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ABSTRACT 

In radar imagery, the statistical modeling is derived 
from random walk theory because the backscattered 
field is the sum of the contributions of the different 
scatterers at the observed surface. In this paper we 
describe how the dependence of the statistical 
properties of microwave returns from the ground can 
be built into a theoretical model in a consistent way. 
When the number of scatterers varies, the distribution 
of the resulting field may be non-Gaussian. Here we 
derive the field distribution based on the assumption 
of compound Poisson distributions of the number of 
scatterers. We obtain a new set of backscattered field 
distributions including well-known K and Rayleigh 
distributions. These novel classes of probability 
distributions are found to correlate well with 
distributions of radar clutter returns. We assess the 
relevance of the modeling with experimental radar 
data and we compare the fitting results of the new 
distributions to the K and Rayleigh ones. We finally 
point out the explicit dependence between the 
statistical properties of the number of scatterers and 
the surface illuminated by the radar. 

I. INTRODUCTION 

In coherent emission-reception systems such as 
monochromatic radar and laser, images have a 
granular appearance which reduces their grey level 
resolution. Rigden and Gordon as well as Oliver and 
Goodman [1] initially studied its origin on laser 
experiments. In the case of very rough surfaces on the 
wavelength scale, numerous waves are reflected from 
facets also called scatterers at the observed surface. 
Each elementary wave has a random phase. At the 
reception, interference of the monochromatic waves 
can be constructive or destructive, resulting in the 
granular texture in the images called speckle. Many 
fields of physics present similar phenomena, such as 
synthetic aperture radar, acoustic imagery and narrow 
band electric noise.  
Consequently, the statistical formulation is of interest 
for designing detection, segmentation, filtering, 
pattern recognition and performance analysis 
algorithms. These methods need a statistical model 
that is usually obtained by one of the following 
approaches. 
The first one consists of parametric models without a 
priori assumption on the physics of the acquisition 
system. Frankot and Chellappa [2], Trunk and 

Georges [3], Maffett and Wackerman [4] have 
studied the lognormal, Weibull, gamma and the beta 
of first and second kind distributions for specific 
data. More recently, the use of the system of Pearson 
[5] has pointed out the relevance of these two last 
laws in the case of radar data.  
In the second approach, the model is built by 
considering the clutter scattering mechanism. For 
coherent monochromatic systems, the mathematical 
foundations were first established in relation to the 
random walk theory. Because the number of 
interfering waves, their amplitudes and their phases 
depend on the properties of the medium, it is 
necessary to make assumptions about the 
backscattering. In the case of homogeneous cells, 
whose size is large compared to the wavelength, the 
number of scatterers is a large constant and waves are 
statistically identical and independent. Using the 
central limit theorem, the resulting wave is Gaussian 
and its amplitude obeys a Rayleigh law.  
If the size of the structuring elements is of the same 
order as the spatial resolution, the number of 
scatterers may vary from one cell to another. The 
Gaussian model then is not suited to describe the 
resulting electric field. Since the beginning of the 
Eighties, the K law has been used for modeling this 
kind of textures [6-15]. Its genesis results from the 
modeling of the number of scatterers by a compound 
Poisson variable with a gamma random expected 
number of scatterers. This discrete distribution is also 
known as negative binomial distribution. 
In this paper, we extend the family of distributions of 
the number of scatterers by considering generalized 
compound Poisson law. This set of distributions, 
which includes the negative binomial distribution, 
has been chosen in order to cover a large variety of 
distributions. As a consequence, we have new 
parametric distributions for the image intensity, 
which result from the random walk problem not 
converging towards the Gaussian law. 
The new overall distributions also form a set of 
intensity distributions of which we assess the 
modeling and estimating properties. 
This article is organized as follows. 
In section II, we first discuss the mathematical 
formulation of the backscattering from the ground 
surface. We point out the non-Rayleigh behavior of 
the intensity distribution of amplitude radar images. 
Section III is devoted to the statistical modeling of 
the expected number of scatterers.  
In section IV, we calculate the intensity distributions 
by using the system of distributions and the results 
section II. The intensity distributions will also be 
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presented and compared to the classical K 
distribution. 
Section V concerns the automatic selection of a 
member of the intensity distribution system and the 
associated parameter estimation.  
In section VI, fitting results of the novel classes of 
distribution are compared to the Rayleigh regime and 
K law by using the Kolmogorov distance. We show 
that the predictions of the models are found to be in 
qualitative agreement with existing experimental 
data. Moreover, we point out explicit dependence 
between statistical properties of the number of 
scatterers and the surface illuminated by the radar. 
Our conclusions are given in the seventh section. 

II. PRELIMINARIES  

Let us consider the propagation in free space of an 
incident monochromatic wave on a rough surface 
(surface variation much bigger than the wavelength). 
The received field at any moderately distant point 
consists of many coherent components, each arising 
from a different microscopic element of the surface 
called scatterer. These components vary in number 
and geometry according to the nature of the 
observation. The backscattered field from an 
illuminated area takes the form: 
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where N is the number of scatterers,  Ak is the 
amplitude and θk is the phase of the kth component.  
 
Hypotheses  
The  {Ak} and {θk}, k ∈ {1,…,N} are two sets of 
independent and identically distributed variables. The 
distances traveled by these various wavelets may 
differ by several or many wavelengths if the surface 
is really rough. In this case, no phase between 0 and 
2π is preferred, so that the phases are uniformly 
distributed between 0 and 2π. Moreover, the 
amplitudes, phases and number of scatterers are 
independent. 
 
If N is large and constant, we get a circular Gaussian 
distribution for the backscattered field. Its 
components are independent, zero mean and have the 
same variance Nσ2. Consequently, the amplitude is 
Rayleigh distributed and the intensity obeys to an 
exponential law with parameter 1/Nσ2. This model is 
usually accepted for fully developed speckle. 
 
There is a number of ways in which the basic 
assumptions underlying the classical statistics of 
speckle may be violated, leading to modifications of 
the model. Assuming that the resolution is large 
compared to the size of the scatterers, only two cases 
are described in what follows: 
 

1. The phases of the scatterers are not uniformly 
distributed. If the distances traveled by the 
wavelets do not differ by several or many 
wavelengths, then it may no longer be accurate 
to assume that the scatterers have uniformly 
distributed phases on the primary interval. In this 
case, the resulting field is still well modeled as 
complex Gaussian variable, but their components 
no longer have equal means and variances. As a 
result the statistics of the intensity depart from 
the classical negative exponential distribution. 
Barakat has studied this case and modeled the 
phase by a Von Mise distribution. His results 
generalizes the K distribution for weak scattering 
[10,11].  

2. The number of scatterers is a random variable. 
The classical theory of speckle assumes that any 
fluctuations in the number of scatterers 
contributing to the field is negligibly small. This 
hypothesis can be violated particularly if the 
structuring elements at the earth surface are 
relatively big. As a result, the backscattered field 
does not obey a Gaussian law. Modeling of the 
backscattered field consists first in a statistical 
estimation of the number of scatterers’ 
distribution. Negative binomial distribution is 
one possible model [8]. It leads to the K law for 
the amplitude of the resulting field. In this paper, 
we propose a method to recognize and estimate 
the distribution of the number of scatterers, 
which extends the number of laws of the 
backscattered electric field. 

III. NUMBER OF SCATTERERS  

The aim of this section is to show that when the 
number of scatterers is random according to Poisson 
distribution defined by the parameter λ, which is thus 
the "expected number of scatterers", and when λ is 
large enough, then the field F can be considered as a 
circular Gaussian field. 
Since the components of E are independent and 
statistically identical, its characteristic function is: 
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As the phase is uniformly distributed on [0,2π], 
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where t is the modulus of t and J0 is the zero order 
Bessel function of the first kind [16]. 
Now suppose N is itself random and is a realization 
of a random variable N distributed according to a 
Poisson distribution with expectation equal to λ. The 
characteristic function of E becomes : 
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Given the variance of real and imaginary parts of E is 
λσ2, let us put E' = E/ λσ2.  
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Using the increasing order development of J0, we 
have: 
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This result means that the normalized backscattered 
field distribution is zero mean circular Gaussian and 
E is zero mean circular Gaussian with variance λσ2/2. 
Consequently, if the expected number of scatterers is 
large and constant, the Poisson law has no influence 
on the coherent sum of N independent and identically 
distributed contributions.  

Mean number of scatterers 

At this stage, we seek to model the λ variable. This 
variable contains information about the nature of the 
observation. The difficulty of its modeling lies in the 
incapacity of observing it. In this situation, it is 
impossible to guide our parametric distribution 
choice since we do not have the histogram of the 
expected number of scatterers. Consequently, we do 
not propose only one parametric law but a set of laws 
whose shapes are as varied as possible.  
We have taken as a starting point the Pearson’s 
system of distributions to model the λ distribution. 
This system covers a large variety of distribution 
shapes such as U, J, L and bell-shaped densities. 
Since the average number of elementary waves is a 
positive variable, we select the Pearson densities 
having a positive support. This subset contains a 
great number of known parametric laws such as 
gamma, beta of the first kind, beta of the second kind 
and  inverse gamma distributions.  
Our statement about the Pearson’s subsystem is 
rather short, and further details can be found in [17]. 

Compound distribution 

In this chapter, we deal with mixture of discrete 
Poisson distribution. The notion of mixing has often a 
simple and direct interpretation in terms of the 
physical situation. For continuous distribution, 
compounding is commonly used in place of mixing.  

If the original distribution of a random variable is 
PN/λ, depending on the parameter λ, then a compound 
distribution is constructed by ascribing a probability 
distribution to λ. The so called compound distribution 
is  E[PN/λ], the expectation being taken with respect 
to λ. 
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with PN/λ=x(n)=e-xxn/n! ,  n∈IN, λ > 0  the Poisson 
distribution with parameter λ = x.    
and fλ ∈ F={f1, f2, f3, f4}. The set of distributions of λ 
gives rise to a new discrete distribution system for N: 
Π = {P1, P2, P3, P4}. 
The moment generating function of a Poisson random 
variable N  is given by  

EN/λ[etN]=exp(λ(et-1)) 
Therefore, when the generating functions of the 
compound distributions are defined, they have the 
following expression:  

ΨΝ(t) = Eλ[EΝ/λ[ etN]] = Eλ[ eλ(et-1)] = Φλ(et-1) 

λ obeys the beta law of the first kind  

If λ obeys a first kind beta law with scale parameters 
p,q and scale parameter β, the distribution of N is 
called the degenerate hypergeometric of the first kind 
distribution because of its expression: 

( ) ( )
( ) ( )βΦβ −+++
+

= ,qpn,pn
!n

1
q,pB

q,npB
nP k

1  

where Φ  is a degenerate hypergeometric function 
[16]: 
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0 < Re(α) < Re(γ). 
The generating function of the degenerate 
hypergeometric of the first kind is  

( ) ( ))1e,qp,p(Mt t
1 −+= βΨ  

Note that if p and q are close to null, the beta of the 
first kind density tends to two Dirac masses at 0 and 
β. In this case, the compound Poisson distribution 
converges towards a mixture of two Poisson 
distributions with parameters 0 and β respectively.    

λ obeys the gamma law 

If λ is a gamma variable with α as shape parameter 
and β as scale parameter, the distribution of N  is the 
following 
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The negative binomial generating function is 
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The compound distribution is the negative binomial 
distribution, which initially has been used by 
Greenwood and Yule [18] in the accident proneness 
model.  

λ obeys  the inverse gamma law 

If λ is an inverse gamma random variable with shape 
parameter α and scale parameter β, then the discrete 
distribution of N is: 
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where K is the modified Bessel function of the 
second kind [16]. 
P3 is the discrete K distribution. 

λ obeys the beta law of the second kind  

At last, if λ is a beta variable of the second kind with 
p and q as shape parameters and β as scale parameter 
then N is a degenerate hypergeometric variable of the 
second kind:  
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with Ψ the degenerate hypergeometric function [16]. 
(P4 is called the degenerate hypergeometric 
distribution of the second kind). 
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The generating function of the degenerate 
hypergeometric distribution of the second kind is  

( ) ( )( )1e,q,pMt t
4 −−= βψ  

IV. PARAMETRIC DISTRIBUTION OF THE 

INTENSITY. 

For each law {P1,P2,P3,P4} of the number of 
scatterers N, we calculate the distribution of the 
intensity {g1, g2, g3, g4}. The new set of distributions 
forms a system called KUBW in reference to special 
functions K, U, B and W. 

λ obeys the beta law of the first kind  

The intensity distribution is expressed by [19]: 
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where Wλ,µ is the Whittaker function, λ and µ are 
real numbers. 
As the density depends on the Whittaker special 
function, it is called the W probability density 
distribution. Note that this law converges towards the 
well-known K distribution, when q tends to infinity.  

λ obeys the gamma law 

We obtain the K law for the intensity [8]: 
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where K is the modified Bessel function of the 
second kind. 
Let us remember that the K distribution tends to the 
exponential distribution as α tends to infinite.  
Concerning this distribution, many studies were first 
conducted by E. Jakeman and his colleagues [6-8]. 
Let us also mention Oliver [14] who proposed a 
correlated K distribution, Jao [9], who used the K law 
in case of rural illuminated area and Barakat [10,11] 
who obtained distributions in the case of no weak 
scattering.  

λ obeys  the inverse gamma law 

We obtain for the intensity the beta law of the second 
kind. This result is quite interesting because it was 
already suggested by Maffett and Wackerman [4] and 
Delignon [20] in another statistical modeling 
procedure: 
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where α  and β  are parameters of the inverse gamma 
law.   

λ obeys the beta law of the second kind  

The intensity distribution is expressed as follows: 
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where Uλ,µ(.)  is the degenerate hypergeometric 

function with parameters λ and µ .   
The U distribution tends to the K distribution as q 
tends to infinity, whereas it tends to the beta 
distribution when p tends to infinity. 
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V. ESTIMATIO N 

We now proceed to parameter estimation by the 
method of moments. The statistical moments of the 
intensity are expressed in terms of the moments of 
expected number of scatterers: 

( ) ][E1k]I[E kk2k λσΓ +=  
Depending on the distribution of the expected 
number of scatterers, the moments of the intensity are 
gathered in the following table 1.  
Identification of statistical moments and empirical 
ones provides estimators of the I-distributions 
parameters, as showing in table 2 and 3. 
 
 
 
Table 1 : Moments of the expected number of 
scatterers and moments of the  intensity (γ = βσ2) 

λ law E[λk]/βk E[Ik] /γk 

Beta 1st 
kind 
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Table 2 : Estimators of one shape parameter laws 
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Table 3 : Estimators of two shape parameter laws 
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VI. RESULTS 

We now turn to the experimental evidence 
supporting our approach. It is not possible to 
review all of the existing experimental data and 
we shall confine our attention to a JERS1 image 
of Rondonie, which contains five classes with 
various textures (Fig. 2). This image is a 3 looks 
amplitude radar image with 512 by 512 pixels. 
Rondonie is a part of Amazonie where 
cultivation takes the place of the forest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
I 
 
 
n Amazonie, the method of cultivation, called 
'slash and burn', is made in the following way: 
first plots of dense forest are cut and burnt. 
Then, plots of burnt land are put in culture, and 

Fig. 2 : Image JERS1 of Rondonie 
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convert into meadows after two or three years. 
Then other plots of forest are cut, burned and 
transformed into cultivated land. 
 
As the forest of Amazon is very dense, the structuring 
elements are small compared to the spatial resolution 
of the imaging system. In that case, the Rayleigh 
regime is suited. Meadows consist of pasture where 
various vegetation types cover old burnt plots. 
Because the cultivation is not yet mechanized, areas 
are divided in small plots whose size are several 
tenths of meters. The burnt plots contain 
homogeneous burnt vegetation. 
 
For each class, the distributions of the intensity 
are compared to their histogram using the 
Kolmogorov-Smirnov fitting test. This test is 
based on the Kolmogorov statistic, which is a 
distance between the cumulative histogram Fn 
and the cumulative density function F: 

( ) ( )xFxFsupnd n
x

−=  

where n is the size of the sample. 
For each class, table 4 gives estimates of the 
parameters for the K, U, B W and rayleigh regime 
distributions and the Kolmogorov distance between 
theoretical distributions and grey level histogram of 
each class. 

Rayleigh regime 

In table 4, let us note that the smaller the coefficient 
of variation is, the better is the adjustment to the 
histogram (Fig. 3). In burnt plots, where the 
vegetation is reduced to ashes, it is homogeneous and 
there is no fluctuation of the mean number of 
scatterers. In this case, the Rayleigh regime is 
adequate. For other classes, the fitting results are bad, 
probably because the Rayleigh regime assumptions 
are not fulfilled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 B and K laws 
 
These laws offer better fitting results than the 
Rayleigh regime because they have one shape 
parameter and converge to the Rayleigh regime law 
in limit case (Fig. 4, Fig. 5). The larger the shape 
parameter is, the skewer are the B and K densities. 
The fitting results are quite similar for the two 
parametric laws. Indeed, the B law gives the best 
fitting results in case of cultivation and dense forest 
but the K law is better for burnt plot and pasture. 

W and U laws 

W and U laws are both two-shape parameter la ws. 
The K law is a limit case of both W and U 
distributions, and B law is only approximated by the 
U distribution. Let us note that the scale parameter 
estimators of U and W distributions have an opposite 
sign. Accordingly, if one can estimate an histogram 
by one law, the other cannot estimate the grey level 
distribution. Because they have two shape 
parameters, the laws are more flexible than B, K and 
Rayleigh regime laws (Fig. 6). Consequently, their 
Kolmogorov distances are the smallest for three 
classes. 
 
Estimation of the number of scatterers probability 
density function 
 
The estimation results allow us to predict the 
distribution of the number of scatterers for the four 
classes. 
We show the best estimation of the distribution of the 
hidden number of scatterers accordingly to the 
Kolmogorov distance (Tab. 4). 
In Fig. 7, we can see that the distribution of dense 
forest is a Dirac mass. At the opposite, the 
distributions of the mean scatterer in the cases of 
cultivation and pasture have non-zero variance and a 
long tail. These properties come from the variability 
of the medium at the ground. In the case of burnt 
plots, the distribution converges toward the Dirac 
mass at location 15583. The graphs are thus in 
accordance with the theory. Indeed, only the pasture 
and cultivation plots have structural elements with 
approximately the same size as the spatial resolution 
of the imaging system. 
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Fig. 3: Parametric estimation in the case of 
Rayleigh regime 
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Table 4: Estimated parameters and fitting results 
 Burnt 

plot 
Cultivat. Dense 

forest 
Recent 
pasture 

Var. 
coeff. 

0.329 0.489 0.311 0.436 

  Rayleigh  regime  
λσ2  13895 4095 11943 6915 
dn  2.17 47.63 5.164 26.30 
  K law  

α  12.45 1.87 26.78 2.71 
γ  1115,8 2181,6 445.8 2544,9 
dn  3.05 9.65 7.02 2.70 
  B law  

α   13.4 2.87 27.78 3.71 
γ  173020 7687 319930 18798 
dn  3.23 8.16 6.83 6.73 
  W-U law  
 W U W U 

p 1.912 2.78 1.99 2.97 
q  0.205 6.92 0.132 31.51 
γ  15385 8718.2 1273 73186 
dn  1.27    6.37 7.02 2.432 

 
Table 5: Estimated parameters and fitting results 

 Burnt plot Cultivat. Dense 
forest 

Recent 
pasture 

λ 
law 

Beta 1st 
kind 

Beta 2nde 
kind 

Const. Beta 2nde 
kind 

N 
law 

Deg. hyp. 
1st kind 

Deg. hyp. 
2nde kind 

Poisso
n 

Deg. hyp. 
2nde kind 

p 1.91 2.78 - 2.97 
q  0.20 6.91 - 31.51 
γ  153 8718.2 - 73186 

var 1.278 6.374 - 2.432 

VII. CONCLUSION 

In the course of this paper we have described how the 
dependency of the statistical properties of microwave 
returns from the ground can be built into a theoretical 
model in a consistent way. 
The approach is based on the assumption that the 
illuminated surface can be regarded as a random 
number of scatterers giving randomly phased 
contribution to the far field. By modeling the mean 
number of scatterers by judicious compounding 
Poisson distributions, we have introduced a discrete 
distribution system for the number of scatterers and 
also a new system of distributions for the intensity of 
radar images.  We have presented results for these 
probability distributions, and shown explicit 
dependency on the number of scatterers and 
illuminated area. The new system of intensity 
distributions, which includes the K law, has been 
used to fit experimental data. The explicit estimation 
method is given and fitting results are compared to 
those obtained for the K law and for the Rayleigh 

regime. When the size of structural elements at the 
observed surface is close to the spatial resolution of 
the radar, the fitting results show the pertinence of the 
new distributions families. At the opposite, when 
element are smaller than the spatial resolution, the 
Rayleigh regime gives better fitting results. 
The proposed estimation method allows statistical 
modeling of the number of scatterers per resolution 
cell. This information about the ground surface could 
be helpful in further developments of detection, 
classification and pattern recognition algorithms. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 : Parametric estimation with the K law 
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Fig. 5 : Parametric estimation with B law 
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