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1 Introduction 

Archaeological prospection and survey has long relied on human observation, whether 
in the field or through desk-based work, for the identification of objects of interest. 
Rates of coverage are inherently limited by the availability of human resource. This 
means that achieving a systematic national mapping of Scotland’s archaeological 
remains is a distant prospect, unachievable over even many decades. At the same 
time, extensive high-resolution topographic data is becoming available at such a rate 
that it has outstripped the capacity of human observer-based approaches to explore it. 
However, developments in computer vision offer a way forward to efficiently and rapidly 
explore this data and identify archaeological information. For archaeological survey, 
computer vision offers the potential for a step-change in rates of coverage, and a 
mechanism to exploit the vast amount of archaeological information embedded in large 
topographic and image-based datasets.  

The Scottish Government will be acquiring complete coverage of Airborne Laser 
Scanning (ALS, aka LiDAR) data, and as a 3D digital topographic dataset, this carries 
enormous potential for archaeological mapping. However, to exploit this potential 
requires development of analytical methods that can efficiently deal with the mass data. 
Computational approaches drawing on Convolutional Neural Networks (CNNs) offer a 
way forward for archaeological prospection, demonstrated in pioneering work by the 
Norwegian Computing Center (https://www.nr.no/nb/node/849). CNNs require minimal 
pre-processing, drawing on learning sets to ‘look’ at data in a manner inspired by the 
organization of the animal/human visual cortex. 

The case addresses the full range of HES Corporate Plan strategic themes, most 
specifically: 

1. Understand: Aspects of Our Place in Time and Scotland’s Archaeology Strategy 
cannot be progressed without better knowledge of where the material remains 
of past activities survive. This knowledge gap limits HES’s ability to tell 
Scotland’s story in a comprehensive way.  

2. HES’s remote sensing, archaeological survey and digital documentation are 
well-established, and the national record of historic environment (NHRE) is 
recognised as a high-quality record. It is, however, a partial record built up 
piecemeal over more than a century. The proposed approach to mass data 
analysis provides a mechanism to explore topographic data and imagery to 
provide a comprehensive, truly national scale of coverage within a relatively 
short period of time (perhaps a decade). 

3. Lead: In carrying out this pilot automated archaeological object detection 
project, HES would play a lead role in providing comprehensive information 
about Scotland’s historic environment. At a worldwide level it would provide an 
exemplar of how comprehensive national and regional databases can be built in 
a resource-effective way that shows the benefits of computational approaches 
and mass data provision.  
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4. This proposal represents a significant advance in archaeological prospection, 
developing from the human observer-based approach of the 20th century to 
one that will expedite object detection in vast datasets, improving knowledge of 
the historic environment and increasing the capacity of archaeological survey to 
cover very large areas.  

5. Protect: Systematic survey in most parts of Scotland generates large increases 
(e.g. up to 10 fold) in the numbers of known monuments. However, only about 
10% of the country has been covered in this way, and that means that there are 
hundreds of thousands of unrecorded monuments preserved in the micro-
topography of the landscape. The proposed approach could pave the way to 
providing this base-level record in a matter of years, and this would provide the 
means, through knowledge of what survives in the landscape, to better 
understand, manage and protect our archaeological assets.   

The Scottish Government wishes to actively promote the wider, deeper relationships 
with Nordic and Baltic Countries, including Norway, for innovative, environmentally 
sustainable solutions to shared problems. This proposal fits within that framework. 

Norsk Regnesentral (NR) has previously developed semi-automatic methods for the 
detection and mapping of cultural heritage remains in airborne laser scanning (ALS) 
data, including pitfall traps in deer hunting systems (Trier and Pilø, 2012), grave 
mounds (Trier, Zortea and Tonning, 2015; Trier, Pilø and Johansen, 2015), charcoal 
burning pits in iron extraction sites (Trier and Pilø, 2015), and charcoal burning 
platforms (Trier, Pilø and Johansen, 2015; Trier, Salberg and Pilø, 2018). Also, NR has 
developed semi-automatic mapping of levelled grave mounds in cereal fields from 
optical very high resolution satellite data (Trier, Larsen and Solberg, 2009).  The 
purpose of cultural heritage mapping is twofold: (1) to increase the understanding of 
the past, and (2) to reduce the negative impact of modern land use on the cultural 
remains. The vision is to develop methods that may be used in a national infrastructure 
for semi-automatic mapping of cultural heritage (Kermit, Hamar and Trier, 2018) 

Two different strategies have been used in the above research: 

1. Template matching 

2. Deep convolutional neural networks 

Template matching was successful for the detection of pitfall traps on sand deposits 
south of the lake Olstappen in Nord-Fron municipality, Oppland County, Norway (Trier 
and Pilø, 2012). In this landscape, the pitfall traps stood out as unique, man-made 
structures in the digital terrain model (DTM) obtained from the ALS data. However, the 
template matching also gave some false positives. Many of these were removed by 
including additional tests on the shape of the DTM in a local neighbourhood.  

Template matching was then used to automatically detect pit and mound structures for 
semi-automatic mapping of iron extraction sites, grave mounds and charcoal burning 
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platforms. The results were less convincing than for the pitfall traps. There seemed to 
be two reasons for this: 

1. The structures to detect were less distinct than the pitfall traps 

2. The structures to detect were more similar to natural terrain features than in the 
case of the pitfall traps. 

The latter explanation did, however, not make sense for the charcoal burning platforms. 
To a human observer, these stood out as unique. The problem was rather that they 
had many different appearances in the DTM, and that it was difficult to construct a 
suitable template or a collection of templates. The strategy that did work to some extent 
was to apply both heap and pit detection, using small templates for pits and large 
templates for heaps. Then, many charcoal burning platforms were detected as one of: 

1. A central mound with some pits along the circumference 

2. A central mound only 

3. Some pits in a circular arrangement 

However, many charcoal burning platforms were also missed. 

Recent advances in computer vision, using deep convolutional neural networks, led us 
to consider that as an alternative approach. Using a network that had been pre-trained 
on a million natural images, we discarded the last layer and replaced it with a support 
vector machine classifier. By training it on 400 examples of charcoal burning platforms 
and 10,000 random terrain locations, 86% of the true charcoal burning platforms were 
correctly detected, versus 70% for the template matching approach. The false positive 
rate was 37%, versus 72% for template matching. 

The method was implemented on the Caffe library. The main limitation of our 
implementation is that it is very slow, in the order of several hours per 1 km by 1 km of 
DTM data.  

Recently, the PyTorch library has emerged as a better alternative than Caffe, offering 
more flexibility in training and classification. 
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2 Data 

ALS data of all of the Isle of Arran, Scotland were used in this study. Arran is about 30 
km long north-south and around 15-20 km wide east-west (Figure 1). The total area is 
456 km2. 

The ALS data is organized in 1 km by 1 km tiles of (x,y,z) point data, each point 
labelled as one of six classes, including ‘ground’, ‘building’ and ‘vegetation’. The 
average number of ‘ground’ points per square metre was 2.75. However, this varied 
across the 489 tiles. The per-tile averages varied from 0.43 to 7.44. The main reason 
for low ‘ground’ point density is dense vegetation, preventing the laser pulses to reach 
the ground surface. However, the majority of Arran is open land with low vegetation 
(Figure 2). Another reason low ‘ground’ point density in some areas is the presence of 
buildings. 
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Figure 1. Hillshade relief visualisation of the digital terrain model of Arran, with learning set 
locations superimposed: cyan=roundhouse, magenta=shieling, yellow=small cairn. 
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Figure 2. Vegetation height classes. Orange: 0-0.1 m, yellow: 0.1-2.0 m, dark green: 2-7 m, light 
green: 7-12 m, white: > 12 m. 
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From previous field work and visual inspection of the data, several hundred locations of 
historical structures and some modern structures had been identified (Table 1). E.g., 
within an 1100 m × 835 m area (Figure 3), 13 roundhouse structures and 14 small 
cairns have been identified (Figure 4). 

Table 1. Archaeological and modern structures in the learning set. 

type of structure count
roundhouse 121
shieling 267
small cairn 384
burial cairn 6
burnt mound 24
cattle feed stance 24
enclosure 11
horse platform 1
possible kiln 5
rectangular building 15  

 

 

Figure 3. Detail of DTM, local relief visualisation, with visible, circular roundhouse structures. 
The 1100 m × 835 m image is centred on 190,600 east, 632,450 north (OSGB national grid). 
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Figure 4. Same as Figure 3, with verified roundhouses (blue) and small cairns (brown). 
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3 Methods 

3.1 Preprocessing of ALS data 
In order to allow for detection of cultural heritage structures at tile boundaries, each tile 
was extended by including data from neighbouring tiles within 50 meters from the tile 
boundary.  

Then, for each extended tile, all ALS points labelled as ‘ground’ were used to create a 
digital terrain model (DTM) at 0.25 m grid spacing. For this, the ENVI 
(https://www.harrisgeospatial.com) functions TRIANGULATE and TRIGRID were used.  

The DTM contains elevation values in meters above sea level. Since we are interested 
in local elevation differences and not absolute terrain height values, a smoothed 
version of the DTM was subtracted from the DTM, thus producing a local terrain model 
(simplified version of local relief model (Hesse, 2010)). The smoothing was done for 
each pixel by taking the mean value within a 30 × 30 pixels sliding window, i.e., 7.5 m × 
7.5 m. The resulting image then contained local elevation deviations from the general, 
smoothed terrain surface. The values were truncated to the range -2 m to +2 m.  

 

Figure 5. Some alternative DTM visualisations. Top row, from left: (a) gradient, i.e. local 
steepness, with steep locations in white and flat areas in black; (b) hillshade relief, with 
illumination from the east; (c) hillshade relief, with illumination from the north; (d) contrast 
enhancement, i.e., normalized to a fixed mean value and standard deviation within a sliding 
window; (e) local terrain model (see text). Bottom row: combinations of three visualisations, from 
left: (f) hillshade-east, hillshade-north, gradient, (g) hillshade-west, hillshade-north and 
hillshade-east; (h) local, gradient, enhanced; (i) DTM, local, gradient, (j) local, hillshade-east, 
hillshade-north. 

There are other DTM visualisations (Figure 5) that could have been used instead of, or 
combined with, the local terrain model. Combinations of three bands are possible with 
the neural network, since it is designed for natural colour images with red, green and 
blue channels. We have chosen to simply use the local terrain visualization, which is 
then replicated for the three channels, thus mimicking a grey scale photograph.  
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3.2 Neural network design 
The ResNet18 implementation in pyTorch was used as a starting point. pyTorch 
includes a tutorial with a ready-to-use implementation which allows the user to take a 
pretrained network as a starting point, and to refine it with the user’s own data. The 
neural network is pretrained on the ImageNet database of 1.2 million images of natural 
scenes, each image labelled with one or several labels denoting image content. The 
total number of unique labels is about 1000.  

The ResNet is designed to work on images of size 224 × 224 pixels. We modified the 
ResNet to accept smaller input images than 224. The input layer acts as a 7 × 7 array 
of image feature detectors, each of size 32 × 32 pixels. By using 2 × 2 or 3 × 3 feature 
detectors, input image sizes would be 64 × 64 or 96 × 96 pixels, respectively. 

3.3 Training of neural network 
It is recommended to run the training phase on a computer with a graphics processing 
unit (GPU), otherwise training may be very slow. 

3.3.1 Extraction of training images 
The training of the neural network was done on image extracts of size 101 × 101 pixels 
centered on known locations of roundhouses, shielings and small cairns. Samples of 
the ‘background’ terrain, i.e., excluding any ‘foreground’ locations, were also extracted, 
also of size 101 × 101 pixels. To avoid the foreground structures, buffer zones around 
these locations were made and collected in a mask layer. The locations used for buffer 
zoning included roundhouses, shielings and small cairns, and also burial cairns, burnt 
mounds, cattle feed stances, enclosures, horse platforms, possible kilns, and 
rectangular buildings. A random number generator was used to select x and y 
coordinates of background locations. Background locations within the buffer zone mask 
were discarded. The background locations were extracted from the 1 km × 1 km tiles 
that contained known locations of roundhouse, shieling and small cairn. 

The image extracts were divided in two groups: ‘training’ and ‘validation’. The purpose 
was that the neural network will learn its internal parameters from the training data, and 
evaluate its detection performance on the validation data, to prevent overfitting on the 
training data. Overfitting means that the classifier recognizes the training data but may 
perform badly on data that it hasn’t encountered during training. 

The number of background examples was large for three reasons: 

1. ‘background’ is the most frequent situation in the landscape 

2. there are many different natural terrain structures that we didn’t want the neural 
network to classify as one of the archaeological object types 

3. a large variety of background examples may reduce the number of false 
positives. A false positive is a location that the neural network predicts as being 
one of the cultural heritage types, but is in fact not. 
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However, if the number of background examples was too large, the training phase took 
too long time to complete, thus precluding us from experimenting with various 
parameter settings, run several training phases and compare the results. 

3.3.2 Image augmentations 
The neural network contains a large number of parameters that need to be trained. A 
technique to increase the number of learning examples is to let the neural network 
perform changes to the image examples in the ‘training’ set, thus producing a larger, 
augmented training set. The images in the ‘validation‘ set were, however, kept 
unchanged. The following image changes were allowed on the training data: 

1. Horizontal flip (yes/no) 

2. Rotation by 0, 90, 180 or 270 degrees 

3. Random scaling 0.95 – 1.00 while keeping the aspect ratio 

4. Random scaling 0.95 – 1.00 without keeping thee aspect ratio 

5. Random translation by 0, 1 or 2 pixels either to the north or to the south. 

6. Random translation by 0, 1 or 2 pixels either to the west or to the east 

3.3.3 Image cropping 
The training images were centre cropped to size 96 x 96 pixels (for roundhouse 
detection) or 64 × 64 pixels (for shieling and small cairn detection). 

3.3.4 Training and validation iterations 
The deep convolutional neural network has many parameters that must be estimated 
from the training data. The training is done by randomly changing parameters and 
evaluating the network by classification performance on the validation data. One full 
iteration is called an epoch. After each epoch, the neural network internal parameters 
and classification performance are stored. 

3.3.5 Storing the result of training 
At the end of the training phase, the neural network internal parameters, which were 
obtained from the epoch that produced the best validation result, were saved to a file. 
This file could then later be read into the ResNet to restore the exact state of the 
classifier. 

3.4 Running the neural network on entire tiles 
The ResNet may be run on different images sizes. It uses a sliding window with 32 
pixels (8 metres) stride, thus producing a classification result for each 32 × 32 pixels 
image block. 

The maximum input image size was smaller than 4096 ×4096 pixels on the particular 
computer jocuda at NR. The maximum image size may be smaller or larger on other 
computers. 
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In practice, with 1.1 km × 1.1 km extended tiles, they need to be divided into 
overlapping sub-tiles. Each sub-tile is fed into the neural network classifier. The lower 
resolution classification results are expanded to the original image resolution. The 
overlaps are removed and the classification results are merged into a raster file of the 
same size as the input extended tile. Finally, the overlaps between extended tiles are 
removed from the classification results, thus producing non-overlapping classification 
results. 

The classification results are currently, for each input tile, one raster image for each 
archaeological object type, with values between 0.0 and 1.0. 

3.5 Converting classification results 
With three archaeological object types: roundhouse, shieling and small cairn, the three 
classification results may be combined into a single RGB image. The following colour 
coding was used: 

1. while = background 

2. cyan = roundhouse 

3. magenta = shieling 

4. yellow = small cairn. 
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4 Results 

By running the automatic method on the local relief visualisations, predicted locations 
of roundhouses, shielings and small cairns were obtained (Figure 6).  

 

Figure 6. Same as Figure 3, with automatic detections of roundhouses (cyan), shielings 
(magenta) and small cairns (yellow). 

 



 

22 Automating archaeological object detection  

 

Figure 7. Same as Figure 6, with verified roundhouses (blue) and small cairns (brown). 

By comparing the automatic predictions with verified locations of the same types of 
archaeological structure (Figure 5), it appears that the roundhouse predictions are quite 
meaningful, in the sense that many true roundhouse locations are identified, and that 
the number of false positives is not too large. On the other hand, some false negatives 
also occur, i.e., some true locations of roundhouses are missed by the automatic 
predictions.  

Some of the small cairn predictions match verified locations (Figure 7), but many 
verified locations are also missed. 

For an area with no verified shieling locations (Figure 7) a quite large number of false 
shieling predictions occur. For another area, containing several shielings, only a few 
were correctly identified (Figure 8). Also, the number of false predictions was high.  
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Figure 8. Detection results (coloured overlay) for an area with verified shielings (purple circles). 
The 1100 m × 705 m image is centred on 198,500 east, 636,355 north (OSGB national grid). 

Before arriving at the present version of the classifier, some parameters were varied to 
see the effect on the classification results. Here are some of the main findings: 

1. 0.1 m pixel size seems to give too much attention to unimportant detail in the 
ALS data. 

2. 0.5 m pixel size seems to make the archaeological structures too small in the 
learning set 

3. 0.2 m and 0.25 m pixel sizes seem to be appropriate for the archaeological 
structures in this study. 

4. 224 × 224 pixels is the image size of the original ResNet code. However this 
resulted in larger regions of each class in the detection results, thus even less 
precise location prediction. Smaller images also include less background 
terrain, but it is unclear if the amount of background terrain within each 
subimage is an issue. 

5. Smaller subimage size makes the training phase faster, thus allowing for more 
experiments. 

6. Thus, a number of parameters were indeed varied; however, none of the 
observed combinations resulted in a clearly superior result. 
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7. The budget of the pilot study did not allow for a comprehensive, systematic, 
detailed documentation of all combinations and the resulting classification 
accuracy. However, we have other suggestions for improvement that may be 
more important to investigate. 

4.1 Detailed inspection of some individual monuments 
By inspecting the DTM visualization at roundhouse locations that the automatic method 
missed (Figure 9), one may gain some insight into what kinds of mistake the classifier 
makes. In two of the cases (Figure 9a-b), the roundhouse structures appear weak in 
the DTM visualization. However, in another case (Figure 9c), the structure is not as 
weak. In all three cases, linear structures appeared close to the roundhouse. 

   
(a)                                         (b)                                         (c) 

Figure 9. Roundhouse locations that the automatic method missed. The roundhouse locations 
are at OSGB coordinates: (a) 190,217 east, 632,640 north; (b) 190,300 east, 633,013 north; 
and (c) 190,428 east, 632,648 north. The image portions are 80 m × 80 m. 

On the other hand, the majority of roundhouse locations in Figure 7 were correctly 
identified by the automatic method (Figure 10). In two of these cases (Figure 10a, i), 
there were linear structures close to the roundhouses. Thus, the presence of linear 
structures does not preclude correct identification of roundhouses. Two of the correctly 
identified roundhouse structures (Figure 10h, i) are overlapping other structures. They 
also have varying widths of the circular arcs. However, it is difficult to state precisely 
why the roundhouses in Figure 10h-i were detected and the one in Figure 9c was not. 
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(a)                                         (b)                                         (c) 

   
(d)                                         (e)                                         (f) 

   
(g)                                         (h)                                         (i) 

Figure 10. Roundhouse locations that the automatic method correctly identified. The locations 
are at OSGB coordinates: (a) 190,513 east, 632,288 north; (b) 190,532 east, 632,237 north; (c) 
190,674 east, 632,180 north; (d) 190,778 east, 632,188 north; (e) 190,961 east, 632,266 north; 
(f) 190,620 east, 632,206 north; (g) 190,625 east, 632,477 north and 190,646 east, 632,470 
north; (h) 190,656 east, 632,543 north; (i) 190,785 east, 632,778 north. The image portions are 
80 m × 80 m. 

Some of the roundhouse locations in Figure 10 were also visited in the field (Figure 11 
–Figure 16). 

4.2 Field visit 
A field visit to selected locations on Arran was conducted 12-16 March 2018. 

4.2.1 Roundhouse locations  
Six roundhouse locations were photographed (Figure 11 – Figure 16). These 
roundhouses had all been detected by the automatic method. 
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Figure 11. Roundhouse at 190,513 east, 632,288 north, see Figure 10a. 

 

 

Figure 12. Roundhouse at 190,532 east, 632,237 north, see Figure 10b. 
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Figure 13. Roundhouse at 190,674 east, 632,180 north, see Figure 10c. 

 

 

Figure 14. Roundhouse at 190,778 east, 632,188 north, see Figure 10d. 
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Figure 15. Roundhouse at 190,961 east, 632,266 north, see Figure 10e. 

 

 

Figure 16. Roundhouse at 190,627 east, 632 161 north, see Figure 10f. 

 

4.2.2 Other monuments 
For one small cairn location (Figure 17), there was a weak indication of small cairn in 
the automatic detection result. For a mound location (Figure 18), there was a strong 
indication of shieling. For a chambered cairn location (Figure 19), there was an 
indication of roundhouse.  
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Figure 17. Small cairn at 190,543 east, 632,284 north; with roundhouse in the background at 
190,513 east, 632,288 north (Figure 11). 
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Figure 18. Mound at 190,581 east, 632 271 north. 
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Figure 19. Chambered mound at 190,581, 632,370 north. 
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5 Discussion and conclusions 

The preliminary results of automatic roundhouse detection had some mistakes. 
However, the method found many true roundhouse locations, and the number of false 
positives was not overwhelming. Thus, it would be interesting to apply the current 
version of automatic roundhouse detection on all of Arran. The main purpose would be 
to evaluate if the current version is perceived as an aid to archaeologists in detecting 
and mapping currently unknown roundhouse locations. Another purpose is to identify 
structures that are often mistaken as roundhouses, and to add these false positives to 
the learning set in one or more confusion classes.  

The preliminary results of automatic detection of shielings and small cairns were less 
convincing. Indeed, shieling and cairns were included since we knew they would be 
more difficult to detect than roundhouses. Again, adding false positives into additional 
confusion classes could be a way forward. This may even be done in multiple 
iterations. 

The terrain contains glacial deposits. Some of these are of similar shape as the small 
cairns, but are usually higher than the man-made cairns. These glacial deposits are an 
obvious candidate for a confusion class. 

The field visit included a mound and a chambered cairn, which were predicted as being 
shieling and roundhouse, respectively. These examples illustrate what may happen 
when some classes are not present in the training data. A structure may have an 
appearance that is closer to one of the classes in the training data than to the general 
background terrain. If one wishes to fix this confusion, then one needs to include many 
examples of, in our case, mounds and chambered cairns. Another alternative is to 
accept that rare classes may be confused with classes that are more numerous.  

The latter approach may be used when the true purpose of automatic classification is 
to identify previously unknown archaeological structures. The various classes of 
archaeological structure may be viewed as a means to design the classifier to better 
discriminate between archaeological structures on one hand, and natural terrain 
features and modern man-made structures on the other hand. Thus, confusion 
between classes of archaeological structure may be regarded as a minor mistake, 
compared to false positives and false negatives. 

5.1 How to move forward 
In order to improve the automatic classification method, we suggest the following: 

1. Run automatic roundhouse detection on all of Arran. The strong indications of 
roundhouse could be labelled as one of: 

a. True roundhouse 

b. Other archaeological structure 

c. Cannot tell if it is archaeological or not 
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d. Something else (modern structures or natural terrain features) 

2. Identify glacial deposit heaps in the learning set. The 1 km tiles containing small 
cairns should be inspected first. 

3. Add confusion classes to the learning set. This may be done iteratively: 

a. Train deep neural network classifier on learning set, containing known 
locations of archaeological structures, background terrain, and, 
optionally, locations of other structures 

b. Apply classifier on entire tiles 

c. Identify false positives, i.e., locations that the classifier predicts as 
archaeological structures but are in fact not. 

d. Add locations of false positives as ‘other structures’ to learning set. 
There may be several named subclasses of ‘other structures’, e.g., 
‘glacial deposit’. 

e. Repeat steps a-d until the number of newly encountered false positives 
is below a threshold, or the total number of ‘other structures’ in the 
learning set is above another threshold, or the maximum number of 
iterations has been reached. 

4. More training augmentations. At the moment, only rotations that are multiples of 
90 degrees are allowed. Our ResNet implementation allows rotation by any 
angle. However, the image extracts may need to be larger than 101 × 101 
pixels to avoid missing values in the corners of the rotated images. 

5. Convert detection result from raster heat map to vector locations. At the 
moment, the results, in the form of coloured raster layers, are only suitable for 
visual interpretation as a backdrop for the DTM visualisation.  

6. Improve location accuracy of detection results 

7. Develop prototype software into a user friendly tool 
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