OCTET_STRING *vauthString = NULL;

void *extr_str = NULL;

char *value = NULL;

unsigned char *p;

CONF_VALUE *val;

X509V3_EXT_METHOD *method;

STACK_OF(CONF_VALUE) *nval = NULL;

CONF_VALUE *keyhashval = NULL;

int num, idx;

if (!req) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: Program Error: no ocsp request ...\n");

return 0;

}

20 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

if (!vcert) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: No vsigncert specified.\n");

return 0;

}

dgst = (EVP_MD *) EVP_sha1();

vcertSerial = X509_get_serialNumber(vcert);

vcertAuthName = X509_get_issuer_name(vcert);

num = X509_get_ext_count(vcert);

idx = X509_get_ext_by_NID(vcert, NID_authority_key_identifier, 0);

vauthExtension = X509_get_ext(vcert, idx);

vauthObject = X509_EXTENSION_get_object(vauthExtension);

vauthString = X509_EXTENSION_get_data(vauthExtension);

if (!(method = X509V3_EXT_get (vauthExtension))) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: No X509V3 Extension for Authority Key Identifier found.\n");

return 0;

}

p = vauthExtension->value->data;

if (method->it) {

extr_str = ASN1_item_d2i(NULL, &p, vauthExtension->value->length, ASN1_ITEM_ptr(method->it));

}

else {

extr_str = method->d2i(NULL, &p, vauthExtension->value->length);

}

if (method->i2v) {

if (!(nval = method->i2v(method, extr_str, NULL))) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: i2v error on line %i\n", __LINE__);

return 0;

}

keyhashval = sk_CONF_VALUE_value(nval, 0);

}

vid = OCSP_cert_valid_new(dgst, vcertAuthName, keyhashval->value, vcertSerial);

*vsvid = vid;

if(!OCSP_request_add0_id(req, vid)) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: Error Creating OCSP request\n");

return 0;

}

return 1;

} /* add_ocsp_vsigncert */

static int VS_OCSP_response (OCSP_BASICRESP *bs, OCSP_CERTID *id, long nsec, int maxage, server_rec *s) {

const int VSIGN_OCSP_RESPONSE_GOOD = 1;

const int VSIGN_OCSP_RESPONSE_FAIL = 0;

char *name;

int i;

int status, reason;

ASN1_GENERALIZEDTIME *rev, *thisupd, *nextupd;

ssl_log(s, SSL_LOG_INFO, "ValidationAuthority: OCSP_response arrived at line %i", __LINE__);

if (!OCSP_resp_find_status(bs, id, &status, &reason, &rev, &thisupd, &nextupd)) {

ssl_log(s, SSL_LOG_WARN, "ValidationAuthority: No status found.");

}

ssl_log(s, SSL_LOG_INFO, "ValidationAuthority: OCSP_response arrived at line %i", __LINE__);

if (!OCSP_check_validity(thisupd, nextupd, nsec, maxage)) {

ssl_log(s, SSL_LOG_WARN, "ValidationAuthority: Status times invalid");

}

ssl_log(s, SSL_LOG_INFO, "ValidationAuthority: %s", OCSP_cert_status_str(status));

if (status != V_OCSP_CERTSTATUS_REVOKED) return VSIGN_OCSP_RESPONSE_GOOD;

return VSIGN_OCSP_RESPONSE_FAIL;

} /* VS_OCSP_response */

int VS_ContactVA_OCSP(X509 *cert, server_rec *s) {

SSLSrvConfigRec *sc;

char *path = NULL;

char *vshost = NULL;

char *vsport = NULL;

long nsec = (5 * 60);

long maxage = -1;

BIO *vsbio = NULL;

OCSP_CERTID *vsvid = NULL;

compiled: 25th March 2002 21

Validation Authority Service IMEDIA/03/02

OCSP_RESPONSE *vsresp = NULL;

OCSP_REQUEST *vsreq = NULL;

OCSP_BASICRESP *bs = NULL;

int retval = 0;

int i;

sc = mySrvConfig(s);

path = sc->vsVAPath;

vshost = sc->vsVAHost;

vsport = sc->vsVAPort;

/* == */

/* Connect to host */

vsbio = BIO_new_connect(vshost);

if (!vsbio) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: cannot connect to host %s", vshost);

goto vs_free_and_return;

}

BIO_set_conn_port(vsbio,vsport);

/* we do not use ssl yet, code therefore omitted ... */

if (BIO_do_connect(vsbio) <= 0) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: cannot connect to host %s port %s", vshost,vsport);

goto vs_free_and_return;

}

/* == */

/* Generate request ... */

vsreq = OCSP_REQUEST_new();

if (!vsreq) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: Error generating OCSP request for %s port %s", vshost,vsport);

goto vs_free_and_return;

}

add_ocsp_vsigncert (vsreq, cert, s, &vsvid);

/* == */

/* send request */

vsresp = OCSP_sendreq_bio(vsbio,path,vsreq);

BIO_free_all(vsbio);

vsbio = NULL;

if (!vsresp) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: Error querying OCSP responder on host %s port %s", vshost, vsport);

goto vs_free_and_return;

}

/* Now extract the result */

i = OCSP_response_status(vsresp);

if (i != OCSP_RESPONSE_STATUS_SUCCESSFUL) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: Bad OCSP response status");

goto vs_free_and_return;

}

bs = OCSP_response_get1_basic(vsresp);

ssl_log(s, SSL_LOG_INFO,

"ValidationAuthority: OCSP_response_get1_basic(vsresp) at line %i", __LINE__);

/* retval: 0 on failure

1 on success */

retval = VS_OCSP_response (bs, vsvid, nsec, maxage, s);

ssl_log(s, SSL_LOG_INFO,

"ValidationAuthority: OCSP_response: Got retval %d at line %i", retval, __LINE__);

/* == */

vs_free_and_return:

//... free all other pending variables ...

ssl_log(s, SSL_LOG_INFO,

"ValidationAuthority for certificate sais: Result=%d",

retval);

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: Returning from VS_ContactVA_OCSP with %d\n",retval);

return retval;

} /* VS_ContactVA_OCSP */

/* The following routine sends the entire certificate to a server */

int VS_ContactVA_CERT(X509 *cert, server_rec *s) {

SSLSrvConfigRec *sc;

char *path = NULL;

char *vshost = NULL;

22 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

char *vsport = NULL;

BIO *vsbio = NULL;

char tmpbuf[1024];

int tmpbuflen;

int retval = 0;

sc = mySrvConfig(s);

path = sc->vsVAPath;

vshost = sc->vsVAHost;

vsport = sc->vsVAPort;

/* == */

/* Connect to host */

vsbio = BIO_new_connect(vshost);

if (!vsbio) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: cannot connect to host %s", vshost);

goto vs_free_and_return;

}

BIO_set_conn_port(vsbio,vsport);

/* we do not use ssl yet, code therefore omitted ... */

if (BIO_do_connect(vsbio) <= 0) {

ssl_log(s, SSL_LOG_WARN,

"ValidationAuthority: cannot connect to host %s port %s", vshost,vsport);

goto vs_free_and_return;

}

/* == */

/* send certificate ... */

PEM_write_bio_X509(vsbio,cert);

tmpbuflen = BIO_read(vsbio, tmpbuf, 1024);

if (tmpbuf[0]==’1’) retval = 1;

else retval = 0;

/* == */

vs_free_and_return:

ssl_log(s, SSL_LOG_INFO,

"ValidationAuthority for certificate sais: Result=%d Answer=%c",

retval,tmpbuf[0]);

return retval;

} /* VS_ContactVA_CERT */

int ssl_callback_SSLVerify_VS(

int ok, X509_STORE_CTX *ctx, server_rec *s)

{

SSLSrvConfigRec *sc;

X509_NAME *subject;

X509_NAME *issuer;

X509 *xs;

long serial;

int i, n, rc;

char *cp;

char *cp2;

X509 *theIssuer;

/* the following variables are new ... */

long v_serial;

int v_result;

/*

* Determine certificate ingredients in advance

*/

sc = mySrvConfig(s);

xs = X509_STORE_CTX_get_current_cert(ctx);

subject = X509_get_subject_name(xs);

issuer = X509_get_issuer_name(xs);

theIssuer = NULL;

v_serial = ASN1_INTEGER_get(X509_get_serialNumber(xs));

cp = X509_NAME_oneline(issuer, NULL, 0);

cp2 = X509_NAME_oneline(subject, NULL, 0);

ssl_log(s, SSL_LOG_INFO,

"ValidationAuthority: Checking certificate with serial %ld (0x%lX) "

"checking CRL from issuer %s with subject %s",

v_serial, v_serial, cp,cp2);

switch (sc->vsServiceType) {

case 1:

v_result = VS_ContactVA_OCSP(xs,s);

break;

case 2:

v_result = VS_ContactVA_CERT(xs, s);

break;

default:

v_result = 0;

break;

}

compiled: 25th March 2002 23

Validation Authority Service IMEDIA/03/02

if (!v_result) {

ssl_log(s, SSL_LOG_INFO,

"Certificate with serial %ld (0x%lX) "

"revoked per CRL from issuer %s",

v_serial, v_serial, cp);

free(cp);

free(cp2);

return FALSE;

}

free(cp);

free(cp2);

return ok;

}

#endif

/* endif VALIDATION_AUTHORITY */

B.5. mod ssl/pkg.sslmod/ssl engine config.c

We set some default parameters for the SSLSrvConfigRec *sc pointer.

void *ssl_config_server_create(pool *p, server_rec *s)

{

SSLSrvConfigRec *sc;

ssl_config_global_create();

sc = ap_palloc(p, sizeof(SSLSrvConfigRec));

sc->bEnabled = UNSET;

sc->szCACertificatePath = NULL;

sc->szCACertificateFile = NULL;

sc->szCertificateChain = NULL;

sc->szLogFile = NULL;

sc->szCipherSuite = NULL;

sc->nLogLevel = SSL_LOG_NONE;

sc->nVerifyDepth = UNSET;

sc->nVerifyClient = SSL_CVERIFY_UNSET;

sc->nSessionCacheTimeout = UNSET;

sc->nPassPhraseDialogType = SSL_PPTYPE_UNSET;

sc->szPassPhraseDialogPath = NULL;

sc->nProtocol = SSL_PROTOCOL_ALL;

sc->fileLogFile = NULL;

sc->pSSLCtx = NULL;

sc->szCARevocationPath = NULL;

sc->szCARevocationFile = NULL;

sc->pRevocationStore = NULL;

#ifdef VALIDATION_AUTHORITY

sc->vsUseVA = 1;

sc->vsServiceType = 1; /* 0=off, 1=OCSP, 2=WVP */

sc->vsVAPath = NULL;

sc->vsVAHost = NULL;

sc->vsVAPort = NULL;

#endif

}

We merge parameters.

/*

* Merge per-server SSL configurations

*/

void *ssl_config_server_merge(pool *p, void *basev, void *addv)

{

SSLSrvConfigRec *base = (SSLSrvConfigRec *)basev;

SSLSrvConfigRec *add = (SSLSrvConfigRec *)addv;

SSLSrvConfigRec *new = (SSLSrvConfigRec *)ap_palloc(p, sizeof(SSLSrvConfigRec));

int i;

cfgMergeBool(bEnabled);

cfgMergeString(szCACertificatePath);

cfgMergeString(szCACertificateFile);

cfgMergeString(szCertificateChain);

cfgMergeString(szLogFile);

cfgMergeString(szCipherSuite);

cfgMerge(nLogLevel, SSL_LOG_NONE);

cfgMergeInt(nVerifyDepth);

cfgMerge(nVerifyClient, SSL_CVERIFY_UNSET);

cfgMergeInt(nSessionCacheTimeout);

cfgMerge(nPassPhraseDialogType, SSL_PPTYPE_UNSET);

cfgMergeString(szPassPhraseDialogPath);

cfgMerge(nProtocol, SSL_PROTOCOL_ALL);

cfgMerge(fileLogFile, NULL);

cfgMerge(pSSLCtx, NULL);

cfgMerge(szCARevocationPath, NULL);

24 compiled: 25th March 2002

IMEDIA/03/02 Validation Authority Service

cfgMerge(szCARevocationFile, NULL);

cfgMerge(pRevocationStore, NULL);

for (i = 0; i < SSL_AIDX_MAX; i++) {

cfgMergeString(szPublicCertFile[i]);

cfgMergeString(szPrivateKeyFile[i]);

cfgMerge(pPublicCert[i], NULL);

cfgMerge(pPrivateKey[i], NULL);

}

#ifdef VALIDATION_AUTHORITY

cfgMergeInt(vsUseVA);

cfgMergeInt(vsServiceType);

cfgMergeString(vsVAPath);

cfgMergeString(vsVAHost);

cfgMergeString(vsVAPort);

#endif

#ifdef SSL_VENDOR

cfgMergeCtx(ctx);

ap_hook_use("ap::mod_ssl::vendor::config_server_merge",

AP_HOOK_SIG5(void,ptr,ptr,ptr,ptr), AP_HOOK_MODE_ALL,

p, base, add, new);

#endif

#ifdef SSL_EXPERIMENTAL_PROXY

cfgMergeInt(nProxyVerifyDepth);

cfgMergeString(szProxyCACertificatePath);

cfgMergeString(szProxyCACertificateFile);

cfgMergeString(szProxyClientCertificateFile);

cfgMergeString(szProxyClientCertificatePath);

cfgMergeString(szProxyCipherSuite);

cfgMerge(nProxyProtocol, (SSL_PROTOCOL_ALL & ~SSL_PROTOCOL_TLSV1));

cfgMergeBool(bProxyVerify);

cfgMerge(pSSLProxyCtx, NULL);

#endif

return new;

}

Functions for parsing the introduced parameters:
#ifdef VALIDATION_AUTHORITY

const char *ssl_cmd_SSLUseVA(

cmd_parms *cmd, SSLDirConfigRec *dc, char *arg)

{

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);

sc->vsUseVA = atoi(arg);

if (sc->vsUseVA < 0)

return "vsUseVA: Invalid argument";

if (sc->vsUseVA > 1)

return "vsUseVA: Invalid argument";

return NULL;

}

const char *ssl_cmd_SSLVAServiceType(

cmd_parms *cmd, SSLDirConfigRec *dc, char *arg)

{

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);

sc->vsServiceType = atoi(arg);

if (sc->vsServiceType < 0)

return "vsServiceType: Invalid argument";

if (sc->vsServiceType > 2)

return "vsServiceType: Invalid argument";

return NULL;

}

const char *ssl_cmd_SSLVAPath(

cmd_parms *cmd, SSLDirConfigRec *dc, char *arg)

{

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);

sc->vsVAPath = arg; /* do we need strcpy here? */

return NULL;

}

const char *ssl_cmd_SSLVAHost(

cmd_parms *cmd, SSLDirConfigRec *dc, char *arg)

{

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);

sc->vsVAHost = arg; /* do we need strcpy here? */

return NULL;

}

const char *ssl_cmd_SSLVAPort(

cmd_parms *cmd, SSLDirConfigRec *dc, char *arg)

{

SSLSrvConfigRec *sc = mySrvConfig(cmd->server);

sc->vsVAPort = arg; /* do we need strcpy here? */

return NULL;

}

#endif

compiled: 25th March 2002 25

Validation Authority Service IMEDIA/03/02

References

[1] Eric Rescorla. SSL and TLS. Addison-Wesley, Upper Saddle River NJ, 2001. See also
http://www.rtfm.com/sslbook.

[2] PKIX Working Group. Internet X.509 Public Key Infrastructure, Certificate and CRL
Profile. IETF, 2002. Available from http://www.ietf.org/internet-drafts/draft-ietf-pkix-
ipki-new-rfc2527-01.txt.

[3] H̊akon Liberg, Per Myrseth, and Jon Ølnes. Validsign, an open meta pki service. Pki cs
paper 5/2001, confidential, PKI Consulting Services AS, 2002.

[4] Heinz Johner, Selei Fujiwara, Amelia Sm Yeung, Anthony Stephanou, and Jim
Whitemore. Deploying a public key infrastructure. Redbook sg24-5512-00, IBM Inter-
national Technical Support Organization, 2000. http://www.redbooks.ibm.com/pubs/
pdfs/redbooks/sg245512.pdf.

[5] H̊akon Liberg. Kort om pki. Pki cs notat 3/2000, http://www.pki.no/kort_om_pki_
2000.pdf, PKI Consulting Services AS, 2000.

[6] Jon Ølnes and H̊akon Liberg. Samtrafikk mellom sertifikattjenester. Pki cs notat 1/2000,
http://www.pki.no/Samtrafikk_2000.pdf, PKI Consulting Services AS, 2000.

[7] Jon Ølnes. Digitale signaturer, sertifikater, tillit og ttp-tjenester. Pki cs notat 1/2001,
http://www.pki.no/Digitale_signaturer_2001.pdf, PKI Consulting Services AS,
2001.

[8] Peter A. Henning. Taschenbuch Multimedia. Fachbuchverlag Leipzig, 2 edition, 2001.

[9] Eric Rescorla. An Introduction to OpenSSL Programming, Part I of II. Linux Journal,
September, 2001. also available on www.linuxjournal.com.

[10] Eric Rescorla. An Introduction to OpenSSL Programming, Part II of II. Linux Journal,
December, 2001. only available on www.linuxjournal.com.

[11] M. Meyers, A. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol. IETF, RFC 2560, 1999.

[12] Michael Myers, Rich Ankney, Carlisle Adams, Stephen Farrell, and Carlin Covey. Online
Certificate Status Protocol, version 2. internet draft, IETF, 2001. Available from http:
//www.ietf.org/internet-drafts/draft-ietf-pkix-ocspv2-02.txt.

[13] A. Malpani, R. Housley, and T. Freeman. Simple Certificate Validation Protocol (SCVP).
internet draft, IETF, 2002. Available from http://www.ietf.org/internet-drafts/
draft-ietf-pkix-scvp-08.txt.

[14] Warwick Ford, Phillip Hallam-Baker, Barbara Fox, Blair Dillaway, Brian LaMacchia,
and Jeremy Epstein. XML Key Management Specification (XKMS). W3c note, W3C,
2001. Available from http://www.w3.org/TR/xkms/.

[15] Peter Gutmann. X.509 Style Guide. web document, University of Auckland, 2000.
Available from http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt.

[16] Karl Fogel. Open Source Development With CVS. The Coriolis Group, 2000. Available
from http://cvsbook.red-bean.com/.

26 compiled: 25th March 2002

