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1 ABSTRACT 

This task addresses a security evaluation of the Kamstrup AMS that was carried out in 

conjunction with the IoTSec project. This white paper contains a high-level overview of the 

Kamstrup Omnia suite, scope and method considerations that pertains to a security 

protocol analysis of the same AMS. Relevant security properties and security 

requirements are discussed.  
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2 INTRODUCTION 

 

The IoTSec project is a research project funded by the Norwegian Research council. One of the 

activities in this project is to contribute towards the establishment of relevant services that are to be 

offered by, or channelled via, the Smart Grid Security Centre (SGSC) in Halden, Norway. This centre 

plans to offer competence and knowledge to smart grid projects and activities in both the private 

and public sector. Distribution system operators (DSO), advanced metering systems (AMS) and 

advanced meter infrastructure (AMI) providers are potential clients of the centre.  

The purposes of this activity in IoTSec project are as follows: 

 White paper containing an approach and method for a security 

analysis of an existing AMS 

[This document: Open] 

 Establish a security model of relevant parts of an existing AMS [NR domain:  

‘Strengt Fortrolig’] 

 

The secondary goals of this activity are to: 

 Using the proposed evaluation approach, evaluate the security 

of relevant parts of an existing AMS 

[NR domain:  

‘Strengt Fortrolig’] 

 Collect relevant metrics from the evaluation process [Project domain: 

Confidential] 

 If appropriate propose security measures for the case study [NR domain:  

‘Strengt Fortrolig’] 

This case study is in part based on documentation that NR has received from Norgesnett under a 

strict confidentiality agreement, and which is classified according to NR’s security classification policy 

as ‘Strengt Fortrolig’ (‘Secret’). Part of this project activity is to establish a security model of an 

existing AMS, which provides a proper and natural case for employing the proposed evaluation 

approach.  

AMS infrastructures are subject to a wide range of potential threats that pertain at the various parts 

and areas of such an infrastructure. This project activity is confined to AMS communication security, 

in particular the security protocol1 of an existing AMS.  

To design a security system requires that relevant security threats are identified. Pertaining security 

requirements need to be formulated, and security measures implemented and tested in order for 

that system to be secure with respect to the identified threats.  

Likewise, to carry out a security analysis on a model requires that relevant security threats are 

identified and then security requirements that provide protection against those threats need to be 

identified. Alternatively, the analysis could start with identifying a set of relevant security 

requirements. The analysis needs to show whether each security requirement is assured by the 

system. If so, then the system is ‘secure’. 

                                                           

1 A “protocol” specifies an exact sequence and order of messages that is to be exchanged between two (or more) entities of a 

communication system. A security protocol is used to obtain secure communication in insecure networks, and it is a 

communication protocol that performs a security-related function and applies cryptographic methods in order to achieve the 

desired security. 
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The proposed evaluation method requires a model of the security protocol to be established. 

Security protocols utilize cryptographic mechanisms, and in a model like this, such mechanisms are 

regarded as primitives that have ideal security properties. For example, resistance to “known 

ciphertext attacks” relates to symmetric encryption algorithms and assures that given a set of 

ciphertexts it is not possible to find the plaintexts or the secret key that was used for computing 

those ciphertexts. Therefore, this type of analysis does not cover considerations of concrete 

implementations of cryptographic algorithms, such as types of hash functions or key lengths. Hence, 

details of concrete cryptographic algorithms are open for implementation considerations.  

 

2.1 Scope of the evaluation 
‘Security’ is a broad concept, which involves everything from software vulnerabilities to protecting 

data and information. The scope of this report includes those aspects that are related to protecting 

data - in particular data in transmission. The part of a communication system that has security 

measures for protecting data in transmission is at the design level called a security protocol or 

cryptographic protocol. These are protocols, which usually have a single security purpose such as 

secure key establishment or user authentication. Application protocols with security measures is a 

communication design that has multiple security functions and are more comprehensive than 

security protocols. The scope of this project activity is confined to an AMS security protocol.  

 

 

Figure 1. System abstraction levels 

As shown in Figure 1, there are at least three levels of abstraction that are intuitively separable. 

These levels of abstraction are:  

1) Security requirements. High-level textual requirements (organisation level). 

2) Design. Design-level requirements corresponding to the high-level requirements.  

Logical and structural design of security measures 

3) Implementation. Concrete code and operational systems 

To reduce ambiguities and encourage consistency throughout the system development process, it 

will be necessary to ‘translate’ high-level (textual) security requirements to a model’s level of 

abstraction. To prepare for this analysis method we need to identify the high-level security 

requirements, and then refine and translate them in terms of design level requirements.  

  



IoTSec – D4.3.1 – AMI Security Analysis  8 

 

A generic AMS is assumed to have four types of entities: 

i) A key production environment (KPE) 

ii) A centralized head-end system (HES) at the front end at the DSO 

iii) Concentrators that forward measurement data and instructions between the HES and 

smart meters 

iv) Smart meters  

 

Figure 2. AMS modelling overview 

 

The overall security requirements at AMS system level are: 

 New smart meters and concentrators shall be authenticated and authorised system 

members 

 Messages containing data and instructions to and from meters and concentrators shall resist 

o Breach of confidentiality 

o Breach of integrity 

o Masquerade/spoofing attacks 

The scope of this evaluation is limited to the meters’ connectivity with the DSO. The applications of 

the homeowners that are connected via the Home Area Network (HAN) interface are outside the 

scope of this analysis. 

 

2.2 AMS security analysis 
The overall security analysis process is conducted in part with the Prosa toolset. However, analysing 

security protocols involve a number of aspects that present intricate subtleties that may be hard to 

identify for a given security protocol. Although there exist tools that can carry out automatic analysis, 

they are confined to small cryptographic protocols, which means that such tools are not fit 

comprehensive application protocols with security measures, such as an AMS system protocol. In this 

case study we have a complex security design that Prosa may be suitable to model.  

The Prosa toolset provides a semi-automated security analysis of such systems. The cornerstone of 

the security analysis method is to establish a precise model of those parts of the system that procure 

secure communication.  
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The analysis process contains five activities as shown below.  

 

Figure 3. Overall design and analysis process 

 

Scope. The purpose of this initial activity is to identify the part of the system to be analysed, which is, 

in particular, the part of a system that involves and establishes secure communication. 

Modelling. This activity results in producing a model of the protocol design. A model includes 

pertaining entities2; messages containing plaintexts, ciphertexts, hashes, or other types of outputs 

from cryptographic operations; cryptographic elements such as symmetric keys, asymmetric keys 

(public/private key pairs), nonces, timestamps, and so on; and the relationship (or accessibility) 

between each entity and cryptographic data elements. Prosa has its own modelling language (which 

include syntax and semantics) and by which security models are formulated.  

A range of visualisation tools renders various aspects of a particular security design in different 

‘views’. A frequently used view is the ‘interaction view’, which is a flexible version of traditional 

message sequence diagrams. Another is the ‘protection view’, which is a multi-layout version of a 

traditional key hierarchy.  

 

Figure 4. Message sequence diagram and security requirements specification 

 

                                                           

2 In Prosa, an ‘entity’ is referred to as an ‘agent’. 
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Security-model consistency check. In a design process, the designer must initially identify relevant 

security threats, whereupon he or she then needs to put forward high-level security requirements. 

The designer must then translate the high-level security requirements into the model’s level of 

abstraction; by making a design whose security measures are in agreement with those threats and 

requirements. The overall goal is that the security model provides protection against the given 

threats.  

To prepare for this analysis method, we therefore need to identify relevant high-level security 

requirements and refine them, and have them translated in terms of design-level requirements that 

comply to pertaining cryptographic data elements (such as symmetric keys, asymmetric keys 

(public/private key pairs), nonces, timestamps, and so on), and their relations to pertaining entities.  

The translation into model-level requirements is a manual task. For confidentiality and integrity, 

model-level security requirements are specified as relationships between pairs of entities and 

cryptographic data elements. This is formulated in Prosa by means of a requirement table. For each 

data element that is subject to a requirement one ‘ticks’ which entities that are allowed to process, 

i.e., to access a given data element with regard to confidentiality and integrity.  

At the model level, confidentiality is therefore expressed as rules that indicate what specific entities 

that are allowed to obtain the value of specific cryptographic data element at the end of the 

protocol. This is somewhat synonymous to ‘read’ access and is in a ‘positivistic’ manner, meaning 

that no entity should obtain that element value other than those entities that are specified in the 

requirement table. At the overall high level, the security evaluation should thus consider whether 

confidentiality protection is assured or not. 

Integrity in the Prosa context means that a given entity is the originator of a cryptographic data 

element, and in that regard ‘wrote’ that element. An element in the requirement table that is 

‘checked off’ as integrity protected, is a statement that there is an intension that this element should 

have assurance against adversarial modification during the protocol run. The analysis must show 

whether this holds or not. At the overall high level, the security evaluation should consider whether 

integrity protection is assured or not in the model. 

The consistency check performed by the tool will then automatically compare the specified 

requirements with the actual properties of the security design. The discrepancies are then presented 

with color-coded fields in tables. The tables can be tailored and filtered with respect to the types of 

data elements that are displayed.  

Threat analysis. After the ‘baseline’ security model has been established one investigates how the 

security design handles various threat events. Here, the security is analysed with regard to whether 

the requirements are preserved or not and in conjunction with threats. These are typically from one 

of the following categories: 

 Passive attacks (eavesdropping attacks) 

 Active attacks (man-in-the-middle attacks) 

 Compromised entities 

Parts of the threat analysis must be carried out manually. Those parts of the threat analysis that are 

done by using Prosa, are realized by designing concrete attack scenarios or ‘attack models’ for each 

potential threat event that is considered. Each attack model can be analysed with the Prosa tool 

during the consistency check, thus showing detailed properties of (partially) compromised system 

that includes the attacking entities. Hence, a collection of attack models is created and this 

‘catalogue of threats’ can then be used as input to a subsequent risk assessment.  
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Figure 5. System view 

 

Risk assessment. This is a normal qualitative risk assessment with likelihood/impact considerations 

for each threat in the threats catalogue. An important part of this process is to concretise the risk 

policy by setting security risk acceptance criteria, i.e., defining which risks are acceptable and which 

are not. Principles for risk treatment should be established, taking into account that not all risks can 

be treated with additional cryptographic measures, but that manual procedures should be 

considered. A traditional risk level matrix of 5-by-5 categories of likelihood and impact are normally 

used in the assessment of each threat event.  

 

Figure 6. Security risk assessment table example 
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3 OMNIA 

3.1 Omnia suite 
The smart meters offered by Kamstrup are part of the Omnia suite. The system consists of four main 

components: 

 Omnipower: Includes smart meters for various purposes such as electricity 

 Omnicon: Concentrators 

 Omnisoft: System software 

 Omniserve: Includes products and for service and email and telephone support 

The concentrators are part of the infrastructure that brings data back and forth between the head-

end system (HES) and the smart meters. The communication is normally wireless, but can be 

configured for various communication infrastructures. The concentrators and smart meters support 

radio mesh network and point-to-point configurations. The former is the “default” and latter is used 

in areas with low population densities, whereof smart meters are normally equipped with modems 

for the 2G/4G mobile phone network.  

Omnisoft includes software such as the UtiliDriver head-end software, VisionAir meter data 

management (MDM), Network Manager, and the Key Management Service (KMS) programs. 

The UtiliDriver head-end software handles all communication technologies and meter types, and 

receives the meter data such as readings, events and alarms. When new meters are installed, the 

pertaining concentrators inform the UtiliDriver about the new meter.  

VisionAir is a meter data management (MDM) system software that handles management of smart 

meters, and storage of meter data. It works with other external business system software such as 

billing and customer management. It consists of a centralized database; a server that interfaces 

between the mentioned VisionAir database and Omnisoft UtiliDriver, web services for integration 

with external systems such as billing and customer management; and a file export service.  

Network Manager is part of the UtiliDriver software that has two main purposes: 1) It manages the 

communication networks and the concentrators in the network. It has the capability to show in a 

geographic map the location of the smart meters (i.e., the “usage points”) and divide them into 

groups and subgroups. This means that GPS coordinates are loaded into the Network Manager at 

installation time. 2) The Network Manager helps to manage and monitor the network and shows 

performances of the connectivity of the wide-area-network (WAN). It carries out meter/concentrator 

firmware updates, and adds and removes meters.  

The Omnisoft Key Management Service (KMS) software is a facility for management and secure 

storage (in a secure database) of encryption keys that are shared between a smart meter and the 

central system of the electricity operator, i.e., the HES. Smart meters contain unique cryptographic 

keys that are preinstalled during the production.  

When smart meters are installed at customers during the deployment phase, the HES needs to 

obtain the same keys in order to communicate securely later on with those exact meters by means of 

encryption. In the deployment phase, the KMS creates a cryptographic certificate representing a HES, 

and which is then supplied to the key production environment (KPE) at the Kamstrup production 

facility. The KPE encrypts relevant smart meter keys using the public key of the HES certificate to 

ensure that the encryption keys are securely transferred to the HES.  

The KMS also generates new keys for key updates.  
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3.2 Security in the Omnia suite 
According to Section 6.8 in the Kamstrup document “Omnia 3.1 Technical Description”, the Omnia 

suite supports the following security measures and requirements: 

 End-to-end encryption between meter and head-end system 

 Unique encryption keys for each meter 

 Data protection by confidentiality, integrity, availability and privacy 

 Device authentication 

 Replay protection 

 Key replacement 

 Advanced roles and rights scheme 

 Audit logging 

 Secure workflows and processes 

Note that these security requirements are generic and at a high level, and that is translated to the 

pertaining level of the model, to specific entities and data elements.  

 

3.3 Case study  
The case study is performed on the AMS solution operated by Norgesnett, previously Fredrikstad 

Energi Nett (FEN). Kamstrup is the AMS provider used by Norgesnett, and via Norgesnett we have 

been put in contact with Kamstrup.  

This case study is in part based on documentation that NR has received from Norgesnett under a 

strict confidentiality agreement, and which is classified according to NR’s security classification policy 

as ‘Strengt Fortrolig’ (‘Secret’). In particular, Kamstrup has provided some classified and detailed 

information about their AMS solution, which was necessary to build the security model. This white 

paper is not classified and is publishable by approval from Norgesnett and Kamstrup, and contains 

therefore only selected and aggregated information about the particular solution. This includes the 

following characteristics of the system model and the analysis process: 

i) The number of entities 

ii) The number of messages 

iii) The number of distinct keys  

iv) The number of levels in the key hierarchy 

v) Considered threats 

vi) Security requirements (data confidentiality, integrity, entity authentication) 

vii) The principles behind the applied security measures  

This type of high-level reporting is common in situations where detailed architectures and design 

does not have a classification that allows open distribution.  

Table 1 shows some security protocol characteristics of the Kamstrup AMS with regard to the scope 

of the assessment in this project. The considered entities are key production environment (KPE), 

head-end system (HES), concentrator and smart meter. Each meter is associated a specific 

concentrator, while each concentrator is associated the HES. All meter/HES communication goes 

through a concentrator.  
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It should be noted that the actual number of keys in Kamstrup AMS implementations do not reflect 

the information in Table 1, which refers to the model. The implementation contains a number of keys 

that are assigned to the instructions/operations, so that different operations are assigned unique 

keys. Since the same type of cryptographic measure is used for all such instructions, it is sufficient 

that this is represented with one generic key in the model. Likewise, just one generic meter, one 

concentrator and one HES are modelled. In practical realizations, the number of meters and 

concentrators is of course arbitrary. 

 

Protocol aspect Number 

Entities 4 
Security messages 28 
Symmetric keys 9 
Key pairs 1 
Counters 7 
Nonces 0 
Data elements 2 
Phases 3 

Table 1. Characteristics of the AMS model 

 

Symmetric keys are shared pairwise: meter/concentrator, concentrator/HES and meter/HES. There is 

one key pair (a public key and a corresponding private key) modelled representing the HES, as 

discussed in Section 3.1. Three phases are modelled: A production phase, a deployment phase and 

an operations phase. All together, the model includes 28 distinct messages.  
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4 AMS SECURITY EVALUATION 

A security threat refers to a potential violation of a security requirement. Threats are imposed by 

entities that we refer to as adversaries. An attack is when the adversary carries out a malicious act 

against a system.  

In a security design process, relevant threats need to be identified first. The threats dictates what 

security requirements that must be formulated in order to counter those identified threats. The 

security requirements then dictates necessary security measures of the security design.  

In this section, we present relevant threats and pertaining security requirements. The security 

considered in this report pertains to communicational threats realized by adversaries having 

eavesdropping capabilities or capabilities to modify communication by modifying, adding or 

removing messages. Cryptographic mechanisms are security measures to protect against such 

threats.  

We have not considered threat scenarios that apply directly to the software/hardware/firmware 

implementation levels, e.g. including implementation issues such as software/hardware/firmware 

vulnerability exploitations. Nor does it include security issues pertaining directly to the network level, 

such as denial of service attacks. This should not be confused with communication security with 

regard to assuring confidentiality and integrity. 

 

4.1 Types of adversaries 
The users of security protocols are initially issued long-term keys. A legitimate user is referred to as 

an insider. A user or an insider that act according to the protocol is honest. However, a malicious 

insider is an internal adversary that legitimately possesses long-term user keys, and may therefore 

have an advantage compared to a malicious outsider that does not possess such keys.  

Although an internal and external adversary may have the same goal, it could be reasonable to 

assume that an insider may have greater capability to succeed with an attack than an external 

adversary. 

A passive adversary is a malicious outsider has the capability to monitor the communication, and 

capture and record messages that are sent over the communication link. By keeping a history of 

previously exchanged messages, such an adversary would look for ways to attack the protocol. In a 

wireless network, this is a reasonable assumption.  

An active adversary malicious outsider that is capable to control all or one or more communication 

lines of the network by replacing, modifying, deleting or inserting messages that are exchanged by 

the protocol, including replaying old messages. Such an adversary is sometimes referred to as a 

Dolev-Yao-attacker. The goal of the adversary could, for example, be to enforce establishment of an 

old key in regard to one or more victim users, or to enforce establishment of a key that is 

computable by the adversary.  

 

4.2 Threats  
In an electronic communication setting, the participants send and receive messages that consist of 

bit sequences. Messages sent over public computer networks or broadcasted over wireless network 

can be captured or eavesdropped. Eavesdropping is a passive attack. Typically, the motivation for 
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such attacks is to obtain some secret data, i.e., confidentiality breach. An entity that controls parts of 

the network and are capable to modify messages is called an active adversary.  

Table 2 lists relevant types of attacks on communication, and maps to respective passive and active 

adversaries. Note that the motivation of active attacks (integrity breeches) may be to obtain 

confidential information. Thus, integrity breaches may lead to confidentiality breaches.  

 

Type of attacks Adversary Security breaches  

Eavesdropping Passive  Confidentiality breach 
Modification attacks Active  Integrity breach 
Replay attacks Active  Integrity or authentication breach 
Reflection attacks Active  Integrity or authentication breach 
Spoofing attacks Active  Authentication breach 
Key compromise Active Confidentiality integrity or authentication breach 
Denial of service - - 

Table 2. Protocol attacks and security breaches 

 

Modification attacks is a general category of active attacks. Replay, preplay, and reflection attacks 

are types of active attacks. A replay attack is when an adversary sends messages that he has 

recorded from a previous session. Reflection attacks denote when an adversary sends messages back 

to the principal who sent them.  

“Masquerading” is when an adversary imposes as someone else, like a legitimate user. Normally, 

users are authenticated by means of a secret (a shared symmetric key or a private key), so in 

authenticated protocols the adversary needs to obtain the long-term secret of the victim. “Key 

compromise” is when such a secret has been compromised. In two-party cryptographic protocols, a 

usual assumption is that long-term keys are shared in advance and are not compromised. However, 

there may in turn be protocol designs where a secret is transferred and that secret could be 

compromised, which may lead to key compromise.  

“Key compromise impersonation” is a specialized type of attacks where an adversary A has obtained 

user B’s long-term secret, and attempts to masquerade as user C to user A. Such attacks are relevant 

to protocols with the forward secrecy property. 

Notice that denial-of-service-attacks are not relevant here, since such attacks are pertinent to the 

network level, and not to cryptography.  

 

4.3 Security requirements 
Without security measures there is no assurance that received bits on a communication link are 

authentic, meaning that there is no certainty about the claimed originator (machine or person) or 

certainty about whether or not they have been intentionally modified during transmission by some 

adversary. An adversary posing as somebody else could be the real originator of communicated data 

(masquerading or spoofing attack) or modified them while in transit. Security protocols seek to solve 

such potential security threats by confidentiality protection and entity authentication. The following 

lists relevant security requirements: 

1. Confidentiality 

2. Integrity 

3. Data origin authentication (message authentication) 
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4. Entity authentication 

5. (Forward secrecy) 

Confidentiality is the assurance that data cannot be viewed by an unauthorised user. This is 

sometimes referred to as secrecy. It could be pointed out that confidentiality and secrecy should not 

be confused with privacy, since privacy is linked to protecting persons while confidentiality is related 

to protecting data. In computer networks, confidentiality measures include in particular 

cryptographic algorithms and protocols.  

Data integrity is the assurance that data are has not been altered and that their consistency is 

preserved. It is commonly needed to detect bit errors in data communication. Integrity can be 

realized by hashes and checksums, which adds redundancy of the given data. Note that such 

mechanisms alone do not assure integrity in conjunction with an adversary, since the adversary that 

may modify data content could easily compute a hash digest that corresponds to the modified data. 

By replacing the existing hash with the new one, the attack is therefore not detectable.  

Data origin authentication or message authentication is the assurance that a message has not been 

modified (data integrity) and that the receiving party can verify the source of the message. This 

property is realized by means of message authentication codes (MACs), but can also be realized by 

authenticated encryption (AE) or digital signatures. Such security measures can provide integrity 

protection in presence of an adversary due to the use of secret cryptographic keys. Since the 

adversary does not know the actual keys, he or she is prevented from computing correct 

authentication codes that correspond to the modified data.  

Since secret keys are required to compute MACs, a MAC is a cryptographic binding of the pertinent 

data and its originator (represented by that key). MAC-authenticated data can only be verified by the 

recipient in conjunction with the pertaining MAC if the recipient possesses the exact same secret key.  

Message authentication does not prevent data modification, but provides detection for whether data 

has been altered or not. See Definitions 9.76, 9.77 in Handbook of Applied Cryptography, Alfred 

Menezes et al. Similar to this is non-repudiation (non-deniability), which refers to that the author or 

sender cannot deny that it was the originator with regard to any party. In contrast, data origin 

authentication only assures this with regard to the recipient holding the same shared key used for 

computing the MAC. Non-repudiation is typically provided by digital signatures and is realized by 

means of asymmetric cryptography.  

Entity authentication is a highly important security property in security protocols, and is the 

assurance that a given entity is involved and currently active in a communication session. In other 

words, this property gives one participant in the protocol assurance of “liveness” of another 

participant.  

In security protocols where entity authentication is properly implemented and assured, active 

attacks such as replay attacks are prevented. 

Entity authentication is realized by nonces, counters or timestamps. Considering nonces first, this 

normally involves cryptographic challenge/response-mechanisms, where a user initially selects a 

random nonce that it sends to the other user. This nonce represents a “challenge”. The second user 

encrypts the received nonce along with other information such as his identity, and sends this back. 

The first user checks to see if the encrypted response agree with the challenge. If the nonce was 

unique (not reused) and no one else holds the encryption key, then the first user has assurance that 

the second user is authentic, since only this one would be able to compute the cryptographic 

response.  
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Entity authentication can be realized by counters in conjunction with encryption. Counter values may 

not themselves be confidential, but the difficulty for an adversary is the computation of the 

cryptographically correct ciphertext containing the counter value. This requires that both parties 

keep track of the last counter values. Timestamps require that the clocks of both parties are 

synchronized. 

Note that there is a transitive relationship between entity authentication, message authentication 

and integrity. If entity authentication is assured, then message authentication is assured, which again 

assures integrity. So integrity is assured if entity authentication is assured.  

Services Data integrity 
protection 

Data origin 
authentication 

Non-
repudiation 

Entity 
authentication 

Hash function No No No  

Public key encryption No No No Yes* 

Symmetric key encryption Yes Yes No Yes* 

MAC Yes Yes No Yes* 

Digital signature Yes Yes Yes Yes* 

Table 3. Security properties that may be provided by cryptographic primitives alone 

Table 3 shows a mapping between cryptographic primitive types and basic security properties. The 

mapping indicates what security properties that may be realized by isolated use of a given function. 

Notice that such usage assumes the presence of an adversary. For instance, hash functions do not 

alone provide integrity protection in the presence of an adversary since that adversary may alter the 

input data and compute the corresponding hash value.  

Note that entity authentication requires representations of freshness (nonces, counters, 

timestamps). To obtain entity authentication requires a cryptographic mechanism that relies on 

secrets (secret symmetric key or private key) in conjunction with nonces, counters, or timestamps. 

The asterisk in Table 3 indicates this dependency. 

Forward secrecy refers to when long-term key(s) have been compromised. Forward secrecy is 

achieved if the adversary is not able to obtain session keys of previous sessions using the 

compromised long-term key(s). Depending on the context, this property may be desirable, but is not 

critical. 

 

4.4 Modelling and security evaluation in Prosa 
The criteria for validation of the method should be as objective as possible, but here it is a challenge 

that the number of 'samples' is only one. In order to verify the applicability of the Prosa based 

method the following assumptions and criteria are considered.  

The criteria for the overall evaluation of this modelling and analysis methods are the following: 

1) Entities (i.e., users, communication points), cryptographic data types and messages are 

defined 

2) Associated requirements are expressed  

3) Security primitives deployed in the system are modelled  

4) AMS phases (production, deployment, operative) are modelled  

5) The key management (key update) operations can be modelled  
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6) Relevant threats are pertaining security requirements are identified 

7) Associated risks are assessed  

Results from executing the case study can be summarized as follows:  

1) All entity types, cryptographic data types and messages have been modelled in Prosa. 

2) Part of the requirements have been expressed in Prosa 

3) All security primitives deployed in the system have been modelled  

4) AMS phases (production, deployment, operative) have been modelled  

5) Key management in the deployment context have been modelled. Key management in 

the operation phase have been partly modelled due to time constraints. 

6) The degree of protection against a passive adversary has been investigated. Protection 

an active adversary has been partly investigated due to time constraints.  

As noted, a passive adversary represents a threat against confidentiality breach. An active adversary 

represents threats against integrity or authentication breaches. 

During these activities, we will collect metrics on the complexity of the actual model, the threats and 

their assessment.  

Design input. As input to this security design process will take the written requirements from several 

sources and filter out those that are relevant for the design of the cryptographic and related 

mechanisms deployed in the system. As this case study is based on an existing system we must also 

model the security measures of the system as faithfully as possible from the given documentation of 

the actual implementation. 

Design Analysis output. The results from this analysis are as described above at two levels. Primarily 

the results are about the methodology and how it can be applied and adapted to analysis IoT systems 

and smart grid metering infrastructures in particular.  
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5 CONCLUSION 

 

This white paper is part of an IoTSec project task and it addresses an approach and method for a 

security analysis of an existing AMS, in particular with regard to the security protocol design. 

Relevant threats, security properties and requirements have been formulated and discussed. The 

main tasks has been to i) establish a model of the security protocols of the Kamstrup AMS, ii) identify 

relevant threats and security requirements and iii) to carry out a security evaluation to see if the 

system is secure with regard to the identified security requirements. 

Modelling and parts of the evaluation was carried out with the Prosa security tool. All entity types, 

cryptographic data, messages, security primitives and protocol phases have been modelled. Most of 

the requirements and key management operations have  been modelled, but not all due to time 

constraints. With these minor limitations the analysis covered the degree of protection against a 

passive adversary. The degree of protection against active adversaries was investigated in part due to 

time constraints. The actual security model and the findings from the evaluation are classified and 

not open documents. 
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6 APPENDIX 

 

6.1 Types of security protocols 
Confidentiality and entity authentication are typical requirements for secure communication. It could 

be noted that in order to obtain confidentiality, authentication must be assured. This is because if 

user Alice believes he is communicating with user Bob, which in reality is an adversary posing as Bob, 

then Alice will reveal to the adversary information that was intended for Bob only. Hence, the 

confidentiality requirement is broken.  

Confidentiality is obtained by encryption. Encryption should not be carried out by long-term keys in 

order to avoid repetition of identical ciphertexts and so-called “key wearing”. If the same plaintext is 

repetitively encrypted using the same key, then ciphertexts computed by deterministic cryptographic 

algorithms would be identical. Using session keys prevent key wear and identification of ciphertexts 

containing identical plaintexts. 

Note the distinction between long-term user keys and session keys. A long-term user keys represents 

the user in a security protocol, and is necessary for user authentication. Protocols providing only user 

authentication are known as authentication protocols. If confidentiality is a security requirement, 

then establishment of a session key must be carried out while user authentication assured. Protocols 

providing establishment of session keys are known as key establishment protocols.  

Two important aspects of key establishment protocols are key freshness and key authentication:  

1) Session keys should be fresh, new and unique for each session. A cryptokey must be 

unpredictable, meaning it must be random and have high entropy. Session keys may be 

generated by one user, and then securely transferred to the other user by means of 

encryption, or they could be derived from secretly shared cryptographic material, such as 

exchanged nonces, which in that case must be encrypted; or long-term keys in conjunction 

with a one-way function.  

2) A user is authenticated when the other user is assured about the first user’s identity, and 

that he or she currently active in the protocol (liveness).  

A third property that is relevant is key confirmation, which is assurance to the participants that they 

share the same session key.  

As a side note, asymmetric encryption algorithms are slow and symmetric algorithms are fast. By 

using an asymmetric algorithm to encrypt a symmetric key, the performance is considerably 

improved.  

 

6.2 Sketch and guidelines of protocol analysis  
The following items characterize the design of a cryptographic protocol:  

 entities (or users) 

 the employed cryptographic primitives  

 cryptographic keys (long-term and short-term keys) 

 nonces, counters, timestamps 

 message sequences 
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In this report we will not discuss public key-oriented cryptography due to limited scope.  

 

6.2.1 Motives for using cryptographic primitives 

Cryptographic primitives include mainly cryptographic one-way (hash) functions, asymmetric and 

symmetric cryptographic algorithms. Overall purposes of cryptographic primitives are to:  

1) Impose verifiable and secure bindings between exchanged data items by means of 

cryptographically secure transformations. 

2) Cryptographic transformations are based on computational difficulties. 

Hash functions are non-linear transformations and have no intrinsic secrets. However, a hash value 

represents a difficulty of obtaining the corresponding input value if it has high entropy, i.e., it is 

random or is not predictable. The input size is arbitrary and the output lengths are typically 128 or 

256 bits. Uses of hash functions may vary, and are used to in authentication schemes and to compute 

compact representations of larger data strings.  

Symmetric cryptographic algorithms are publicized and have no intrinsic secrets. The difficulty to 

recover plaintexts from ciphertext is based on the secret encryption key. 

 

6.2.2 Cryptographic binding 

Due to the one-way properties of hash-functions and symmetric cryptographic algorithms, they can 

be used to cryptographically bind two or more data items that may or may not include secret keys. 

Given a hash function f, its input may consist of two data items so that the output is given by  

digest = 𝑓(data1,data2) 

Hence, the digest is a representation of both input items that cryptographically binds both together. 

If an input is a secret key and a non-secret data item;  

digest = 𝑓(key,data) 

the digest represents a binding of the key and data item that can only be verified by those possessing 

the secret key.  

 

6.2.3 Liveness, freshness, and user authentication 

To realize user authentication, note the following assumptions: 

1. A symmetric key is only shared by two specific users, e.g., Alice and Bob. 

2. Verifiable liveness: Alice authenticates Bob by verifying the liveness of Bob in conjunction 

with the secret shared key. 

Liveness is the assurance that somebody is currently active in the protocol, and is established by 

means of something that procure uniqueness: Nonces, timestamps or counters. This can be obtained 

by a challenge/response-mechanism that includes a cryptographic function (hash function or a 

symmetric cryptographic algorithm), and that outputs a “user authenticity token”. Let’s say Alice 

wants to authenticate Bob. An important assumption is that Alice and Bob in advance share a (long-

term) secret key. Alice sends a challenge to Bob, and expects a response (i.e., a “user authenticity 

token”) that only Bob should be able to compute. Bob’s liveness at the other end is authentic if Bob’s 

response to Alice is computed using a cryptographic function, whose inputs are:  
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1) A specific nonce that he receives from Alice in conjunction with the shared symmetric key. 

2) A timestamp in conjunction with the shared symmetric key 

3) A counter value in conjunction with the shared symmetric key 

Item 1 constitutes a description of a cryptographic challenge/response mechanism. Nonces are 

randomly generated, and have thus high entropy.  

 Definition: High entropy means that if a bit sequence has high entropy, then it is hard to 

predict the input value of the cryptographic function that caused this value. Random nonces 

have high entropy since it is not possible to predict randomness. 

A random nonce that is generated by Alice cannot be predicted by Bob that receives that nonce. 

Alice and Bob share a randomly selected secret key (with high entropy). Bob supplies the nonce and 

the shared key into cryptographic function (a hash function or a symmetric cryptographic algorithm), 

and sends the result to Alice. Since Alice holds the secret key, only she can check if the “user 

authenticity token” carries the original challenged nonce.  

Due to the secrecy of the shared key, an adversary that may know the nonce value is prevented from 

computing valid responses. Therefore, the output of the cryptographic function is not predictable, 

and serves as a “user authenticity token” that assures Alice that Bob on the other end, i.e., the 

liveness and authenticity of Bob. 

Regarding Items 2 and 3, timestamps and counters have low entropy and are therefore predictable, 

but provide uniqueness as input to the cryptographic function due to their incremental nature. 

Timestamps and counters assure uniqueness as long as long as it is verified that counters are not 

reused. Items 2 and 3 do not require explicit challenge messages, since the timestamp or the counter 

implicitly constitutes the challenge.  

Since Alice and Bob share a secret key with high entropy, then the output of the cryptographic 

function is not predictable. Therefore, it serves as a “user authenticity token” that establishes to the 

recipient the liveness and authenticity of the sender.  

In summary, the measures given in Items 1,2,3 prevent an adversary from: 

 Computing valid “user authenticity tokens” due to the secrecy of the shared keys - even if 

low entropy counter/timestamp values are known to the adversary.  

 Replaying former messages due to the uniqueness of the counter/timestamp values. 

 

6.2.4 Session key establishment: Key transfer, key contribution, key 

derivation 

There are several types of session key establishment: 

1) Key transfer: The session key is computed by one party and securely transferred to the other 

party. 

2) Key contribution: The session is contributorily established by both parties, and is derived 

from high entropy random nonces that are securely exchanged by the same parties. 

3) Key derivation: The session key is securely derived from a shared secret in conjunction with 

some material of uniqueness (i.e., a timestamp or a counter). 
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Notice that key transfer (Item 1) and key contribution (Item 2) have the commonality that both 

involve transmissions of messages. According to Item 1, securely transfer a session key, and 

according to Item 2, securely exchange of nonces whereof the session key is derived from.  

The principal distinction is that in Item 1, one party generates the session key, while in Item 2 the 

session key is derived from contributions from both parties. Item 1 has the risk that the key 

generating party may reuse former key. Item 2 provides better assurance that the session key is 

unique. Even if Alice reuses former key material, or an adversary posing as Alice reuses former key 

material by replaying former messages, the session key will be unique as long as Bob provides fresh 

key material.  

Key derivation (Item 3) requires no explicit messages containing key material, since each party keep 

track of the current counter value. Note the analogue use of cryptographic functions (hash function 

or a symmetric cryptographic algorithm) for the purposes of user authentication (previous 

subsection) by establishment of “user authenticity tokens”: 

user_authenticity_token = 𝑓(shared_key,uniqueness) 

and key derivation (Item 3): 

session_key = 𝑓(shared_key,uniqueness) 

where “uniqueness” is a nonce, timestamp, or counter value. A usage distinction is the authenticity 

token is not confidential, and would be sent over the communication channel, while the derived 

session key is confidential, and would be subsequently used as input to a cryptographic function. 

 

 


