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1 Introduction

Projecting future precipitation amounts and dry periods are important aspects, for ex-
ample when making constructions that should withstand a 100 year flood or when mak-
ing sure that a city has enough drinking water supplies for the future. To estimate future
climate changes, global circulation models (GCMs) are used to simulate changes on a
global scale. However, to project climate changes locally with some precision, regional
climate models (RCMs) with finer resolution are constructed with boundary conditions
from a GCM. These regional models often suffer from various biases, and it is useful to
develop bias correction methods (BCMs) that can be applied to the local model outputs.

In this note we will examine properties of the precipitation projections over Fennoscandia
(Finland, Sweden and Norway) for the years 1980 to 2005. This will be examined for five
combinations of GCMs and RCMs from EURO-CORDEX and four BCMs applied to some
of these. We will focus on using the integrated quadratic distance (IQD) for evaluating the
fit of the models against data from three different data products, namely E-OBS, NGCD
type 1 and NGCD type 2 (see Section 3.3). The two main aspects we will examine are the
daily precipitation data and the number of dry-day periods and their lengths. This will
be performed separately for the summer and winter seasons.

Previously, the IQD between the same combination of RCMs and BCMs has been calcu-
lated against the E-OBS data product (Vandeskog et al. (2017)). The results showed that
the BCM that had been trained on the E-OBS data product, LSCE-IPSL-CDFt-EOBS10-
1971-2005, performed significantly better than all other correction methods. It is therefore
of interest to compare the model output using data products that none of the BCMs have
been trained on. This is the purpose of comparing the model outputs against NGCD type
1 and 2 data products.

The remainder of the note is organized as follows. Section 2 describes the data used for
all evaluations. The theory behind IQD, the different BCMs and the interpolation for the
different data products are explained in Section 3. Section 4 explains how we obtained
our results, which are presented and discussed in Section 5. Finally, the conclusion is
provided in Section 6.
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2 Data

2.1 Climate models
A total of five different combinations of GCMs and RCMs from EURO-CORDEX are
chosen for the evaluation. These can be seen in Table 1. Each model output contains daily
precipitation data from various start and end dates. The precipitation is measured in
kg m−2 s−1. There has also been conducted several bias corrections to the climate model
outputs. The correction methods are listed in Table 2.

Table 1. Five global/regional climate model combinations from EURO-CORDEX used in our test-
ing.

Model
nr.

Global climate model Ensemble
member

Regional climate
model

Institute Institution name

1 CNRM-CERFACS-CM5 r1i1p1 CCLM4-8-17 CLMcom Climate Limited-area
Modelling Community

2 ICHEC-EC-EARTH r1i1p1 RACMO22E KNMI Royal Netherlands Met-
eorological Institute

3 ICHEC-EC-EARTH r2i1p1 CCLM4-8-17 CLMcom Climate Limited-area
Modelling Community

4 MPI-ESM-LR r1i1p1 CCLM4-8-17 CLMcom Climate Limited-area
Modelling Community

5 MPI-ESM-LR r1i1p1 REMO2009 MPI-CSC Helmholtz-Zentrum
Geesthacht, Climate
Service Center, Max
Planck Institute for
Meteorology

Table 2. Four bias correction methods applied to the EURO-CORDEX simulations.

Method
nr.

Bias correction method Calibration data
set

Years Institution name Applied
to model
nr.

1 LSCE-IPSL-CDFt EOBS10 1971-2005 Institut Pierre Simon
Laplace

1,2,3,4,5

2 METNO-QMAP MESAN 1989-2010 Norwegian Meteorological
Institute

1,2,3,4,5

3 SMHI-DBS45 MESAN 1989-2010 Swedish Meteorological and
Hydrological Institute

1,2,4,5

4 IPSL-CDFT21 WFDEI 1979-2005 Institut Pierre Simon
Laplace

2,3,5

2.2 Preparation of data
The data for all model outputs and data products are stored in different NetCDF-files
and have to be prepared before they are analysed. Several files may have to be merged
in order to get data for the entire period from 1980 to 2005. All unwanted data must
also be removed. This concerns data before 1980, after 2005 and February 29. This day is
removed to make sure each year has the same number of measurements for all the data
sets. Additionally, only locations that contains precipitation data for all model outputs
and data products are interesting for comparisons. All other locations are removed. We
end up with a matrix of dimension 140 × 155 that covers the area seen in the figure on
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the front page of the note. Data is then sorted by season, where summer consists of June,
July and August, and winter consists of December, January and February. This gives a
total of 92 observations per summer and 90 observations per winter.

2.2.1 Climate models
While all the observational data products use mm as a unit for precipitation, the climate
models use kg m−2 s−1. This must be converted to mm. Some model outputs contain neg-
ative precipitation values, but these have small absolute values and are likely due to
rounding errors. The negative values are thus set equal to zero. Testing finds that the
number of zeros after the conversion of negative values has the same magnitude as the
number of zeros for model outputs with only non-negative data.

2.2.2 E-OBS
The precipitation unit for E-OBS is already in mm, and the E-OBS data product is not in
need of any specific preparations.

2.2.3 NGCD
The coordinates of the NGCD data products are represented using a Lambert azimuthal
projection, which is different than that of the other model outputs and data products. In
order to compare this with all other model outputs, a projection onto the same coordin-
ates is needed. The NGCD data products also have a much higher resolution than that of
the model outputs and E-OBS data product. For all other data sets, precipitation is given
in a 12 × 12km2 grid, while NGCD precipitation is given in a 1 × 1km2 grid. It is there-
fore necessary to perform an upscaling of the data before comparisons can be initiated. To
perform upscaling, the weighted sum of precipitation for all high resolution grids inside
a large RCM grid is calculated. Weights are equal to the fraction of each high resolution
grid cell that is inside a given large grid cell. If e.g. 40% of a 1 × 1km2 grid cell is covered
by a given 12 × 12km2 grid cell, then 40% of the small grid cells precipitation will be
added to the large grid.
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3 Theory

3.1 IQD
We denote a precipitation observation by y ∈ Ω where Ω denotes the non-negative real
axisR≥0. Similarly, for dry-days, we have that y is the length in days of a dry period with
Ω = {0, 1, 2, . . .}. A probabilistic prediction for y is given by a distribution function with
support on Ω denoted by F ∈ F for some appropriate class of distributions F , with the
density denoted by f if it exists.

Scoring rules assess the accuracy of probabilistic predictions by assigning a numerical
penalty to each prediction-observation pair. Specifically, a scoring rule is a mapping

S : F × Ωd → R ∪ {∞} (1)

where, in our notation, a smaller penalty indicates a better prediction. A scoring rule is
proper relative to the class F if

EGS(G, Y ) ≤ EGS(F, Y ) (2)

for all probability distributions F,G ∈ F , that is, if the expected score for a random
observation Y is optimized if the true distribution of Y is issued as the prediction. The
scoring rule is strictly proper relative to the classF if (2) holds with equality only if F = G.
Propriety will encourage honesty and prevent hedging, which coincides with Murphy’s
first type of goodness (Murphy, 1993).

In some cases, in particular in climate modelling, it is of interest to compare the predictive
distribution F against the true distribution of the observations which is commonly ap-
proximated by the empirical distribution function of the available observations y1, . . . , yn,

Ĝn(x) =
1

n

n∑
i=1

I (yi ≤ x) . (3)

The two distributions, F and Ĝn, can be compared using a divergence

D : F × F → R≥0 (4)

where D(F, F ) = 0.

Assume that the observations y1, . . . , yn forming the empirical distribution function Ĝn

are independent with distribution G ∈ F . A propriety condition for divergences corres-
ponding to that for scoring rules (2) states that the divergence D is k-proper for a positive
integer k if

EGD(G, Ĝk) ≤ EGD(F, Ĝk) (5)

and asymptotically proper if

lim
k→∞

EGD(G, Ĝk) ≤ lim
k→∞

EGD(F, Ĝk) (6)
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for all probability distributions F,G ∈ F (Thorarinsdottir et al., 2013). While the condi-
tion in (6) is fulfilled by a large class of divergences, only score divergences have been
shown to fulfil (5) for all integers k. A divergence D is a score divergence if there exists a
proper scoring rule S such that D(F,G) = EGS(F, Y ) − EGS(G, Y ). A score divergence
that assesses the full distributions is the integrated quadratic distance (Thorarinsdottir et al.,
2013):

IQD(F,G) =

∫ +∞

−∞
(F (x)−G(x))2 dx (7)

In the following, we will apply the IQD to compare empirical distributions of climate
model output and observations.

3.2 Bias correction methods
All the BCMs tested in this note work mostly in the same way. They use a data set with
precipitation data as calibration, then the distribution from a raw model output is trans-
formed to fit better with the calibration data. The calibration data sets and the various
transformations, however, differ in the correction methods we examine.

3.2.1 QMAP
This popular BCM approach is based on the quantile-mapping technique (Gudmundsson
et al., 2012). The technique maps a model output x with cumulative distribution function
(CDF) FX , to an observation y with CDF FY through a function h (Vrac et al., 2016):

y = h(x), such that FY (y) = FX(x) (8)

Bias correction method 2 uses such a quantile-mapping technique. It can be found in the
R package qmap (R Core Team, 2016).

3.2.2 CDFt
The Cumulative Distribution Function-transform is used in bias correction method 1 and
4, and can be considered a variant of the empirical quantile-mapping, with h given as

h(x) = F−1Y (FX(x)), (9)

where F−1 is the inverse function of the CDF F (Gudmundsson et al., 2012). It first estim-
ates the CDF FY p and FXp over a projection time period before applying the distribution-
derived quantile mapping in (9) (Vrac et al., 2016). It is unknown to us whether there are
any differences in the techniques of the LSCE-IPSL-CDFt method and the IPSL-CDFT21
method.

3.2.3 DBS45
Bias correction method 3 uses a distribution-based scaling for correcting RCMs. First, the
number of wet days is adjusted. This is done by identifying a cut-off value that reduces
the percentage of wet days in the simulation to that of the MESAN observations. Then all
days with less precipitation than the threshold are considered dry days. The remaining
precipitation is then transformed to match the observed frequency distribution, using
gamma distributions (Yang et al., 2010).
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3.3 Interpolation methods
Three different data products containing daily precipitation over Fennoscandia are used
for testing the different model outputs. The first one is the E-OBS data product, and the
other two are the NGCD type 1 and the NGCD type 2 data products. All data products are
created from a set of observations from different weather stations. Interpolation schemes
are then added to the data in order to achieve a gridded data set.

3.3.1 E-OBS
The interpolation scheme for the E-OBS data product is divided into three steps. First,
monthly means are interpolated using thin-plate splines. Secondly, kriging is used on
anomalies with regard to monthly mean. Lastly, the interpolated anomalies are applied
to the interpolated monthly mean (Haylock et al., 2008).

3.3.2 NGCD type 1
In the NGCD type 1 data product, the true precipitation at each measuring location is
predicted using a scheme proposed in Førland et al. (1996). Spatial interpolation of pre-
cipitation is then carried out by applying two irregular triangular networks (TINs). One
is a precipitation TIN based on observed precipitation corrected for wind loss. The other
is an elevation TIN based on the altitudes of the observation stations (Tveito et al., 2005).

3.3.3 NGCD type 2
The interpolation scheme in the NGCD type 2 data product is based on Bayesian spatial
interpolation methods and scale-separation concepts (Lussana et al., 2018).
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4 Methods

4.1 Precipitation
We want to evaluate the IQD for daily precipitation for the observational data products
and the chosen climate models, separately for each grid point. To perform this we make
18 comparisons per model. One for each year between 1984 and 2001. We compare one
year from one of the data products with nine years of model data: four years before and
four years after in addition to the year we want to examine. This gives a total of 90 or
92 observations from a data product and 810 or 828 observations from a climate model
output for each comparison. After calculating the IQD for each of the 18 comparisons,
we find the mean IQD for the entire period in each grid point. In addition to finding IQD
between model outputs and data products, IQD is also calculated between the different
data products. To find IQD between two data products, one of the data products simply
acts as a model output, and 18 comparisons are found per grid point. This gives nine
results when comparing three data sets, all acting as both model output and data product.
Data products are also compared against themselves.

4.2 Dry-days
To examine how well the models predict dry periods, we make a vector that counts all dry
periods from 1980 to 2005 for each grid point. Data is stored in a way such that the num-
ber of dry periods of length n days is stored in entry number n of the vector. This gives
an array of size 140 × 155 ×maxLength, where maxLength is equal to 90 or 92, depend-
ing on what season we examine. We get two of these arrays per climate model. Since dry
periods of small length are not very interesting, we remove the first seven entries of our
data and only examine dry periods of length greater than one week. A dry-day is hereby
defined as any day without precipitation and where there has been no precipitation in the
last seven days. A dry-day period is defined as any period of days without precipitation
that contains at least one dry-day. We then calculate the IQD for our data. This time we
only have one array per season for the entire period, so we only get one comparison per
grid point. Although the IQD of something with the unit "# dry-day periods of length
n ∈ {8, 9, 10, ...,maxLength}" provides little physical understanding, it is still useful for
comparing the different model outputs against each other. Once again, the data products
are also compared with each other. This time there is symmetry between model outputs
and data products, meaning that the comparison of three data products only yields four
unique results, including zero which represents the IQD between a data set and itself.
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5 Results and discussion

5.1 Precipitation
After having found IQD values in a 140 × 155 grid for each combination of RCMs and
BCMs against all three data products, the mean IQD over all grid points is calculated.
Figure 1 displays the resulting IQD values during both summer and winter. It seems
clear from the figure that the bias correction generally improves the IQD values of the
raw RCM data. It can also be seen that the IQD between two data products often is lower
than that for the model outputs. However, there is not a clear conclusion, as this does
not always hold. Some of the RCMs have lower IQD than that of other data products. An
example of this can be seen in the two middle plots, where the IQD of NGCD type 1 is
found in the middle of a cluster of IQD values for bias corrected model outputs. Also, in
the upper left and right plots, some of the raw model outputs are better than their bias
corrected variants. This only happens for two of the raw models, though.

Figure 1. Scatter plot with the mean IQD for precipitation for all available combinations of RCMs
and BCMs. Colour indicates climate model, while shape indicates raw data and bias correction
methods. The axes present IQD against different types of data products.

We can perform bootstrapping over the IQD across all grid cells to examine the uncer-
tainty in the mean IQD. Figure 2 displays the mean precipitation IQD along with 0.1-
and 0.9-quantiles for all RCMs, BCMs and data products. For E-OBS, it is known that the
bias correction method trained on the E-OBS data product, displayed as a filled square,
performs better than all the other BCMs. This can be seen in the two leftmost plots. The
results are not the same for the two other data products. During the summer period, the
E-OBS trained correction method still performs better than the others. The differences
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from the other BCMs seems to be smaller this time, though. During winter the perform-
ance of the E-OBS correction method is much worse, and this time other BCMs gain lower
mean IQD. We can see, due to the very small distance between the 0.1- and 0.9-quantiles,
that all results are significant.

Figure 2. Ranking of the mean precipitation IQD for all RCMs and BCMs. Bootstrapped 0.1- and
0.9-quantiles for the mean are included in the plots. The ranking is performed for IQD against
three different data products for summer and winter.

Overall it looks like LSCE-IPSL-CDFt-EOBS10-1971-2005 and SMHI-DBS45-MESAN-1989-
2010 are the two BCMs with the highest general skill across the three data products. How-
ever, the difference between BCMs seems quite small. One can also see that the difference
in IQD values for bias corrected RCMs and data products is small. The IQD between a
data product and itself should logically be the lowest score one can obtain. Many of the
BCMs come very close to this IQD, indicating that all of the four BCMs work well. We
also see that the IQD after bias correction is much lower for almost all the RCMs. This in-
dicates that bias correction improves the model outputs. Clustering of points of the same
shape (BCM type) can be seen all over the ranking plots. However, the colours (model
type) are almost spread evenly throughout the plots. Thus, it seems likely that the change
in IQD after bias correction depends most on which BCM is used, not on the choice of
which RCM is used.
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5.2 Dry-days
A similar scatter plot to that of Figure 1 is made for the dry-days. The result can be seen in
Figure 3. Once again the IQD seems to be somewhat smaller between data products than
for the BCMs, and the raw climate model outputs have an even higher IQD than their
bias corrected variants. However, these figures are more chaotic than the ones for pre-
cipitation. From the "ellipsis-shape" in the four leftmost figures it seems that any model
output with a low IQD from the E-OBS data product obtains a high IQD from the NGCD
data products, and vice versa.

Figure 3. Scatter plot with the mean dry-day IQD for all RCMs and BCMs. Colour indicates climate
model, while shape indicates raw data and bias correction methods. The axes present IQD against
different types of data products.

The ranking of the different model outputs are examined in Figure 4. We see that the
LSCE-IPSL-CDFt-EOBS10-1971-2005 corrected models, which perform very well against
the E-OBS data product, obtains among the highest IQD against the NGCD data products.
In many cases they have a higher IQD than their raw RCMs. On the other hand, SMHI-
DBS45-MESAN-1989-2010 corrected models have a very low IQD against the NGCD data
products, but their IQD score against the E-OBS data product is much higher. We can also
see from this figure that the IQD for raw climate model outputs sometimes can be found
in the lower half of the IQD ranking. Most of the raw model outputs still have a very high
IQD, but it is clear by comparisons with Figure 2 that the improvement after bias correc-
tion is larger for precipitation IQD. Once again we see that the colours are spread evenly
out in the plots, and it seems once more that choice of BCM is much more important than
that of RCM.

It seems hard to choose one BCM that is better than the others when we examine dry-
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Figure 4. Ranking of the mean dry-day IQD for all RCMs and BCMs. Bootstrapped 0.1- and 0.9-
quantiles for the mean are included in the plots. The ranking is performed for IQD against three
different data products for summer and winter.

days IQD. However, from Figure 4 we also see that the IQD between data products is
often among the highest IQD. Both figures give an impression that the difference in dry-
days between E-OBS and NGCD is quite significant. This can indicate that all the RCMs
predict dry-days quite well, thus making it look like the IQD between NGCD and E-
OBS is very large. Another possibility is that the different data products have different
underlying methods for dealing with dry-days, and that either one or all of them are
somewhat faulty.

In order to examine the differences in dry-days between E-OBS and the NGCD data
products, the histograms in Figures 5 and 6 are created. Figure 5 displays the total length
of all dry-day periods occurring at each grid point. It is clear that the number of dry-days
per location is much lower for NGCD type 1 than the other two data products. E-OBS
has a large number of dry-days at each grid point, and NGCD type 2 can be found some-
where in the middle of the two. However, the shape of the empirical distribution for
the sum of all dry-days in the NGCD type 2 data product appears to be more similar to
the shape found in the NGCD type 1 data product. This can help explain why the IQD
between E-OBS and NGCD type 2 is smaller than the IQD between E-OBS and NGCD
type 1 in Figure 4. It does not, however, explain why the difference between the E-OBS
data product and the NGCD data products is so large.

In Figure 6 the weighted mean length of all dry-day periods is calculated for each grid
point. Weights are set to be the number of occurred dry-day periods of each length i.e.
if a location has 5 dry-day periods of length 8 and 4 dry-day periods of length 9, the
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Figure 5. Histograms displaying the sum of the lengths of all dry-day periods at a given grid point,
for all grid points. This is performed for all three data products, during summer and winter.

weighted mean length becomes (8 · 5 + 9 · 4)/(4 + 5) = 8.44. In this figure there is a clear
difference between the NGCD and the E-OBS data products. The weighted mean seems
to be half a day larger for the E-OBS data product. It is obvious from this figure that the
behaviour of dry-day periods is different in E-OBS than in NGCD. This could mean that
there are fewer short and more long dry-day periods in E-OBS.

To examine this further, the empirical distributions for the length of all dry-day periods
in the three data products are plotted in Figure 7. One can see that the empirical distri-
butions of the NGCD data products are practically identical, while there is a significant
difference compared to the E-OBS data product, which has many more dry-day periods
of greater length. In order to understand the importance of this difference, a new plot is
made in Figure 8. The same distributions from the data products are displayed, however
this time they are plotted on log-scale. We have also added the empirical distributions
from the four different BCMs to the plots. One can see that the distributions belonging to
the LSCE-IPSL-CDFt-EOBS10-1971-2005 BCM are much closer to the distributions of E-
OBS than those of NGCD. The distributions from SMHI-DBS45-MESAN-1989-2010 and
IPSL-CDFT21-WFDEII-1979-2005 are also much closer to the distributions from NGCD
than that of E-OBS. This fits perfectly well to what was discovered from Figure 4, which
means that we possibly have explained the large differences found in dry-day IQD.
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Figure 6. Histograms displaying the weighted mean length of all dry-day periods per grid point.
Weights are set to be the number of occurred dry-day periods of each length. The plots display
results for all three data products, during summer and winter.

Figure 7. Empirical distributions for the length of all dry-day periods over all grid points. One
distribution is made for summer, and one for winter.
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Figure 8. Empirical distributions for the length of all dry-day periods over all grid points. Distribu-
tions are plotted in log-scale, and one sub-figure is created for each BCM.
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6 Conclusion

We have seen that, for our data, a bias corrected regional climate model output almost al-
ways achieves a lower IQD score than the raw model output. We have also found that the
change in IQD after bias correction depends the most on which bias correction method is
used, not on the choice of which climate model to use.

From previous testing with only the E-OBS data product available, LSCE-IPSL-CDFt-
EOBS10-1971-2005 obtained a much lower IQD than all other BCMs and was deemed the
best correction method. When testing against the NGCD data products as well we found
that LSCE-IPSL-CDFt-EOBS10-1971-2005 still performs well, but now it is often beaten
by other BCMs and the overall differences between the BCMs are much smaller. We have
found that the data product used in training a BCM greatly affects the result, and the
use of the same data product for testing can return overly positive results. Therefore one
should always use a completely new data product for testing climate model outputs after
bias correction.

When examining precipitation IQD we find that LSCE-IPSL-CDFt-EOBS10-1971-2005 and
SMHI-DBS45-MESAN-1989-2010 seems to be the most promising bias correction meth-
ods. However, all bias correction methods clearly improve the IQD score, and when com-
paring with IQD between two data products we can conclude that all four bias correction
methods seem to be promising.

When examining dry-days IQD we find that there is a large difference between the E-
OBS and the NGCD data products, meaning that one or more of the data products prob-
ably is faulty when considering dry-days. The difference between the data products is
that E-OBS obtains a higher percentage of very long dry-day periods than the NGCD
data products. Because of this difference it is hard to say much about the bias correction
methods. LSCE-IPSL-CDFt-EOBS10-1971-2005 agrees with E-OBS, while SMHI-DBS45-
MESAN-1989-2010 and IPSL-CDFT21-WFDEII-1979-2005 agree with NGCD. Without fur-
ther knowledge of the data products we cannot conclude which of these bias correction
methods works best when predicting dry-day periods.
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