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Abstract

This article presents results of a case study within a project that seeks to develop

heavily automated analysis of digital topographic data to extract archaeological infor-

mation and to expedite large area mapping. Drawing on developments in computer

vision and machine learning, this has the potential to fundamentally recast the capac-

ity of archaeological prospection to cover large areas and deal with mass data, break-

ing a dependency on human resource. Without such developments, the potential of

the vast amount of archaeological information embedded in large topographic and

image‐based datasets cannot be realized. The purpose of the case study reported

on here is to assess existing developments in a Norwegian study against digital topo-

graphic data for the island of Arran, Scotland, examining the transferability of the

approach and providing a proof of concept in a Scottish context. For Arran, three

monument classes were assessed – prehistoric roundhouses, shieling huts of medieval

or post‐medieval date, and small clearance cairns. These present different challenges

to detection, with preliminary results ranging from a manageable mix of false positives

and true identifications to the chaotic. The influence of variable morphology and the

occurrence of other, largely natural, objects of confusion in the landscape is discussed,

highlighting the potential improvements in automated detection routines offered by

adding anthropogenic and natural false positives to additional confusion classes.
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1 | INTRODUCTION

Archaeological prospection and surveys have long relied on human

observation, whether in the field or through desk‐based work, for

the identification of objects of interest (e.g. Bowden, 1999; Opitz

& Cowley, 2013). In this approach, rates of coverage are inherently

limited by the availability of human resource. This means that

achieving a systematic large‐area or national mapping of Scotland's

archaeological remains, or indeed remains over a large region any-

where else, is a distant prospect, unachievable even over many

decades. At the same time, extensive high‐resolution topographic
wileyonlinelibrary.com
data are becoming more widely available, presenting a challenge to

the capacity of human observer‐based approaches to explore it.

Developments in heavily automated data processing (e.g. Hesse,

2013) and computer vision offer a way forward to efficiently and

rapidly explore these data and identify archaeological information

(e.g. Bennett, Cowley, & De Laet, 2014; Sevara, Pregesbauer,

Doneus, Verhoeven, & Trinks, 2016). For archaeological survey,

computer vision offers the potential for a step‐change in rates

of coverage, and a mechanism to exploit the vast amount of archae-

ological information embedded in large topographic and image‐

based datasets.
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A key driver for the exploration of such approaches is the recog-

nition that existing heritage datasets are unrepresentative (Banaszek,

Cowley, & Middleton, 2018; Cowley, 2016) and are a biased basis

for management and research. An additional motivation is the ongo-

ing acquisition by the Scottish Government of airborne laser scan-

ning (ALS, aka airborne LiDAR) data, and the proliferation of aerial

and satellite imagery, which all have enormous potential for archae-

ological mapping. However, to exploit this potential requires devel-

opment of analytical methods that can efficiently deal with mass

data, and computational approaches drawing on convolutional neural

networks (CNNs) offer a way forward for archaeological prospection

(Trier, Salberg, & Pilø, 2018). These draw on learning sets to ‘look’ at

data in a manner inspired by the organization of the animal/human

visual cortex (LeCun, Bengio, & Hinton, 2015), and have the poten-

tial to be more successful than past approaches to automated

detection.

The work presented in this article was commissioned by Historic

Environment Scotland (HES), the lead public body for Scotland's his-

toric environment, and was designed to contribute to a range of HES

strategic priorities. These include the need to build better knowledge

of where the material remains of past activities survive, without

which understanding of Scotland's history will be limited. This recog-

nizes that the National Record of the Historic Environment (NRHE) is

a partial record built up piecemeal over more than a century, and its

contents are neither systematic nor representative of the archaeol-

ogy that survives in the landscape (Banaszek et al., 2018; Cowley,

2016). Indeed, in Scotland there are extensive relict landscapes of

preserved archaeological micro‐topographic remains, and systematic

survey in most parts of the country generates large increases (e.g.

up to tenfold) in the numbers of known monuments. However, only

about 10% of the country has been covered in this way, and this

leads to an expectation that there are hundreds of thousands of

unrecorded monuments preserved in the micro‐topography of the

landscape. This knowledge gap is a significant limitation on under-

standing, management and protection of Scotland's archaeological

assets. Developing approaches to mass data analysis provides a

mechanism to explore topographic data and imagery to provide sys-

tematic large‐area coverage within short periods of time that can

form the basis for a better understanding of the past, and for more

effective management strategies, especially in the face of challenges

such as climate change and human‐induced landscape‐scale changes.

This work also addresses an ongoing paradigm‐shift in archaeological

prospection in response to the proliferation of digital data. If archae-

ological survey is to engage effectively with the complexity and scale

of datasets such as ALS, this demands the development of analytical

processes that are less dependent on human observer‐based

approaches.
2 | BACKGROUND

Automatic and semi‐automatic methods for detection and mapping

of archaeological structures from remote sensing data (Table 1) have

emerged over the last 12 years (see Traviglia, Cowley, & Lambers,

2016, for a discussion of this trajectory). In an early work, Bescoby
(2006) used the Radon transform to detect Roman land boundaries

from aerial photographs. Template matching has been used to map

burials from optical satellite data (Trier et al., 2009), and to identify

a range of objects including pitfall traps, charcoal burning platforms,

and grave mounds in a digital terrain model (DTM) derived from

ALS (Schneider, Takla, Nicolay, Raab, & Raab, 2015; Trier & Pilø,

2012; Trier & Pilø, 2015; Trier, Pilø, & Johansen, 2015; Trier, Zortea,

& Tonning, 2015). Also based on a DTM is an automatic pit filling

method based on an inverted DTM to locate mound structures

(Freeland et al., 2016); a combination of curvature estimates, topo-

graphic position index, and circular Hough transform to detect pre-

historic barrows (Cerrillo‐Cuena, 2017); a combination of

segmentation and template matching to detect grazing structures

(Toumazet et al., 2017); and local contrast in the DTM at three dif-

ferent scales and a random forest classifier to detect burial mounds

(Guyot et al., 2018). A study to detect rectangular enclosures in pan-

chromatic satellite images (Zingman et al., 2016) concluded that

bespoke methods in some cases perform better than using a pre‐

trained deep CNN, but at the cost of much longer development time.

However, the use of a deep CNN for charcoal burning platforms

showed considerable improvement on an earlier template matching

approach (Trier et al., 2018). The term ‘deep’ is used to emphasize

that the neural network has several layers between the input layer

and output layer, whereas early neural networks only had three

layers. Most of the existing works (Table 1) report their success in

terms of rates of true positives and false positives, as indicating

how good each method was in solving the particular automation

problem at hand. However, for a number of reasons, these figures

do not support systematic assessment of the effectiveness of the

methods. Firstly, the quality of the data (i.e. how well archaeological

structures are visible in the data, and how well they stand out from

modern structures and natural terrain features) varies considerably

between studies. Secondly, the number of training and test examples

also vary between the studies, and thirdly, each method has a differ-

ent set of parameters that are estimated during training. These

issues highlight the challenges of creating transferable automated

approaches across differing archaeological remains and terrains, with

the added difficulty that large numbers of parameters require large

numbers of training examples.

Notwithstanding these issues, the increasing number of case stud-

ies that demonstrate the utility of such automated approaches, and

the rapid rate of development, has prompted HES to explore this

methodology. Recognizing the challenges of transferability in existing

studies, the development of a proof of concept for Scotland looked

to capitalize on work undertaken elsewhere in areas with similar

archaeological morphology and topography. The broadly similar forms

of topographic expression amongst archaeological remains in parts of

Norway and Scotland made the partnership between HES and the

Norwegian Computing Center (NCC) an attractive proposition. More-

over, the broad framework of research by the NCC on semi‐automatic

methods for the detection and mapping of cultural heritage remains,

with an overall aim to develop methods that can be used in national

cultural heritage infrastructure contexts (Kermit, Hamar, & Trier,

2018), fitted well with HES’ aspiration to improve the coverage of

the NRHE in Scotland.



TABLE 1 Previous studies in rapid and/or automated archaeological mapping

Authors Objects to detect Remote sensing data Method

True
positive
rate

False
positive
rate

Hesse, 2013 Potential archaeological
features

Airborne laser scanning
(ALS), 1/m2

Manual interpretation of digital terrain
model (DTM) visualization

Bescoby, 2006 Roman land boundaries Historic aerial photos Radon transform

Sevara et al., 2016 Burial mounds in grave
field

ALS, 6/m2 DTM openness + segmentation 91% 6%

Sevara et al., 2016 Various archaeological
features

ALS, 5/m2 DTM openness, slope, roundness +
segmentation

100% 35%

Zingman, Saupe, Penatti, &
Lambers, 2016

Fragmented rectangular
enclosures

Satellite, optical 0.5 m Rectangle detector 100% 34%

Zingman et al., 2016 Fragmented rectangular
enclosures

Satellite, optical 0.5 m Pre‐trained deep convolutional neural
network (CNN)

100% 124%

Trier et al., 2018 Charcoal burning
platforms

ALS, 5/m2 Template matching 70% 72%

Trier et al., 2018 Charcoal burning
platforms

ALS, 5/m2 Pre‐trained deep CNN + support vector
machine classifier

86% 37%

Trier, Larsen, & Solberg, 2009 Cropmarks of levelled
grave mounds

Satellite, optical 0.5 m Template matching

Trier & Pilø, 2012 Pitfall traps ALS, 7/m2 Template matching + if‐tests 86% 92%

Trier, Pilø, & Johansen, 2015 Burial mounds in grave
field

ALS, 7/m2 Template matching 65%

Trier, Zortea, & Tonning, 2015 Grave mounds in forest ALS, 1–22/m2 Template matching + if‐tests 50% 375%

Freeland, Heung, Burley, Clark, &
Knudby, 2016

Earthworks mounds ALS, 1/m2 DTM local relief, ratios + segmentation 71% 14%

Freeland et al., 2016 Earthworks mounds ALS, 1/m2 Inverted pit filling 85% 18%

Cerrillo‐Cuena, 2017 Prehistoric barrows ALS, 0.5/m2 Curvature, topograpic position index,
circular Hough transform

46%

Toumazet, Vautier, Roussel, &
Dousteyssier, 2017

Grazing structures ALS, 11/m2 DTM local relief, segmentation, template
matching

91% 34%

Guyot, Hubert‐Moy, & Lorho,
2018

Burial mounds ALS, 14/m2 DTM local contrast at three scales, random
forest classifier

98% 1%
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2.1 | Towards neural networks

In developing semi‐automated methods, the NCC research framework

has taken two different approaches, as outlined earlier, and discussed

in a little more detail here. Template matching proved successful for

the detection of pitfall traps in Oppland County, Norway (Trier & Pilø,

2012). In this landscape, the pitfall traps stood out as clear anthropo-

genic structures in the ALS‐derived DTM. Although the template

matching gave some false positives, many of these were removed by

including additional tests on the shape of each detected pit. Template

matching was then used to detect pits and mounds on iron extraction

sites, grave mounds and charcoal burning platforms. These results

were less convincing than for the pitfall traps. In the case of the iron

extraction sites and grave mounds this is probably because they were

less distinct than the pitfall traps, and did not stand out from the nat-

ural terrain to the same degree. However, these reasons seemed less

applicable for the charcoal burning platforms, which are very distinc-

tive to a human observer. This introduced an additional problem, that

the charcoal burning platforms had many different appearances in the

DTM, and that it was difficult to construct a suitable template or a col-

lection of templates to deal with the variability in form. However,

applying both mound and pit detection, using small templates for pits

and large templates for mounds produced some improvement in per-

formance. In this case many charcoal burning platforms were detected
as a range of features, including a central mound with pits around the

circumference, a central mound, and pits in a circular arrangement.

Never the less, many charcoal burning platforms were still missed.

Recent advances in computer vision, using deep CNNs, suggested

an alternative approach (Trier et al., 2018). Using a network pre‐

trained on a million natural images, they discarded the last layer of

the neural network and replaced it with a support vector machine clas-

sifier. By training the support vector machine classifier on 400 exam-

ples of charcoal burning platforms and 10 000 random terrain

locations, 86% of the verified charcoal burning platforms were cor-

rectly detected, compared to 70% for the template matching

approach. In an approach implemented in the Caffe library, the false

positive rate is 37%, against 72% for template matching, also a signif-

icant improvement. The main limitation of the implementation is

speed as 1 km by 1 km of DTM data requires several hours of process-

ing. Using a step size of 1 m (5 pixels), the method extracts a

224 × 224 pixels image from the DTM, and scales the floating point

elevation values to integer values in the range 0–255. This individual

re‐scaling is the main bottleneck, and could be avoided in the future

by, for example, using local relief visualization (Hesse, 2010). Recently,

the PyTorch library has emerged as a better alternative to Caffe, offer-

ing more flexibility in training and classification. Accepting the pub-

lished reservations that deep CNNs might not always be the best

solution (Zingman et al., 2016), this approach has been used on Arran



4 TRIER ET AL.
because transferability between datasets and the development of

‘general purpose’ archaeological CNNs is desirable if the discipline as

a whole is to make better use of the methodology. For HES, the sim-

ilarities in landscape forms, datasets and the basic morphology of

archaeological monuments between some of the Norwegian case

studies and the Scottish context meant that it was an attractive first

step in establishing a proof of concept project on Arran.
3 | ARRAN CASE STUDY

The island of Arran is being used by HES to develop approaches to

rapid large area mapping using remote sensing datasets (Banaszek

et al., 2018; Cowley & López‐López, 2017), and this includes a proof

of concept for the use of automated object detection to expedite rates

of coverage and to explore how archaeological objects are identified.

Arran lies in the west of Scotland, extending to about 432 km2, and

is colloquially known as ‘Scotland in miniature’ because it has a range

of landscapes from highlands to lowlands that are generally represen-

tative of the rest of Scotland (Figure 1).
FIGURE 1 Hillshade relief visualization of the digital terrain model
(DTM) of Arran, illustrating the complex topography of the island.
The learning set locations are superimposed. DTM derived from
airborne laser scanning (ALS). The DTM contains public sector
information licensed under the Open Government Licence v3.0.
[Colour figure can be viewed at wileyonlinelibrary.com]
3.1 | Data

The ALS data used for this project were collected between November

2012 and April 2014, commissioned by the Scottish Government,

Scottish Environmental Protection Agency, sportscotland and 13 local

authorities collectively (DTM andDSMare available under OpenGovern-

ment licence v3.0, the point cloud is available under a Non‐Commercial

Government Licence). The ALS data for Arran comprise 1 km by 1 km tiles

of point cloud data (las file v1.2, compressed to laz), each point classified

as one of eight classes, including ‘ground’, ‘building’ and ‘vegetation’. The

average ‘ground’ point density per square metre was 2.75, but this varies

considerably from 0.43 to 7.44 across the 489 tiles depending on

vegetation density and the presence of buildings. However, large areas

of Arran are open land with low vegetation (Figure 2). From previous

fieldwork and visual inspection of ALS‐derived visualizations, learning

sets comprising several hundred locations of historical structures and

some modern structures were created (Table 2) for selected discrete

areas of approximately 1 km by 1 km (Figures 3, 4).
4 | METHODS

4.1 | Pre‐processing of ALS data

In order to allow for detection of cultural heritage structures at tile

boundaries, each tile included a 50 m buffer of data from neighbouring

tiles. Then, for each extended tile, all ALS ground points were used to

create a DTM at 0.25 m grid spacing. At this resolution, no detail in

the ALS data is lost, and the archaeological structures are clearly visible.

The DTM was created using the IDL (https://www.harrisgeospatial.

com) functions TRIANGULATE and TRIGRID. Since the archaeological

remains of interest survive as local elevation differences, a smoothed

version of the DTM was subtracted from the DTM, producing a simpli-

fied version of a local relief model (Hesse, 2010). The smoothing was
done for each pixel by taking the mean value within a 30 × 30 pixels

sliding window (i.e. 7.5 m × 7.5 m). The resulting image then contained

local elevation deviations from the general smoothed terrain surface,

the values for which were truncated to the range −2 m to +2 m.

While there are other DTM visualizations (Kokalj & Hesse, 2017)

that could have been used instead of, or combined with, the local

relief model, for the present study the simplified local relief model

(SLRM), replicated for red, green and blue channels, is used. The

SLRM, as a normalization of the topographic data that removes the

influence of absolute elevation, seems to have some advantages for

the present study. It is closer to the ‘raw’ terrain data than some other

visualizations, such as hillshade or sky view factor, which build in more

abstraction and modelling of interactions between terrain and light or

sightlines. It is rotation invariant and, with the exception of larger,

abrupt terrain features, that might distort the local terrain model, gen-

erally renders the archaeological remains effectively. However, the

influence of different treatments of the raw terrain data on detection

outputs is a potentially important issue that requires exploration.

https://www.harrisgeospatial.com
https://www.harrisgeospatial.com
http://wileyonlinelibrary.com


FIGURE 2 This aerial view of the northwest of Arran shows the predominance of low to ground vegetation such as grass and heather, but also
the large areas of 20th century coniferous plantations. DP252900 © Historic Environment Scotland [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Archaeological and modern structures in the learning set

Type of structure Count

Roundhouse 121

Shieling hut 267

Small cairn 384

Burial cairn 6

Burnt mound 24

Cattle feed stance 24

Enclosure 11

Horse platform 1

Possible kiln 5

Rectangular building 15
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4.2 | Neural network design

The ResNet18 implementation in PyTorch (https://pytorch.org/) was

used as a starting point, an approach that includes a ready‐to‐use

implementation that allows the user to take a network pre‐trained as

a starting point, and to refine it with their own data. This process is

known as ‘transfer learning’ (e.g. see Liu et al., 2018; Pan & Yang,

2010). The neural network is pre‐trained on the ImageNet (http://

www.image‐net.org/) database of 1.2 million images of natural scenes,

each image tagged with one or more of about 1000 unique labels

denoting image content. While the ImageNet database will not be rep-

resentative of archaeological landscapes and sites, for the present

there is a hope that the basic elements of low‐level image detection

are transferable from one type of image to another. That is, that there

are common processes in the basic detection of edges, arcs, lines, con-

trast, texture, and so on, that are learned on one set of images, and
may be applicable to other types of image. This too, is an issue requir-

ing further exploration especially as archaeological learning sets may

be small in comparison to other training sets, such as ImageNet.

ResNet is designed to work on images 224 × 224 pixels in size.

The input layer of ResNet is organized as a 7 × 7 array of image fea-

ture detectors, each 32 × 32 pixels in size. By instead using 2 × 2 or

3 × 3 feature detectors, input image sizes of 64 × 64 or 96 × 96 pixels

could be used. In addition, the final classification layer that maps to

the 1000 ImageNet classes is replaced with a layer that maps to the

actual classes of interest. In the present study, this could have been

the four classes of roundhouse, shieling hut, small cairn, and back-

ground. However, with that design, we found it difficult to optimize

performance on all classes simultaneously. So, we instead used three

networks: roundhouse versus background; shieling versus background;

and small cairn versus background.
4.3 | Training of the neural network

It is recommended to run the training phase on a computer with a

graphics processing unit (GPU), otherwise training may be very slow.

The workflow for this phase included the following distinct processes

– extraction of training images, image augmentation, image cropping,

training and validation iterations and storing the results of training.

The training of the neural network was done on image extracts

101 × 101 pixels in size centred on known locations of roundhouses,

shieling huts and small cairns. Samples of the ‘background’ terrain, as

a single class and excluding any ‘foreground’ locations, were also

extracted on a random basis (also 101 × 101 pixels), taking care to

avoid foreground structures in the learning set. To exclude the fore-

ground structures, buffer zones around these locations were created

https://pytorch.org
http://www.image-net.org
http://www.image-net.org
http://wileyonlinelibrary.com


FIGURE 3 (Top) Detail of the digital terrain model (DTM) visualized
as simplified local relief model (SLRM) for Machrie Moor on the west
of Arran, with the roundhouses, small cairns and other archaeological
monuments clearly visible. The 1100 m × 835 m image is centred on
190 600 east, 632 450 north (OSGB national grid). (Bottom) The
learning sets of verified roundhouses (blue) and small cairns (brown)
for the same area. The DTM contains public sector information
licensed under the Open Government Licence v3.0 [Colour figure can
be viewed at wileyonlinelibrary.com]

FIGURE 4 (Top) Machrie Moor with automatic detections of
roundhouses (cyan), shielings (magenta) and small cairns (yellow) for
the same area as Figure 3. (Bottom) Verified roundhouses (blue) and
small cairns (brown) superimposed, for the same area. The digital
terrain model (DTM) contains public sector information licensed under
the Open Government Licence v3.0 [Colour figure can be viewed at
wileyonlinelibrary.com]
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to form a mask layer. The locations used for buffer zoning included

roundhouses, shieling huts and small cairns, but also remains of other

monuments such as burial cairns, burnt mounds, modern cattle feed

stances, enclosures, and horse‐engine platforms which could be con-

fused with roundhouses, for example (see Figure 5(h, i)). A random

number generator was used to select x and y coordinates of back-

ground locations from the 1 km × 1 km tiles that contained known

locations of roundhouses, shieling huts and small cairns. Background

locations within the buffer zone mask were discarded.

The image extracts were divided in two groups of ‘training’ and ‘val-

idation’ (Table 3), so that the neural network learned its internal param-

eters from the training data, and evaluated detection performance on

the validation data. This is designed to prevent overfitting on the train-

ing data, whereby the classifier recognizes the training data but may

perform badly on data that it has not encountered during training.

The number of background examples (Table 3) was large for three

reasons. Firstly, because ‘background’ is the most frequent situation in

the landscape, and secondly because there are many different natural
terrain structures that we did not want the neural network to classify

as an archaeological object type. Thirdly, a large range of background

examples may reduce the number of false positives (i.e. a location that

the neural network predicts as being one of the cultural heritage

types, but is in fact not). However, if the number of background exam-

ples is too large, the training phase becomes very slow, precluding

experimentation with various parameter settings by running several

training phases and comparing the results.

The next step of theworkflow used image augmentation to address

the issue that the neural network contains a large number of parameters

that need to be trained, but that the initial set of learning examples is

small. While the images in the validation set were kept unchanged,

those in the training set were augmented by allowing the following

changes to images to increase the size of the training set:

1. Horizontal flip (yes/no)

2. Rotation by 0, 90°, 180° or 270°

3. Random scaling 0.95–1.00 while keeping the aspect ratio

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 5 Roundhouse predictions and
objects of confusion in the Machrie Moor
area. Roundhouses (a)–(c) were correctly
identified, despite a range of morphology and

the potential influence of ‘noise’ from
adjacent features such as field banks (a).
However, three roundhouses in the learning
set (d)–(f) were not identified, and this may be
because of their slightly less bold expression
in the visualization amongst other potential
factors. One automatic identification (g) is
probably too small to be a prehistoric
roundhouse, but shares its basic morphology
with them. The cattle feed stance is modern
(h), but also shares some basic aspects of
roundhouse morphology and is one of a group
added to the study as a confusion learning set.
A circular burial cairn (i) was identified as a
shieling hut, while some others were
identified as roundhouses. The locations are
at OSGB coordinates: (a) 190 513 east, 632
288 north; (b) 190 778 east, 632 188 north;
(c) 190 674 east, 632 180 north; (d) 190 217
east, 632 640 north; (e) 190 300 east, 633
013 north; (f) 190 428 east, 632 648 north; (g)
190 532 east, 632 237 north; (h) 190 065
east, 632 842 north; (i) 190 880 east, 632 353
north. The image portions are 40 m × 40 m.
The digital terrain model (DTM) contains
public sector information licensed under the
Open Government Licence v3.0

TABLE 3 Training and validation sets used in training of neural
networks

Class Training Validation Total

Roundhouse 80 26 106

Shieling hut 177 88 265

Small cairn 259 125 384

Background 7355 1842 9197
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4. Random scaling 0.95–1.00 without keeping the aspect ratio

5. Random translation by 0, 1 or 2 pixels either to the north or to

the south.

6. Random translation by 0, 1 or 2 pixels either to the west or to the

east

The first two of the mentioned changes, i.e. flip and rotation, produce

eight times as many training images as listed in Table 3 under the

‘training’ column. The other four types of changes produce minor var-

iations in the training images. The augmented training images were

centre cropped to a size of 96 × 96 pixels for roundhouse detection

(i.e. 24 m × 24 m as most roundhouses are in a range from 8 m to

15 m in diameter) or 64 × 64 pixels for shieling hut and small cairn

detection (as these remains tend to be smaller at 2–6 m across) – not-

ing that these images may contain other objects.
The deep CNN has many parameters that must be estimated from

the training data, requiring training and validation iterations. The train-

ing was done by iteratively updating the parameters to minimize the

error in the training set, and evaluating the network by classification

performance on the validation data. One full iteration through the

training set is called an epoch. After each epoch, the neural network

internal parameters and classification performance (Table 4) are

stored. At the end of the training phase, the neural network internal

parameters, which were obtained from the epoch that produced the

best validation accuracy, were saved to a file. This file could then later

be read into the ResNet to restore the exact state of the classifier.
4.4 | Running the neural network on entire tiles

The ResNet may be run on different image sizes. When the network is

applied to the full tile, the averaging operation is turned off, which

makes the network produce a classification result for each 32 × 32

pixels image block. The maximum input image size was 2048 × 2048

pixels (512 m × 512 m) on the particular computer used at the NCC,

though this may be smaller or larger on other computers. In practice,

the 1.1 km × 1.1 km extended tiles were divided into overlapping

sub‐tiles, each of which was fed into the neural network classifier.

The lower resolution classification results were then expanded to

the original image resolution. The overlaps were removed and the



TABLE 5 Classification results for two areas, Machrie Moor and
Glen Shurig

Monuments
Correct
identifications

False
identifications Known monuments

Machrie Moor

Roundhouse 11 73% 13 87% 15

Shieling hut 0 23 0

Small cairn 4 20% 18 90% 20

Glen Shurig

Roundhouse 0 27 0

Shieling hut 5 26% 36 189% 19

Small cairn 0 2 0

TABLE 4 Correct classification rates after each epoch of the training
of the deep neural network for roundhouse detection

Epoch Training accuracy Validation accuracy

1 0.9847 0.9936

2 0.9876 0.9925

3 0.9890 0.9946

4 0.9856 0.9946

5 0.9895 0.9834

6 0.9872 0.9845

7 0.9894 0.9791

8 0.9883 0.9914

9 0.9903 0.9925

10 0.9907 0.9888

Note: On the validation data, the best classification rate, 99.46%, was
obtained after epoch numbers 3 and 4
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classification results merged into a raster file of the same size as the

input extended tile. The classification results comprise one raster

image for each archaeological object type, with values between 0.0

and 1.0, for each input tile. For the three archaeological object types

of roundhouse, shieling huts and small cairns, the three classification

results were combined into a single red–green–blue (RGB) image, col-

our coded with white as background, cyan as roundhouse, magenta for

shieling huts, and yellow for small cairns.

By running the automatic method on the SLRM visualizations,

predicted locations of roundhouses, shielings and small cairns were

obtained. These outputs of the neural network are by default not nor-

malized. The final layer is a softmax‐normalization function that nor-

malizes the output for each class between 0 and 1, and the sum

over all the classes to 1. The output of the softmax function is

interpreted as the probability that a given sample belongs to each of

the given classes. Since this case study uses three classifiers (i.e.

roundhouse vs background, shieling hut vs background, and small cairn

vs background), another normalization would be needed to make sure

they sum to one in each pixel, in order to treat them as probabilities.

Such a normalization is not used at the moment.
FIGURE 6 Detection results (coloured overlay) for Glen Shurig, an
area with verified shielings (purple circles). The 1100 m × 705 m
image is centred on 198 500 east, 636 355 north (OSGB national grid).
This chaotic set of returns includes large numbers of false positives for
shieling huts and for roundhouses. The digital terrain model (DTM)
contains public sector information licensed under the Open
Government Licence v3.0 [Colour figure can be viewed at
wileyonlinelibrary.com]
5 | RESULTS

Two exemplar tiles from the Arran results, one with encouraging

results, and another with a high level of noise, are discussed here,

comparing the automated predictions with the desk and field‐based

observations of an experienced archaeological field worker. The exam-

ple with the most encouraging results is on Machrie Moor, an area rich

in known archaeological monuments. The landscape has generally low

natural relief, and comprises a mosaic of improved pasture and rough

grazing (grass and heather). Many of the known archaeological monu-

ments are clearly visible in the DTM (Figure 3, top), which also shows

features such as hollow trackways and peat cuttings. For this block 15

roundhouse footings and 20 small cairns were included in the Arran

learning set (Figure 3, bottom). The roundhouse predictions are quite

meaningful, in the sense that many true locations are identified, and

that the number of false positives is not too large (Table 5). Thus, 11

of the 15 roundhouses (73%) were located by the automated method,
with four false negatives where some known roundhouse locations

were missed. The performance of the automated predictions for the

small cairns is rather more uneven, with less than 50% matching veri-

fied locations, and many false positives (Figure 4, Table 5). Finally, the

automated outputs for the shieling huts are mainly false positives,

though in some cases these identify monuments of other forms,

including a chambered cairn. Looking in more detail at the roundhouse

results, a range of morphological forms have been correctly detected

(Figure 5(a–c)). These include two examples with an adjacent field

bank (e.g. Figure 5(a)) that has not precluded correct identification.

For the three roundhouse locations that the automatic method missed

(Figure 5(d–f)) their expression in the DTM visualizations are some-

what weaker, but not all so markedly as to convincingly explain why

they were missed. The automatic detections also include an example

of a round structure that is probably too small to be a roundhouse,

and may be a shieling hut (Figure 5(g)).

The second example is in Glen Shurig, a steep sided valley on the

east of the island, and here the automated predictions appear chaotic.

Of the 19 shieling huts in this block that were included in the Arran

learning set (Figure 1), only five (26%) were correctly identified, and

the number of false predictions is high (Figure 6, Table 5). Moreover,

there are large numbers of false positives for roundhouses and a

http://wileyonlinelibrary.com
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scatter of false positives for shieling huts. Many of the false positives

occur in areas of woodland with lower ground point densities, but are

also scattered across open ground that is characterized by its uneven-

ness, with many natural undulations and lumps of a similar scale to the

archaeological remains. It is worth noting that many of the known huts

in this area are relatively small, measuring less than about 3 m by 5 m

across, and that the size of the training images (16 m by 16 m) may

well be a factor in the chaotic outputs, as higher proportions of back-

ground are included.

These two examples provide highly contrasting results, and chal-

lenge us to understand why this might be the case. In exploring where

improvements in the present version of the classifier outputs might be

found, some parameters were varied to see the effect on the classifica-

tion results, though the limited scope of the pilot study did not allow for

a comprehensive exploration of these and their potential influence on

classification accuracy. However, some useful observations can be

made. Firstly, for the pixel size of the inputDTM, 0.25mpixel size seems

to be appropriate for the archaeological structures in this study. A pixel

size of 0.1 m appears to highlight archaeologically unimportant detail in

the ALS data, while a 0.5 m pixel size makes the archaeological struc-

tures visually too small in the learning set. Secondly, although

224 × 224 pixels is the image size of the original ResNet code, this pro-

duces larger regions of each class in the detection results and therefore

less precise location prediction. Smaller images also include less back-

ground terrain, but it is unclear if the character of the background terrain

within each sub‐image is an issue. Smaller images have the added

advantage of making the training phase faster, thus allowing for more

experiments. Thirdly, while the present study incorporated objects of

potential confusion such as modern cattle feed stances which might

easily bemistaken for roundhouses, natural terrain objects like rock out-

crops and mounds of glacial origin were not included. In landscapes

where anthropogenic and natural topographic features share some

basic aspects in their morphology this may be an important factor.
6 | DISCUSSION AND CONCLUSIONS

The preliminary results of this automatic detection project on Arran

are mixed. For the Machrie Moor area the method found many true

roundhouse locations, and the number of false positives was not over-

whelming. In contrast, all results for the Glen Shurig area were chaotic

and overall the results for shieling huts and small cairns are less con-

vincing. Indeed, these were included in this study because it was

expected that they would be more difficult to detect than round-

houses because of their variability in form and the ease with which

they might be mistaken for other features, including natural landforms.

These results demonstrate the potential for further development, both

for the Arran study, and to other case study areas in Scotland with

similar remains. They also highlight a number of general issues.
6.1 | Artificial intelligence is being applied without
proper understanding

Hutson (2018) notes an extensive critique of the widespread use of

artificial intelligence without proper understanding of when and why
it works well, and when and why it works less well. This legitimate

concern stems from a major strength of deep neural networks – that

they are easier to apply than handcrafted ‘traditional’ pattern recogni-

tion methods, and appear to work ‘better’. And therein lies a funda-

mental problem, that a perception of working ‘better’ can preclude

the exploration of how/why it works as ‘only’ of academic interest.

However, as the study presented here demonstrates, the reasons for

differing performance of deep neural networks are complex, and there

is a pressing need to explore the reasons for this variability in output.

These include that the structure of the deep neural network may not

be fit for the pattern recognition problem at hand, so a better neural

network structure must be found. In addition, the number of training

examples is inadequate – a significant issue in archaeological applica-

tions. In attempting to address these issues the exploration of how

transfer learning might be applied, using a large and, if possible, closely

related data set for the initial training seems a useful approach. It is

also worth highlighting that while it is only proper to demand better

understanding of how and why applications of artificial intelligence

work, this brings with it a need for the basis on which archaeologists

identify and classify archaeological monuments to be made more

explicit. Black boxes in processes of identification and classification

are undesirable, whether they are computational or expressed through

the archaeologist. The synergistic exploration of both how neural net-

works perform and how archaeologists identify and classify remains

seems a useful common concern, escaping the oppositional expression

of these processes in the past (e.g. Parcak, 2009, pp. 110–111).
6.2 | Training sets and the design of neural networks

The broader research framework that the Arran case study forms part

of aspires to the creation of ‘general purpose’ archaeological CNNs,

recognizing that this is desirable if applications in archaeology across

a range of datasets and landforms are to be realized in a cost‐effective

way (i.e. each does not have to be engineered individually). Hence the

use in this study of a ready‐to‐use implementation, pre‐trained on a

non‐archaeological image database. While this may be expedient, it

does require consideration of the influence of generic training sets

and CNN design on the archaeological applications. Ideally, in the

future, large tagged training sets of archaeological images can be used

for pre‐training, rather than hoping that common processes of detec-

tion learned on generic images (i.e. ImageNet) may be applicable to

specifically archaeological images. The design of the neural network

is dependent on the size of the cultural heritage structures subjected

to mapping, and the number of training examples of each type of

structure. Thus, if only a few hundred examples of each type exist

(as with Arran), then a pre‐trained network is likely to be the most

effective solution – keeping in mind the caveats mentioned earlier.

However, if there are a few thousand training examples, then the net-

work may be trained from scratch, and may subsequently be used as a

pre‐trained network for types of remains with far fewer training exam-

ples. The training will also require several thousand examples of ‘back-

ground’ terrain without any cultural heritage remains. Multiscale

approaches may also be required if the archaeological structures are

of different scales, requiring DTM of various resolutions (e.g. 0.25 m
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and 1.0 m), and/or neural networks with different input sizes (e.g.

96 × 96 pixels and 256 × 256 pixels).

Moreover, further consideration of the character of learning sets

in specific implementations will be crucial. In the Arran case study,

for example, the identification of objects of confusion, such as remains

that may be mistaken for roundhouses, appears to be an important

consideration in improving outputs. Adding such false positives to

the learning set in confusion classes has the added benefit of taking

a more holistic approach to the topography of the landscape, and cre-

ating more explicit understandings of how the archaeological elements

of the landscape are defined and identified. For example, the land-

scape of Arran has many glacial landforms, some of which are similar

in basic shape to the small cairns. In some cases, shieling huts are sit-

uated on glacially derived mounds adding further potential confusion,

highlighting the importance of adding such natural landforms to a con-

fusion class. This issue also highlights the potential influence of the

size of training images on outcomes, as larger training images may

contain more background noise. The need to identify such ‘objects

of confusion’, anthropogenic or natural in origin, to CNN training sets

has a direct analogue to the need for archaeological fieldworkers to be

aware of natural and anthropogenic features that may appear similar

to archaeological remains (Cowley, 2015). The main purpose of adding

confusion classes is to assign non‐archaeological structures to non‐

archaeological classes, thus reducing the number of false positive

identifications of the archaeological structures being sought. How-

ever, there is also a risk that true archaeological structures may, in

some cases, be mistaken as one of the confusion classes.
6.3 | Identification and classification

The purpose of the survey at hand is also a crucial consideration in the

design of projects that may make use of automated detection, as the

balance between the basic identification of archaeological remains

and their correct classification may vary. For example, the automatic

identifications on Figure 4 include a mound and a burial cairn

(Figure 5(i)), which were predicted as being a shieling hut and a round-

house, respectively. These examples illustrate what may happen when

some classes are not present in the training data. A structure may have

an appearance that is closer to one of the classes in the training data

than to the general background terrain. If one wishes to address this

confusion, it will be necessary to include many examples of, in this

case, mounds and chambered cairns. Another alternative is to accept

that rare classes may be confused with classes that are more numer-

ous. The latter approach may be used when the purpose of automatic

classification is to identify previously unknown archaeological struc-

tures, with less immediate concern that the classification to monu-

ment type is entirely accurate. The various classes of archaeological

structure may be viewed as a means to design the classifier to better

discriminate between archaeological structures on the one hand, and

natural terrain features and modern anthropogenic structures on the

other hand. Thus, depending on the purpose at hand, confusion

between classes of archaeological structure may be regarded as a

minor issue, when the identification of a broad range of archaeological

site types is the main objective. Here, rather than being concerned
with the balance of right and wrong classifications in the outputs,

the extent of false positives and false negatives in identifications of

objects of archaeological interest might be a key issue (see Opitz &

Cowley, 2013, p. 7, for further discussion of the certainty of

identifications).

6.4 | Next steps

This case study on Arran using CNN based methods of automated

detection for archaeological purposes illustrates the potential (promis-

ing results of roundhouse detection in one area) and challenges (cha-

otic results for huts, small cairns, and roundhouses in a second area)

of such an approach. The implementation of this approach within a

programme of large area survey (e.g. Banaszek et al., 2018) clearly

requires further development before it can be operationalized. The

creation of large tagged archaeological training sets drawn from Scot-

land and beyond may be a prerequisite to the creation of flexible

transferable archaeological CNNs, an endeavour that will require

transnational cooperation. This will have the added benefit of obliging

archaeologists to be more explicit in how they define the archaeolog-

ical elements in the landscape, and how these are expressed in image‐

based and topographic datasets.
7 | CONCLUSIONS

We have demonstrated that deep CNNs have great potential for

automating the archaeological mapping of Scotland. However, fur-

ther improvements are needed, and we have discussed several possi-

bilities. The most promising seem to be (1) adding false positives to

the learning set as confusion classes, and (2) using a large set of

labelled (archaeological and/or modern) DTM structures to pre‐train

the network. In these issues there is the potential to explore and

refine the basis on which archaeological remains are identified, dif-

ferentiating them from the natural background and modern confu-

sion classes. There is also an important wider context to this work

– that is the synergies between automated and observer‐based pro-

cesses, and the challenges presented to the ability of archaeologists

themselves to explicitly identify and differentiate between archaeo-

logical object types.
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