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1 Introduction 

CRAVA is a program for seismic inversion which has been developed in cooperation between 

Statoil and NR since 2003. The program accounts for spatial continuity in earth parameters and 

assess the uncertainty in the inversion result. The initial idea of CRAVA was published in 

Buland, Kolbjørnsen and Omre 2003.  The seismic data entering the program is 3D volumes of 

pre-stack angle gathers origin from a single seismic survey. The purpose is this note is to 

generalize the method to work for 4D seismic, i.e. data from multiple seismic surveys collected 

over the same region in space, but with a time lag.  In the time between the seismic surveys the 

properties of the rock in the 3D volume has changed, either due to production of hydrocarbons 

or due to injection of CO2. In the note Kolbjørnsen and Kjønsberg 2011, the general framework 

for incorporating 3D inversion in a 4D scheme is developed. In this paper we discuss how to 

merge and split the information of static and dynamic parameters into and form the current 

elastic parameter.  

2 Methodology 

The back bone in CRAVA is a stochastic 3D inversion, which solves the linear inverse problem 

       ,  

   ( ,  ) 

   ( ,  ),   

under given stationarity conditions. In the 4D scheme presented in Kolbjørnsen and Kjønsberg 

(2011), this is the calculations that are made in the updating step, with one exception. In any 

step in the 4D scheme the elastic parameter    in the equations above is a sum of two terms, 

one static and one dynamic, 

           

The current and dynamic parameters should be indexed with a time tag, but since we only 

consider one point in time, we drop this here. For the further progress of the 4D approach it is 

important to separate out the data impact on static and dynamic factors. It is off course not 

possible to   separate these components deterministic, but given the joint prior model of both 

static and dynamic variables, it is possible to compute the joint posterior.    We follow the used 

in the Kalman filer, see details in (Kolbjørnsen and Kjønsberg, 2011). The equation above has 

the dag: 

 

 

We want to obtain the distribution of the static and dynamic variables given the data. We do 

this by computing the reverse arrows of the dag, and integrate out the elastic parameter. We 

present the general solution to this problem using matrix notation. This solution is off course 

not feasible to implement for high dimensional data as seismic amplitudes. However in CRAVA 
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we do the computations in the Fourier domain where each frequency can be solved 

independently. To simplify notation we do not introduce the frequency-wavenumber index in 

the computations, but it is understood that all computations should be done for each frequency-

wavenumber combination, thus the dimension of the current elastic parameters is 3.  

The standard CRAVA computes the distribution  

This provides the inversion of the right arrow of the dag.  Thus the next step is to provide the 

inverse of the left arrow.  Let the joint distribution of    and     be given as: 

This distribution is defined through the prior model formulation discussed in Kjønsberg and 

Kolbjørnsen (2011), and the Kalman filter relations in Kolbjørnsen and Kjønsberg (2011). We 

now investigate the joint distribution of    ,  , and   : 

With:  

The covariance matrix in the joint distribution is singular, but this will not influence the 

computations below. The conditional distribution of static and dynamic component given the 

distribution of the sum is given by standard relations of Gaussian inversion.  

This distribution is again singular, to acknowledge that the distribution is singular, compute the 

distribution of       , and see that the mean of this is   and the variance is 0. This provides 

the inversion of the left arrow in the dag, and thus allows us to use the following dag: 

 

c c c ss ds sd dd

s s ss sd ss sd

ddd d ds dd ds

,N







          
      

         
              

m

m

m

   

   

   

   

   

s| ss| sd|s

c

ds| dd|d d|

1

s| s ss sd c c c

1

d| d dd ds c c c

1

ss| ss ss sd c ss ds

1

dd| dd dd ds c dd sd

1

sd| sd ss sd c dd sd

ds

,
m m m

m mm

m

m

m

m

m

N




  

  











      
              

     

     

        

        

        



m
m

m

m

m

   1

| ds dd ds c ss dsm

       

𝒎𝑠,𝒎𝑑 

𝒎 𝒎

 
𝒎𝑐 𝐝𝐚𝐭𝐚⬚ 

 c c|data c|data( | data) ,p N  m

s s ss sd

d d ds dd

,N




        
      

       

m

m

c s d

c ss ds sd dd

   

     



6 

 

The sought distribution is that of      and    given the data. This can now be computed by 

integrating out    using the inverse relations above.  Thus the inverse relation is: 

 

Again notice that if one consider the posterior distribution of the sum of    and   , we get 

back the posterior distribution of      The center part of the reduction of the covariance matrix 

has the form: 

 We see that if the posterior of the elastic parameter equals the prior, then there is no reduction 

in the posterior for neither the static nor the dynamic part. 

3 Small examples 

We look at two small examples, using the dimension 3 for all involved variables. This is the size 

of the variables in the Fourier domain.   The functions split and merge are implemented in 

Matlab and supplied in appendix.  We consider the two prior distributions, with mean and 

covariance: 
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1.0 3.0 0.0 0.0 0.5 0.0 0.0

2.0 0.0 2.0 0.0 0.0 1.0 0.0

3.0 0.0 0.0 1.0 0.0 0.0 1.5
,

3.0 0.5 0.0 0.0 1.0 0.0 0.0

2.0 0.0 1.0 0.0 0.0 2.0 0.0

1.0 0.0 0.0 1.5 0.0 0.0 3.0
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Note the only difference is the covariance in the cell (1,2) , and (2,1).  The current prior 

distribution is then respectively: 

  

Assume that the posterior distribution for the current elastic parameter is: 

for both priors. We find the posterior distributions to be  

 

and  

1.0 3.0 0.5 0.0 0.5 0.0 0.0

2.0 0.5 2.0 0.0 0.0 1.0 0.0

3.0 0.0 0.0 1.0 0.0 0.0 1.5
,

3.0 0.5 0.0 0.0 1.0 0.0 0.0

2.0 0.0 1.0 0.0 0.0 2.0 0.0

1.0 0.0 0.0 1.5 0.0 0.0 3.0

   
   
   
   
   
   
   
      
   

4.0 5.0 0.0 0.0

4.0 , 0.0 6.0 0.0

4.0 0.0 0.0 7.0

   
   
   
   
   

4.0 5.0 0.5 0.0

4.0 , 0.5 6.0 0.0

4.0 0.0 0.0 7.0

   
   
   
   
   

0.0 1.0 0.0 0.0

0.0 , 0.0 2.0 0.0

0.0 0.0 0.0 3.0

   
   
   
   
   

1.800 1.040 0.000 0.000 0.340 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 0.000

1.571 0.000 0.000 0.490 0.000 0.000 0.582
,

1.800 0.340 0.000 0.000 0.640 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000
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respectively.  Comparing the results we see that when both the prior and posterior covariance 

of the current seismic parameter is independent, the problem is isolated for each elastic 

parameter. When we introduce correlation between two of them, we find that this influence 

both the posterior mean and covariance of these two parameters, whereas the third parameter 

remains unchanged. In general the correlation between static and dynamic parameters is lower 

in the posterior than in the prior. This is natural since an exact observation of the current 

variable, would give perfect negative correlation between static and dynamic parameters.  

 

4 Conclusion 

The decomposition presented in this note makes integration of 4D inversion in CRAVA simple. 

We only need to provide the prior mean and covariance as input to CRAVA. CRAVA can then 

invert in a standard fashion. After the CRAVA inversion we can use the prior and posterior 

mean and covariance to determine the posterior mean, variance, and covariance of the static 

and dynamic parts.  
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Appendix: Matlab code  

function [mu_c Sigma_c]=mergeMeanAndVariance(mu_b,Sigma_b) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% input:  
%   mu_b:      Prior expectation of stationary and dynamic elastic parameters 
%   Sigma_b:   Prior covariance of stationary and dynamic elastic parameters 
%    
%  output:     
%   mu_c:     Prior expectation of current elastic parameters 
%   Sigma_c:  Prior covariance of current elastic parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n = size(Sigma_b,1); 

  
if(n/2~=round(n/2)) 
  Error= 'Input of wrong dimension (not even)' %#ok<NASGU> 
else 
  m=n/2; 
  A=[eye(m) eye(m)]; 
  mu_c=A*mu_b; 
  Sigma_c =  A*Sigma_b*A';      
end; 

 

 

 

function [mu_bd Sigma_bd]= splitMeanAndVariance(mu_b, Sigma_b,mu_cd, Sigma_cd) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  input:  
%   mu_b:      Prior expectation of stationary and dynamic elastic parameters 
%   Sigma_b:   Prior covariance of stationary and dynamic elastic parameters 
%   mu_cd:     Posterior expectation of current elastic parameters 
%   Sigma_cd:  Posterior covariance of current elastic parameters 
%    
%  output:     
%    mu_bd:     Posterior expectation of stationary and dynamic elastic parameters 
%    Sigma_bd:  Posterior covariance of stationary and dynamic elastic parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n = size(Sigma_b,1); 
m = size(Sigma_cd,1); 

  
if(n~=2*m) 
  Error= 'Missmatch of dimensions' %#ok<NOPRT,NASGU> 
else   
  [mu_c  Sigma_c]=mergeMeanAndVariance(mu_b,Sigma_b); 
   if(min(eig(Sigma_c-Sigma_cd)>=0) ) 

    
    A=[eye(m) eye(m)];  
    Sigma_bc=Sigma_b*A'; 

     
    mu_bd = mu_b+Sigma_bc*(Sigma_c\(mu_cd-mu_c)) ; 
    h1=(Sigma_bc/Sigma_c); 
    Sigma_bd= Sigma_b - h1*(Sigma_c-Sigma_cd)*h1' ; 

     
   else 
     Error = 'Prior and posterior variance are inconsistent' %#ok<NOPRT,NASGU> 
   end;   
end; 

  

 
 

 

  

 

 

 


