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Figure 1. Schematic representation of Neyman-Scott cluster process.

1 Introduction

In the old days, finding a cluster of galaxies was apparently done by putting up a pho-
tograph of the heavens on the wall, stepping back from it, and squinting to determine
which belong together (J. Neyman, personal communication to the second author). Ney-
man et al. (1956) outline a stochastic model for cluster of galaxies, specifying the assump-
tions needed for the model and outlining how to use data to estimate parameters in this
well-known Neyman-Scott cluster model (Guttorp, 1995, p. 232). Figure 1 is a schematic
representation of the process, where large dots correspond to cluster centers (primary
points), lines connect secondary points to cluster centers, snd for each cluster the number
N of points is indicated. The stochastic structure is that the secondary points connected
to a primary point are independent processes, obtained by putting a random number of
points independently around the primary point.

In this work we will consider a different situation in which clusters also occur naturally
(Waller et al., 2011), namely epidermal nerve fiber bundles. The data set contains both
the common origins deep in the epidermis and the nerve entries near the top of the skin.
Thus, we know the primary cluster centers, the secondary cluster points, the distances
between primary and secondary points, and the number of points in each cluster. We
will use a model similar to that developed by Andersson et al. (2016). Figure 2 shows the
observations for one of the subjects. But our goal in this work is to investigate to what
extent we can reconstruct unobserved aspects of a cluster process from observed parts
and the model. Suppose for example that we know what points are primary and what

Does Bayes beat squinting? Estimating unobserved aspects of a spatial cluster process
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Figure 2. Observations for one individual: (a) Full cluster information with primary points indicated
by black dots and secondary points indicated by circles, (b) primary and secondary points without
family relations, (c) secondary points only.

points are secondary, but not which secondary points correspond to a given primary
point. Can we successfully reconstruct the complete connectivity pattern?

Albert-Green (2016) developed a hierarchical cluster process for modelling spatio-temporal
storm cell data in which a Neyman-Scott process, with the parents assumed to follow a
log-Gaussian Cox process, was specified. Parameter estimation was accomplished by em-
ploying minimum contrast estimation for the spatial and temporal projection processes
(Møller and Ghorbani, 2012; Prokešová and Dvořák, 2014). For both projections, the para-
meters in the second level of the hierarchy were estimated conditional on those of the
first, as developed in Wiegand et al. (2007). Although these results were satisfactory, this
required introducing extra tuning parameters. By extending the methodology developed
in this paper, parameter estimation could be performed using a more parsimonious para-
metric approach.

We will, in subsequent sections, look at two different reconstruction problems, and using
data from Kennedy et al. (1996) discuss algorithms for the reconstructions. After introdu-
cing some notation in section 2, we try to identify what secondary points belong to what
cluster (knowing the cluster centers) in section 3, while in section 4 we try to determine
the cluster centers observing only the secondary points. Some issues of discussion can be
found in section 5.

2 Point process model with clustering

Write the primary process Ψ = (c, γ) = {(cj , γ)} where the primary points cj ∈ R2

and the expected cluster size γ ∈ R+. We will assume that the cluster centers follow a
Poisson process. Following Baddeley (2010), we denote the offspring (secondary) process
by Φ = (x,m) = {(xi,mi)}, where the secondary points xi ∈ R2 and the label (primary
point indicator) mi ∈ Z+. Note that conditional on Ψ = ψ, mi can only take values in
{1, 2, ...,M} where M = n(ψ) is the number of cluster centers. We get the cluster size for
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the cluster center cj by calculating
∑N

i=1 1{mi = j}, where N = n(φ) denotes the number
of secondary points.

We assume the model for Φ is that of a doubly stochastic Poisson point process with the
stochastic intensity given by

Z ((xi,mi) | ψ,θ) = γk(xi, cmi | θ), (1)

where k is a kernel density describing the dispersion of cluster points around cluster
centers, with identical parameters for all clusters. We define k as a function of the squared
distance r2 = ‖x− cm‖2 and the angle u = ∠(x, cm),

k(x, cm | θ) = h(r2 | θ1)g(u | θ−1). (2)

Here, θ−1 denotes the parameter vector θ without the first element θ1. The function h is
the density function of the exponential distribution,

h(r2 | θ1) = θ1e
−θ1r2 , (3)

with θ1 > 0. The angle density g is given by the density of a mixture of two von Mises
distributions,

g(u | θ−1) = θ2
eθ4 cos(u−θ3)

2πI0(θ4)
+ (1− θ2)

eθ6 cos(u−θ5)

2πI0(θ6)
, (4)

where I0 is the modified Bessel function of order 0, θ2 ∈ [0, 1], θ3, θ5 ∈ and θ4, θ6 > 0.

Without loss of generality, assume the observation window is B = [0, 1]2 and define

A(θ) :=

∫
B

M∑
m=1

γk(ξ, cm |θ)dξ =
M∑
m=1

γ

∫
B
k(ξ, cm | θ)dξ.

Then, the conditional likelihood of the secondary process on B can be written as

p
(
(x,m) | ψ,θ

)
= exp

(
M −A(θ)

)
γN

N∏
i=1

k(xi, cmi | θ). (5)

The log-likelihood is then given by

log p
(
(x,m) |ψ,θ

)
= M −A∗(θ) +N log γ +N log θ1 − θ1

N∑
i=1

r2i +
N∑
i=1

log g(ui | θ−1),
(6)

where

A∗(θ) = γ
M∑
m=1

∫
B
k(ξ, cm | θ)dξ.

From Baddeley (2010, Lemma 3) it follows that Φ | Ψ, θ is a marked Poisson process.
Hence the marginal distribution of the secondary point locations is Poisson with rate

Zm (ξ | ψ,θ) =

n(ψ)∑
m=1

γk(ξ, cm | θ). (7)

Does Bayes beat squinting? Estimating unobserved aspects of a spatial cluster process
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3 Simulation of the Point Process
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Figure 3. Sample simulations.

We first simulate the parents according to a homogeneous Poisson process with intensity
γ being the number of base points in the data set. The number of offspring per parent
is generated from a one-inflated Poisson distribution with the probability of being in the
one-component equal to the proportion of parents with one offspring; the Poisson com-
ponent intensity is set to the mean number of offspring from parents with more than
one offspring. The squared distrance betwen parents and their corresponding offspring
are simulated according to an exponential distribution with rate θ1 where θ1 is obtained
using Bayesian estimation with a gamma prior. The angle between the parent and off-
spring is simulated according to a von Mises mixture with parameters estimated using
the mix.vmf function in the Directional R package. Figure 3 displays sample simulations
for the subject displayed in Figure 2.

4 Estimating the parameters of the intensity func-
tion

Assuming the primary point locations (c), the secondary point locations (x) and the la-
bels m are observed, the parametric inference under the model consists of estimating the

Does Bayes beat squinting? Estimating unobserved aspects of a spatial cluster process
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expected number of offsprings γ and the kernel parameters θ = (θ1, . . . , θ6).

4.1 Kernel parameters
We use a conjugate gamma prior for the distance parameter θ1; Using the conjugate prior
for each of the von Mises distributions (Guttorp and Lockhart, 1988) and a beta prior for
the mixing probability. It is straightforward (Appendix C) to calculate a Gibbs sampler
for the kernel parametrs θ−1.

4.2 Expected cluster size
Next, we update the expected number of offsprings. Assume the prior on γ is p(γ) ∝
γα−1 exp(−βγ) we calculate

p(γ, (x), (c), α, β,θ) ∝ p((x),m | (c),γ,θ)p(γ | α, β)

= γα−1+
∑

1(mi=l) exp(−γ(β +

∫
B
k(ξ, cl | θ)dξ)),

(8)

i.e., a gamma distribution with parameters α+
∑

1(mi = l) and β +
∫
B k(ξ, cl | θ)dξ.

5 Estimating the properties of the cluster process

Being able to estimate the parameters of the model, we can now continue towards de-
termining the labels (which secondary points belong to each of the primary points), and
the more difficult problem of identifying from a set of points which are the primary ones.

5.1 What points belong to what cluster?
Knowing what points are primary and secondary, and having parametric models for the
distance distribution and the cluster size distribution, how do we go about determining
the most likely configuration of clusters? Note that this is just a preliminary step towards
the squinting problem, since we assume that we know the cluster centers.

It follows from (7) that the marginal distribution of labels (connecting secondary points
to primary points) is

Pm(m = l | ψ,θ) =

∫
B k(ξ, cl | θ)dξ∑n(ψ)

n=1

∫
B k(ξ, cn,θ)dξ

. (9)

In order to update the labels we use the full conditional distribution (Baddeley, 2010, Ex.
213):

P(mi = l | xi, c, γ,θ) ∝ γk(xi, cl | θ)

or more precisely

P(mi = l | xi, c, γ,θ) =
k(xi, cl | θl)∑n(ψ)
n=1 k(xi, cn | θ)

(10)

Does Bayes beat squinting? Estimating unobserved aspects of a spatial cluster process
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Figure 4 shows the high posterior density estimates of clusters. 62% of the labels agree
with the data.

Family relations
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Figure 4. The posterior probability of each primary point being correctly assigned to its cluster.
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Figure 5. The log posterior parent density is depicted using the colour scale. The observed
clusters are shown in black, where the secondary points are open circles and the primary are
filled circles.
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5.2 Identifying the cluster centers
If we want to update the cluster center locations we set down a prior for c proportional
to λn(ψ) and write

p(ψ) = p(γ, c) = p(c)p(γ | c) ∝ λn(ψ)p(γ | c)

to get

p(c | x,m, γ,θ, λ) ∝ p(x,m | c, γ,θ)p(c)

∝ exp(n(ψ)|B| − γ
n(ψ)∑
m=1

∫
B
k(ξ, cl | θl)dξ)

( ∏
(xi,mi)∈(x,m)

γk(xi, cmi | θ)
)
λn(ψ) (11)

An estimate of the parent density is shown in Figure 5. In most cases the posterior density
is high at the actual cluster point. There are two instances where the algorithm did not
find the actual location highly likely.

6 Squinting

The squinting approach to clustering looks for points that are close together. Following
the likelihood-based approach we first determine the offspring points that are closest to
the given cluster centers. The result is shown in Figure 6. 62% of the connections agree
with the data.

In order to determine the best squinting clusters we use the K-means clustering algorithm
(Hartigan and Wong, 1979). We let K = 58, using a random starting point for the al-
gorithm. Figure 7 shows the observed fit in black and the k-means fit in red. There are
34 observed size 1 clusters, and the K-means algorithm yields 35. There are 18 observed
size 2 clusters, and K-means yield 16. The largest observed clusters are size 4, while the
largest K-means cluster is size 5.

7 Discussion

The main reason for using a Poisson cluster process with Poisson cluster size is that the
likelihood is tractable. There are instances in other data sets where a Poisson process in
not a particularly good model for the primary points. We can write out the likelihood for
some other models, such as Matérn type III (see Guttorp and Thorarinsdottir (2011) for
this and other examples). It would be interesting to investigate other tools, such as Palm
likelihood methods or ABC, but it is beyond the scope of this paper.

In any case where we can write down a likelihood we could use it for estimating paramet-
ers, and apply EM techniques to estimate the unobserved links and primary points. The
estimation and illustration of uncertainty for such non-Bayesian approaches is difficult.

Does Bayes beat squinting? Estimating unobserved aspects of a spatial cluster process
10



Figure 6. The offspring points closest to the cluster centers are connected to the cluster centers
with red lines. The observed cluster structure is shown in black.

Figure 7. The K-means clustering (red) compared to the observed cluster structure (black).

Does Bayes beat squinting? Estimating unobserved aspects of a spatial cluster process
11



We have illustrated Bayesian techniques for estimating the cluster structure of a cluster
process, and applied the techniques to a particular data set where we actually know the
true structure. While the reconstruction is far from perfect, it is remarkable that one can
get as close as we do to the actual truth. The squinting approach is unable to deal with
directional aspects of the process, and in that sense we find that Bayes does, indeed, beat
squinting.
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A Calculating the density normalizing constant

We consider here the dispersion density for a parent point c and offspring x. We assume
that the squared distance between x and c follows an exponential distribution with para-
meter τ and that the offsprings spread around c at a preferred angle according to a von
Mises distribution with mean angle θ and spread parameter κ. For notational conveni-
ence, assume that c = (0, 0). The dispersion density is then given by

k(x|c, θ, κ, τ) = k(r cos ν, r sin ν|c, θ, κ, τ)

=
exp(κ cos(θ − ν))

πI0(κ)
τ exp(−τr2). (A.1)

This is a kernel,∫
2

k(x|c, θ, κ, τ)dx =

∫ 2π

0

∫ ∞
0

k(r cos ν, r sin ν|c, θ, κ, τ)rdrdν

=

∫ 2π

0

exp(κ cos(θ − ν))

2πI0(κ)

∫ ∞
0

τ exp(−τr2)2rdrdν

= 1.

To obtain the normalizing constant of the likelihood, we are interested in integrating
the dispersion density over the observation window B = [0, 1] × [0, 1] for x, c ∈ B. To
simplify the notation in our calculations, we shift the observation window by c = (c1, c2)

and integrate over Bc = [−c1, 1− c1]× [−c2, 1− c2] instead. To integrate over Bc in polar
coordinates, we need to integrate over four separate sets that combined constitute Bc,

ν ∈
(

0,
π

4

)
∪
(7π

4
, 2π
)
, r ∈

(
0, (1− c1) sec ν

)
ν ∈

(π
4
,
3π

4

)
, r ∈

(
0, (1− c2) csc ν

)
ν ∈

(3π

4
,
5π

4

)
, r ∈

(
0,−c1 sec ν

)
ν ∈

(5π

4
,
7π

4

)
, r ∈

(
0,−c2 csc ν

)

Straight forward calculations then give∫
Bc

k(x|(0, 0), θ, κ, τ)dx = 1− 1

2πI0(κ)

[ ∫ π/4

−π/4
exp

(
κ cos(θ − ν)− τ(1− c1)2 sec2 ν

)
dν

+

∫ 3π/4

π/4
exp

(
κ cos(θ − ν)− τ(1− c2)2 csc2 ν

)
dν

+

∫ 5π/4

3π/4
exp

(
κ cos(θ − ν)− τc21 sec2 ν

)
dν

+

∫ 7π/4

5π/4
exp

(
κ cos(θ − ν)− τc22 csc2 ν

)
dν
]
.
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B Inference for kernel parameters with known par-
ents

Assume the observation window is B = [0, 1]2, let M denote the number of i.i.d. clusters
and N the number of data points. Define

A(θ) :=

∫
B
γ

M∑
m=1

k(ξ, cm |θ)dξ

and
G(u,θ) :=

[
θ2

exp(θ4 cos(u− θ3))
2πI0(θ4)

+ (1− θ2)
exp(θ6 cos(u− θ5))

2πI0(θ6)

]
.

The likelihood is then given by

p((x,m) |ψ,θ) = exp(M −A(θ))

N∏
i=1

γk(xi, cmi |θ)

= exp(M −A(θ))
N∏
i=1

[
γθ1 exp(−θ1ri)G(ui,θ)

]
,

where ri = ‖xi − cmi‖2 and ui = ∠(xi, cmi). It follows that

log p((x,m) |ψ,θ) = M −A(θ) +N log γ +N log θ1 −
N∑
i=1

θ1ri +
N∑
i=1

logG(ui,θ).

Due to the complicated form of the likelihood, all components of θ must be estimated
with a Metropolis Hastings algorithm. Denote the current parameter value by θ. For
j = 1, . . . , 6, let qj(· |θ) denote the proposal distribution for the j-th component of θ.
We sample a new value θ∗j from qj and denote by θ(j)∗ the vector with θj replaced by θ∗j .
We then accept the new proposal θ∗j with probability

min
{p((x,m) |ψ,θ(j)∗)qj(θj |θ(j)∗)

p((x,m) |ψ,θ)qj(θ∗j |θ)
, 1
}
.

Usually, we calculate the ratio on a log scale,

log p((x,m) |ψ,θ(j)∗)− log p((x,m) |ψ,θ) + log qj(θj |θ(j)∗)− log qj(θ
∗
j |θ).

Note that for j = 1,

log p((x,m) |ψ,θ(j)∗)− log p((x,m) |ψ,θ)

= −A(θ(j)∗) +A(θ) +N(log θ∗1 − log θ1)−
N∑
i=1

(θ∗1 − θ1)ri,

while for j > 1,

log p((x,m) |ψ,θ(j)∗)− log p((x,m) |ψ,θ)

= −A(θ(j)∗) +A(θ) +

N∑
i=1

logG(ui,θ
(j)∗)− logG(ui,θ).

Does Bayes beat squinting? Estimating unobserved aspects of a spatial cluster process
15



C Allowing a mixture of von Mises distributions

Rewrite mixture density in canonical exponential family form:

f(y) =
2∑
j=1

pj
exp

{
τTj y

}
2πIo(|τj |)

where: |τj | =
(
τTj τj

)1/2
, τTj = κj(cosµj , sinµj), Y = (cosΘ, sin Θ).

Prior distributions:
• f(pj) = Beta(δ1, δ2)

• f(τj) ∝
exp{τTj yo}

Io(|τj |)c
, where:

– y0 = R0(cosθ0, sinθ0) is a prior observation

– c is the prior sample size

– R0 is the prior parameter representing the component on the x-axis (in the
known direction) of the c observations

– θ0 is the prior observation expressed as an angle

• The normalizing constant of f(τ) is H1(R0, c)
−1 where:

– Hα(β, γ) =
∫∞
0 xαIo(βx)Io(x)−γdx, so H1(R0, c) =

∫∞
o xIo(R0x)Io(x)−cdx and

H1(R0, c)
−1 =

[∫∞
o xIo(R0x)Io(x)−cdx

]−1
• Therefore,

f(τ) =
exp

{
τT y0

}
Io(|τj |)c

∫∞
0 xI0(R0x)Io(x)−cdx

Indicators for missing data on component membership:
Introduce indicators z = {zij , i = 1, 2, . . . , n, j = 1, 2}where

zij =

1, if ith observation, Yi, belongs to jth component

0, otherwise

• f(yi | zij = 1) = VM(µj , τj), f(zij = 1 | p) = pj

• zij ∼ Bernoulli(pj),∀zi = {zij}

• zi | p ∼Multinomial(1, p1, p2)

Joint distribution of observed data (y) and unobserved data (z)

f(y, z | τ ,p) = f(y | τ , z)f(z | p)
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where:

f(y | τ , z) =
n∏
i=1

2∏
j=1

(
exp{τTj y}
2πIo(|τj |)

)zij

f(z | p) =

n∏
i=1

2∏
j=1

(pj)
zij

so:

f(y, z | τ ,p) =
n∏
i=1

n∏
j=1

(
exp{τTj y}
2πIo(|τj |)

)zij n∏
i=1

2∏
j−1

(pj)
zij

=
n∏
i=1

n∏
j=1

[
pj

exp{τTj y}
2πIo(|τj |)

]zij

Joint distribution of the parameters:

f(τ ,p | y, z) ∝ f(y, z | τ ,p)

= f(y | z, τ )f(z | p)f(τ )f(p)

where:

f(y | z, τ )f(z | p) =
n∏
i=1

2∏
j=1

[
pj

exp{τTj y}
2πIo(|τj |)

]zij

f(τ ) =
2∏
j=1

exp
{
τTj y0

}
Io(|τj |)c

∫∞
0 xIo(R0x)Io(x)−cdx

f(p) =
Γ(
∑2

j=1 δj)∏2
j=1 Γ(δj)

2∏
j=1

p
δj−1
j

Putting this all together, the joint distribution is:

f(τ ,p | y, z) ∝ f(y | z, τ )f(z | p)f(τ )f(p)

=

n∏
i=1

2∏
j=1

[
pj

exp{τTj y}
2πIo(|τj |)

]zij exp
{
τTj y0

}
Io(|τj |)c

∫∞
0 xIo(R0x)Io(x)−cdx

Γ(
∑2

j=1 δj)∏2
j=1 Γ(δj)

2∏
j=1

p
δj−1
j

Full Conditional Posterior for Gibbs Sampler:
von Mises Canonical parameter, τj :

f(τ1 | τ2,p,y, z) ∝ f(τ2,p,y, z)f(τ1)

= f(y | z, τ )f(z | p)f(τ1)f(τ2)f(p)

∝ f(y | z, τ )f(τ )

=

n∏
i=1

2∏
j=1

[
exp{τTj y}
2πIo(|τj |)

]zij exp
{
τTj y0i

}
Io(|τj |)c

∫∞
0 xIo(R0x)Io(x)−cdx

∝
n∏
i=1

[
exp{τT1 y}
2πIo(|τ1|)

]zi1 exp
{
τT1 y0i

}
Io(|τ1|)c

∫∞
0 xIo(R0x)Io(x)−cdx
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and

f(τ2 | τ2,p,y, z) ∝ f(τ1,p,y, z)f(τ2)

=

n∏
i=1

[
exp{τT2 y}
2πIo(|τ2|)

]zi2 exp
{
τT2 y0i

}
Io(|τ2|)c

∫∞
0 xIo(R0x)Io(x)−cdx

Mixture probability, p:

f(p | y, z, τ ) ∝ f(y, z, τ | p)f(p)

= f(y | z, τ )f(z | p)f(τ )f(p)

∝ f(z | p)f(p)

=
n∏
i=1

2∏
j=1

p
zij
j

Γ(
∑2

j=1 δj)∏2
j=1 Γ(δj)

2∏
j=1

p
δj−1
j

=

2∏
j=1

p
∑

i zij+δj−1
j

Γ(
∑2

j=1 δj)∏2
j=1 Γ(δj)

If δ1 = δ2 = 1:
2∏
j=1

p
∑

i zij+δj−1
j

Γ(δ1 + δ2)

Γ(δ1)Γ(δ2)
=

2∏
j=1

p
∑

i zij+δj−1
j

Γ(2)

Γ(1)Γ(1)

=
2∏
j=1

p
(
∑

i zij+1)−1
j

= Dirichlet(1 +
∑

i zi1, 1 +
∑

i zi2)

= Beta(1 +
∑

i zi1, 1 +
∑

i zi2)

Missing data indicator, zi = (zi1, zi2):

f(zij = 1 | yi, τ ,p) =
f(yi | τ ,p, zij = 1)f(zi = 1 | τ ,p)∑2
j=1 f(yi | τ , p, zij = 1)f(zi = 1 | τ ,p)

=
f(yi | τ , zij = 1)f(zi = 1 | p)∑2
j=1 f(yi | τ , zij = 1)f(zi = 1 | p)

=
f(yi | τ , zij = 1)pj∑2
j=1 f(yi | τ , zij = 1)pj

=
f(yi | τ , zij = 1)pj

f(yi)

f(zij = 1 | yi, τ ,p) = 1− f(zij = 0 | yi, τ ,p)

f(zij = 0 | yi, τ ,p) = 1− f(yi | τ , zij = 1)pj
f(yi)

Therefore, Zij ∼ Bernoulli
(
f(yi|τ ,zij=1)pj

f(yi)

)
and Zi = {Zij} ∼ Multinomial(1, wi1, wi2)

where wij =
f(yi|τj ,zij=1)pj

f(yi)
.
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