
Abstract—Cyber Physical Systems (CPS)-Internet of Things 
(IoT) enabled healthcare services and infrastructures improve 
human life, but are vulnerable to a variety of emerging cyber-
attacks. Cybersecurity specialists are finding it hard to keep 
pace of the increasingly sophisticated attack methods. There is 
a critical need for innovative cognitive cybersecurity for CPS-
IoT enabled healthcare ecosystem. This paper presents a 
cognitive cybersecurity framework for simulating the human 
cognitive behaviour to anticipate and respond to new and 
emerging cybersecurity and privacy threats to CPS-IoT and 
critical infrastructure systems. It includes the conceptualisation 
and description of a layered architecture which combines 
Artificial Intelligence, cognitive methods and innovative 
security mechanisms.  

Index Terms—Cognitive cybersecurity, healthcare, artificial 
intelligent, machine learning, cognitive techniques, CPS-IoT 

I. INTRODUCTION

There is an increasing rich use of different types of Cyber-
physical systems (CPS)-Internet of Things (IoT) applications 
for eHealth and welfare, ranging from provider-driven 
managed monitoring of humans during daily-life, to self-
driven monitoring of humans, and social data aggregation and 
marketing. Cisco estimates that by 2020, more than 50 billion 
objects will be socially connected with the help of IoT and 
cloud technology. More recently, CPS-IoTs are being 
developed with the capability to learn, reason, and understand 
both physical and social worlds by themselves, simulating the 
cognitive behaviour of humans – a cognitive CPS-IoT. “In 
knowledge-intensive environments, the smartest uses of the 
IoT will be those that enable the ingrained capabilities of 
human thinking to take centre stage." [1]. However, all this 
introduces new challenges: (i) increasing cognitive 
complexity of CPS-IoTs can lead to unexpected emergent 
behaviour; (ii) cognitive CPS-IoT will suffer from traditional 
CPS-IoT vulnerabilities and threats [2], and new threats 
related to their inherent cognitive functionalities; (iii) "70% of 
the most commonly used IoT devices … can be hacked … 
80% of these devices raised privacy concerns regarding the 
collection of sensitive data, e.g. for health" [3]; and (iv) CPS-
IoT's ubiquity will present a significantly expanded attack 
surface making the public safety risks higher for critical 
infrastructure through its interfaces and improved flexibility 
of access to services and information. 

Healthcare services and infrastructures are more critical, 
sophisticated and interconnected than ever before. While 
improving clinical outcomes and transforming care delivery 
thereby improving human life, there are, however, increasing 
concerns about the security of healthcare data and devices. 
Increasing interconnectedness has exposed medical devices 
and services to new cybersecurity vulnerabilities. This makes 
the healthcare sector the most vulnerable to major security 
risks. As described above, the situation is exacerbated by the 

CPS-IoT enabled healthcare services and infrastructures, 
which are vulnerable to a variety of emerging cyber-attacks. 
CPS-IoT systems are classified as safety and security critical 
systems and have characteristics of fragmentation, 
interconnectedness, heterogeneity, and cross-organizational 
nature, which present expanded attack surface. Cybersecurity 
attacks can potentially lead to a violation of users’ privacy, 
physical damages, financial loses and threats to human life 
and preventing them is critical. Reports highlight the growth 
of attacks and the rise in medical identity theft with millions 
of medical records stolen globally [4].  

The rise of cyber-physical attacks shows us that the 
current, security solutions are unable to tackle the dynamicity, 
complexity, uncertainty, and high connectivity of CPS-IoT 
enabled healthcare services and critical infrastructures. 
Cognitive architecture and artificial intelligence can enhance 
automated intelligent cybersecurity decision-making 
mechanisms with expert-level ability. 

Furthermore, attackers will adapt their strategies to the 
security situation, and to newly deployed countermeasures. 
Thus, there is a critical need for innovative techniques for 
building cognitive cybersecurity for CPS-IoT enabled 
healthcare ecosystems. This paper proposes and presents a 
cognitive cybersecurity methodology and theory that allow 
the study of the attackers’ behaviour by capturing their 
intentions, predicting and estimating their determination and 
correlating these with the activity of the CPS-IoT and critical 
infrastructure systems to help prevent emerging attacks. 

The main aim of the proposed approach is to provide a 
methodology for defending against dynamic and adaptive 
attacks to the CPS-IoT-enabled healthcare ecosystem. This 
will be achieved through (1) a cognitive architecture for 
modelling humans’ cognitive behaviour to anticipate and 
respond to new and emerging security and privacy threats, (2) 
trade-offs and other contributing factors to get ahead of 
attackers' cognitive decision cycle accounting for 
uncertainties, and optimizing temporal feedback loops, (3) 
integrate innovative mechanisms for security, privacy, 
metrics, and dynamic security knowledge base to enhance 
threat prevention, threat detection, incident response and 
mitigation of impacts, (4) privacy-aware collaboration, 
computational techniques, adaptive data collection and 
actuation, and (5) integrating cross-cutting techniques such as 
AI predictive analytics, run-time verification, evidence 
collection and tracing for evidence based risk management 
and dynamic forensics. 

II. CHALLENGES AND MECHANISMS

Cognitive cybersecurity needs to tackle the dynamicity, 
complexity, uncertainty, and high connectivity of CPS-IoT 
enabled healthcare services and critical infrastructures to 
meet the challenges of the constantly evolving dynamic and 
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adaptive attacks. Some of the multifold challenges to building 
a cognitive cybersecurity solution are briefly described in the 
next section followed by the description of innovative 
mechanisms for meeting these challenges.  

A. Challenges 

 Cognitive cycle security model for the CPS-IoT:  It is a 
cognitive model with detection mechanisms and security 
adaptation characterized by the detection (observe & orient), 
planning (plan), implementation (decide & act) and learning 
(learn) steps. The general challenge for such architecture is 
how to capture at the computational level the mechanisms of 
human cognition, including those underlying the functions of 
control, learning, adaptivity, perception, decision-making, and 
action. The specific challenge is to design an architecture that 
adapts to the constraints and capabilities of the different CPS-
IoTs, as well as to the possible dynamicity of these constraints 
and capabilities.  

 Complex temporal feedback loops: Certain activities occur 
at very rapid speeds requiring a very tight feedback loop to 
support cognitive control. Other activities occur on a longer 
time-scale and cognitive control algorithms may need to take 
into account a wider range of factors in a slow feedback loop. 
The correlation of cause and effect of actions is particularly 
challenging due to the variety of temporal loops and their 
dramatic speed differences [5]. 

 Complex interactions: The challenge is how to capture and 
model many more of these interactions better than human 
could be capable of analysing. 

 Heterogeneous intercommunications: It is critical to solve 
this since heterogeneous configurations are a key enabler to 
dramatic improvements in network performance.  

 Trade-offs and contributing factors: The challenge is to 
understand the fundamental limits of the cognitive model and 
associated security mechanisms that can be achieved to get 
ahead of attackers' cognitive decision cycle accounting for 
uncertainties thus preventing adaptive attacks. Another 
challenge is the identification and better understanding of how 
constraints and other key control factors affect the defender-
attacker cognitive process is a challenge. 

 Innovative and intelligent security mechanisms: The 
challenge is how to develop lightweight but effective and 
efficient security and privacy mechanisms for CPS-IoT and its 
critical components with cognitive and distributed analysis 
and decision making capabilities. How to integrate trust-based 
cognitive security that allows a more informed study of 
attackers’ behaviour by capturing the intentions of the 
attackers is a challenge. Note that predicting and estimating 
how determined the attackers are, and correlating their 
background with the activity of the CPS-IoT system is a grand 
challenge. It requires the ability to draw inferences about 
others' intentions, dispositions, and actions, in order to study 
attacker’s behaviour. 

 Dynamic risks and metrics: The challenge is how to 
develop adaptive metrics to map dynamic security risks to 
security objectives and to security metrics for validating the 
effectiveness of the run-time adaptivity of the security 
mechanisms. Adaptive attackers will adapt their strategies to 
the security situation and to newly deployed countermeasures. 
Therefore making the metrics adaptive themselves is a 
challenge. Furthermore, when systems grow in complexity 
measuring their quality is a challenging task [18]. 

 Integration of privacy: The challenge is how to integrate 
the concept of privacy design patterns for adaptation 
signalling and control by analysing the atomic personal data 
transactions necessary for adaption into the cognitive model. 

 Run-time verification: Due to the complexity of the 
cognitive cycle, run-time verification is needed for 
guaranteeing the achievement of self-adaptive cognitive 
security and privacy properties. Developing verification 
methods for guaranteeing the achievement of self-adaptive 
security and privacy properties is one of the major challenges 
facing the entire security research field. The challenge is how 
to integrate lightweight run-time verification methods in a 
cognitive cybersecurity model for this purpose. 

 Dynamic forensics: Due to the exponentially growth of the 
volume of dynamic evidence collected per case, there is a need 
for new methods and tools built on new technologies like 
CPS-IoT, big data, cloud services and AI/deep learning. The 
challenge is how to integrate these methods and tools to 
capture and trace evidence dynamics effectively and reliably. 
It is widely accepted that “evidence dynamics is one of the 
perpetual challenges that commonly introduces error into 
forensic analysis”. Evidence Dynamics refers to any influence 
that changes, relocates, obscures, or obliterates physical 
evidence, regardless of intent [6]. 

B. Innovative Mechanisms  

Cognitive cybersecurity needs innovative and intelligent 
mechanisms for lightweight but effective and efficient 
security and privacy for CPS-IoT and its critical components 
with the capabilities of cognitive and distributed analysis, and 
decision making. These must integrate trust based cognitive 
security that allows a more informed study of attackers’ 
behaviour by capturing the intentions of the attackers and by 
predicting and estimating how determined the attackers are, 
and by correlating their background with the activity of the 
CPS-IoT system. The mechanisms must have the ability to 
draw inferences about others' intentions, dispositions, and 
actions, in order to study attacker’s behaviour. They should 
also integrate adaptive metrics for mapping dynamic security 
risks to security objectives and to security metrics for 
validating the effectiveness of the run-time adaptivity of the 
security mechanisms.  

The adaptive metrics must allow us to measure and adapt 
to adaptive attackers, which also adapt their strategies to the 
security situation and to newly deployed countermeasures. A 
combination of AI/deep learning, control theory and game 
theoretic modelling and analysis can be used for these 
purposes. Control theory can be used for attack strategy 
seeds, and game theory, minimax analysis, adversarial risk 
analysis can be used to find the optimal defender strategies.  

Furthermore, the mechanisms should integrate privacy by 
design through model-building (data types), transaction 
identification (inspection of the developed adaption 
protocols, extraction of personally identifying (PI) 
computations), privacy impact analysis, formulation of 
design patterns (constructive approach), and evaluation 
through artefact design.  

Finally, the application of lightweight run-time 
verification can be integrated for guaranteeing the 
achievement of self-adaptive cognitive security and privacy 
properties. The most important quality attributes for 
cybersecurity analytic systems are described in [12] and can 



be used to evaluate the reliability of the mechanisms and 
cybersecurity analytics systems. The next section describes 
how the combination of cognitive methods and AI help to 
implement these mechanisms. 

III. ARTIFICIL INTELLIGENCE FOR COGNITIVE 

CYBERSECURITY  

A. Cognitive Systems 

Cognitive systems are self-learning systems that use data 
mining, machine learning, natural language processing and 
human–computer interaction to mimic the way the human 
brain works. Human cognition involves real-time analysis of 
environment, context and intent, among many other variables 
that inform a person's ability to solve problems. By using 
cognitive systems, security trends can be analysed and 
enormous volumes of structured and unstructured data can be 
distilled into information that drives continuous security 
improvement [7].  

Cognitive cybersecurity, thus, aims to simulate human 
thinking and behaviours to anticipate and respond to new and 
emerging security threats, adapt constantly to changing 
security conditions including human participations, tasks and 
roles, and dynamically learn from experience and dynamic 
conditions. To achieve this, cognitive cybersecurity applies AI 
technologies patterned on human thinking processes to detect 
threats and protect cyber systems. These AI technologies 
include machine learning, deep learning, neural networks, 
NLP (natural language processing), sentiment analysis, etc. 
Self-learning security systems use these technologies to 
automate problem solving without requiring human resources.  

It is argued that cognitive security may be particularly 
helpful to prevent cyberattacks that manipulate human 
perception. Such attacks, sometimes referred to as cognitive 
hacking, are designed to affect people's behaviours in a way 
that serves the attacker's purpose. Cognitive security efforts in 
this area include non-technical approaches to making 
individuals less vulnerable to manipulation as well as 
technical solutions designed to detect misleading data and 
disinformation and prevent its dissemination [8]. 

B. Artificial Intelligence  

Artificial Intelligence (AI) is the branch of computer 
science concerned with the automation of intelligent 
behaviour, usually associated with human thinking such as 
decision making, problem solving and learning. AI techniques 
are appropriate for building decision-making agents that 
make rational actions for their given context [5].  

AI is used to identify anomalies, speed up detection, and 
increase the effectiveness of existing products and permit the 
system to train itself autonomously, at least in part (since it 
will require human oversight to determine the legitimacy of 
any alerts and gauge the correctness of AI making user 
feedback useful). It enables real-time, context-aware 
adaptivity which is required by cognitive cybersecurity 
systems, and enables machine learning, clustering, graph 
mining and entity relationship modelling to identify potential 
threats. 

 Haigh and Partridge [5] argue that certain AI techniques 
are more promising and/or have already produced interesting 
results in cognitive networking. These include Knowledge 
Engineering, Planning and Scheduling, Machine Learning 
(ML), Distributed AI and Multi-agent systems, including 

biologically-inspired approaches, and Game Theory. In this 
section, we briefly describe some of these techniques which 
are relevant to cognitive cybersecurity.  

Knowledge Engineering aims to capture knowledge for 
complex problems solving using ontologies, semantics and 
representations which are important considerations for 
cognitive cybersecurity.  

Machine learning algorithms make it possible for 
cognitive systems to constantly mine data for significant 
information and acquire knowledge through advanced 
analytics. Cognitive systems learn to anticipate threats and 
generate proactive solutions through continually refining 
methods and processes. This ability to process and analyse 
huge volumes of structured and unstructured data allows 
cognitive security systems to identify connections among data 
points and trends that would be impossible for a human to 
detect. Deep learning, which is the evolution of neural 
networks, enables the identification of complex attack 
patterns. ML techniques include artificial neural networks, 
support vector machines, clustering, explanation-based 
learning, induction, reinforcement learning, genetic 
algorithms, nearest neighbour methods, and case-based 
learning. 

Planning and scheduling techniques are appropriate for 
decision-making situations, where security tasks need to be 
organized and coordinated to meet security performance 
objectives, under resource constraints. In dynamic 
environments, the plan needs to be monitored, revised and 
adapted to changing conditions so as to maintain the accuracy 
of performance predictions. Multi-agent planning, dynamic 
programming, partially-observable Markov decision 
processes, constraint satisfaction, and distributed optimization 
algorithms are common techniques. 

Distributed AI and Multi-agent Systems are concerned 
with finding distributed solutions for AI problems and address 
domains that have the following characteristics:  discrete 
(local goals and constraints), deprived (locally resource 
constrained), distributed (embedded in a physical world), 
decentralized (local decisions and local views of the 
environment with no centralized decision maker), diverse 
(different capabilities and different roles) and dynamic 
(changing task/mission and domain). These are relevant to 
distributed cognitive security solutions. 

AI techniques are appropriate and effective solutions to 
meet the numerous characteristics of communications 
networks [5]. These characteristics are relevant to CPS-IoT 
enabled services and infrastructures and include: 

• Dynamic: AI techniques for planning under 
uncertainty make choices that will be appropriate 
even as the domain changes. 

• Partially-observable: AI techniques are good at 
inferring missing data and generalizing a situation so 
that decisions make sense for current conditions.  

• Ambiguous observations: AI techniques are good at 
recognizing ambiguity or low confidence, and can 
either gather more information to discriminate or 
make decisions appropriate for both conditions.  

• Resource constrained: AI techniques are effective at 
scaling a solution to the platform they are operating 



on, and designing tasks that manage available 
resources effectively.  

• Diverse: AI techniques consider diversity a benefit, as 
it allows resources to be managed in different ways.  

• Massive scale: Data mining and ML techniques are 
effective even on massive datasets; moreover 
incremental planning and learning techniques.  

• Complex access policies: Knowledge engineering 
techniques can represent policies as constraints, and 
then constraint reasoning techniques can find 
satisfying solutions quickly incorporate new 
information efficiently and rapidly). 

Cybersecurity solutions utilizing AI and ML/deep learning 
can greatly reduce the amount of time needed for threat 
detection and incident response, and can alert anomalous 
behaviour in real time. 

IV. PROPOSED APPROACH 

The goal of this proposed approach is the development of 
an integrated cognitive framework for defending against 
dynamic and adaptive attacks to the CPS-IoT enabled 
healthcare ecosystems. Thus contributing to the global 
cybersecurity security challenge. Achieving this goal requires 
an interdisciplinary approach  by applying knowledge from 
the fields of cognitive computing,  optimization, formal 
methods, cybersecurity, trust,  forensics, artificial 
intelligence and mathematics. 

Fig. 1 depicts the overall architecture of our cognitive 
cybersecurity for CPS-IoT enabled healthcare ecosystems 
with the building blocks in four layers: Healthcare 
Stakeholders Collaboration layer, Perception and knowledge 
layer, Adaptive Data Collection and Actuation Layer and 
Healthcare Stakeholders Infrastructures layer.  

 

Figure 1 Proposed approach 

The objective of the approach is to serve as a foundation 
and innovative methodology for preventing dynamic and 
adaptive attacks to emerging smart CPS-IoT enabled 
healthcare environments.  

 The following sections briefly describe the functionality of 
the main building blocks at each layer.  

A. Privacy-Aware Collaboration 

To support stakeholders to jointly refine threats and define 
mitigation strategies in a privacy-aware manner, a new 
perspective on dynamic and evidence-based risk management 
is required [2]. This is to highlight uncertainty and knowledge, 
not only probability, of complex healthcare ecosystems, 
which are characterized by deep uncertainties. It should 
provide tools for facilitating stakeholders’ collaboration in a 
privacy preserving manner through shared situation 
awareness, information sharing, common reporting and 
visualization. Interoperability, interaction and collaboration in 
healthcare is primarily driven by data exchange. This brings 
with it new challenges and requirements around security and 
privacy, technology, incentives, and governance that must be 
addressed. Another promising solution can be a decentralized 
approach that uses blockchain technology to facilitate this 
through five mechanisms: digital access rules, data 
aggregation, data liquidity, patient identity, and data 
immutability. Blockchain technology will enhance user-
centric data sharing and protect privacy through the explicit 
access rules enabling effective and efficient collaboration on 
cybersecurity and privacy at various layers of the complex 
healthcare ecosystems to foster cognitive cybersecurity and 
privacy by design. 

B. The Cognitive Cycle Model 

 The overall approach of this model is to close the cognitive 
cycle model, using the trade-offs, AI, controllers and 
innovative mechanisms, dynamically perceiving the CPS-IoT 
conditions and human and social environment behaviours and 
taking actions and learning from those actions. Feedback is 
possible at all stages of the loop/cycle. This will help achieve 
situation awareness to enhance the security adaptation to 
moving targets, and adversarial environments. In the 
literature, it has been argued that “an entity that can process 
this cycle more quickly than its opponent can get ahead of the 
opponent’s decision cycle and consequently gain the 
advantage.” [9]. 

The cognitive cycle security model for the CPS-IoT with 
detection mechanisms and security adaptation is characterized 
by the detection (observe & orient), planning, implementation 
(decide & act) and learning steps. The general challenge is 
how to capture at the computational level mechanisms of 
human cognition, including those underlying the functions of 
control, learning, adaptivity, perception, decision-making, and 
action. The more specific challenge is how the overall 
cognitive cybersecurity architecture adapts to the constraints 
and capabilities of the different CPS-IoTs, as well as to the 
possible dynamicity of these constraints and capabilities. It 
uses cognitive models of users' contexts in the physical 
environment in order to understand how to better support user 
centred privacy security and management. Cognitive models 
of users’ human environment are also used when interacting 
in personal, social, public spaces and with different human 
stake-holders cooperating and competing with other in these 
spaces to maintain security and privacy. In the followings we 
describe the building blocks at each step in the cycle with 
more emphasis on Observe & Orient and Decide & Act steps. 

Observe & Orient: At this stage the Observe phase 
monitors and perceives multiple stimuli. To achieve this, the 
Observe phase uses the adaptive data collectors such as 



probes/sensors at the adaptive data collection and automation 
layer. The Observe phase observes observables including 
factors: configuration, user activity, vulnerabilities, current 
threats, ongoing attacks, and interaction with the physical 
environment. This interaction is achieved using a range of 
sensing/collecting and automated auditing technologies such 
as configuration management, network management protocol 
traps, dynamic discovery tools such as nmap or traceroute, 
log management tools, intrusion detection systems such as 
Snort, automated scanners such as Nessus for vulnerability 
detection and develop algorithms for better fusing and 
aggregating sensed data from various sources in real-time [9]. 
Trade-offs between pulling collectors/sensors on demand and 
having the sensors push updates should be used for various 
contexts. The Orient phase determines the significance of an 
observation by analysing the meaning of the observed 
activities and determines the impact on the security situation 
in the near future. Using ontologies, a semantic approach and 
big data analytics strategies for optimal orientation are used 
due to the multitude of sensors and large amount of sensed 
data. Sources of sensing could also be wearables, smart 
phones, social media, etc. AI techniques are used to interpret 
these observations and identify potential factors (or root 
causes) of situations, to compute progress toward security 
performance goals, to estimate future conditions and the 
likelihood of achieving goals, and to decide on the urgency 
of responding to problems. 

Learn: This phase learns based on perception, 
observation, decisions, and actions. The challenge for this 
stage is how to learn behaviours at human, application, and 
device levels so as to update models and/or knowledge for 
other models in other phases can make accurate predictions. 
It can learn environmental conditions and capabilities of 
adversaries using either explicit human feedback or empirical 
security performance data.  Another challenge for this stage 
is how to learn faster than a possible attacker. Inverse 
reinforcement learning can be used in this case. In real-time 
learning, learning agents adapt behaviour to perform better 
and adapt each minute by changing strategy according to 
current conditions. 

Plan: This phase generates plans and considers time 
reasoning by identifying goals to be achieved. Some argue 
that planning involves causality reasoning, conditional 
planning, temporal reasoning, constraint reasoning, and 
resource management. Multi-objective trade-offs for 
planning are calculated using appropriate planning 
techniques.  In dynamic environments, the plan needs to be 
monitored and strategies revised so as to maintain the 
accuracy of the plans and adapt to changing conditions. 
Common techniques are multi-agent planning, dynamic 
programming, partially-observable Markov decision 
processes, constraint satisfaction, and distributed 
optimization algorithms [5]. 

Decide & Act: The Decide phase decides among 
candidate security plans based on observations of evolving 
security and privacy situations, with classification and 
filtering of the problems. The observations and their 
meanings from the Observe & Orient phases establish the 
input and derived knowledge for the Decide phase. Due to the 
complexity of decision making at this stage various trade-offs 
for optimal decision and information uncertainty should be 
done using appropriate models such as Bayesian networks, 

subjective logic, and fuzzy logic so as to accelerate the 
decision process and improve the degree of belief in sensory 
data. The Act phase initiates selected internal and/or external 
processes for either directly implementing countermeasures 
in the CPS-IoT devices or changing the physical CPS-IoT 
devices through the actuators at the Adaptive Data Collection 
and Automation layer. 

C. Dynamic Security Knowledge Base 

A dynamic security knowledge base of vulnerabilities and 
threat intelligence will dynamically capture a range of 
information from its CPS-IoT environments. This information 
represents a context which is an important challenge in the 
complex networks and increasing ubiquity of the technologies 
deployed in the healthcare ecosystems.  

Ontologies present the most promising instrument for 
context modelling and managing due to their high and formal 
expressiveness and the possibilities for applying ontology 
reasoning techniques. Utilizing these capabilities within 
ontologies can facilitate the dynamic capabilities. Dynamic 
vulnerability scanning and pentesting can also be applied to 
continuously test and monitor changes, diffs, new 
vulnerabilities and threats, non-assured security and privacy 
properties, etc. as evidence for the proper functioning of the 
cognitive-intelligence properties of the complex healthcare 
ecosystems. 

D. Cross-Cutting Techniques 

 AI Techniques: They are used for predictive analytics in 
the cognitive cycle model and combine cognitive methods 
(e.g., contextual and behavioural analysis, machine learning, 
and reasoning. Cognitive techniques have successfully been 
used for early detection of cybersecurity events [13]. 

Run-time verification: In [14], four run-time verification 
enablers are described and integrated into an adaptive control 
feedback loop: Models@run-time, Requirements@run-time, 
Dynamic Context Monitoring, and Runtime Verifier.  
Similarly, the Models@run-time enabler can be integrated 
into the Orient, Learn, Decide and Act phases, and Actuators 
of the architecture for the management of cybersecurity for 
critical healthcare infrastructures. The Requirements@run-
time enabler can be integrated into the Observe, Orient and 
Learn phases of the control loop and Collectors of the 
architecture to support incremental verification the ability to 
trace changes to requirements. The Dynamic Context 
Monitoring can be integrated into the Observe phase and 
Collectors to monitor dynamic context (e.g., threat scenarios 
and even monitoring requirements) which is constantly 
changing at run-time and to adapt to context change. This 
thereby enables run-time verification with relevant monitoring 
mechanisms that keep track of aspects to validate. Finally, the 
run-time verification component (Runtime Verifier) can be 
integrated into the Orient, Plan and Learn phases to verify 
outputs from these phases enabling verification of an 
adaptation plan before or after instrumenting it. 

Evidence collection and tracing all the time: dynamic 
evidence collection, tracing and mapping the evidence in order 
to analyse and identify the origin of the crime/incident all the 
time will enhance the degree of efficiency and reliability of 
capturing and tracing evidence dynamics. AI and deep 
learning techniques are helpful in dynamic forensic 
investigation. This offers robust intelligence and evidence 
during investigations and crime reconstructions, and helps to 



establish dynamic evidence based collection and evidence 
based risk management approaches.  

E. Adaptive Data Collection and Actuation 

Adaptive data collection refers to the collection of 
security related data to improve collection efficiency, to 
ensure collection accuracy, to reduce the amount of collected 
data to minimize the effect of data collection, and to automate 
the data collection by adjusting to different environmental 
contexts and situations. Therefore, it is important to design of 
high-speed and scalable data collection platforms for real-
time and historical security analytics [7]. To secure 
healthcare critical infrastructures and services security 
related data must be collected and analyzed in an intelligent, 
resilient, reliable, secure and timely manner fulfilling all the 
communication requirements and standards to detect attacks. 
Predictive/regression algorithms such as linear regression, 
Support Vector Regression (SVR), logistic regression, KNN 
regression will be investigated for the lightweight analysis of 
adaptive strategies. Deep learning mechanisms will be used 
for the identification of complex risk and attack patterns. 

F. Roadmap for Implementation 

The different components of the proposed approach are 
being implemented in various research projects. Four 
modules, (i) adaptive intelligent monitoring and data 
collection of security related information, (ii) predictive 
analytics over the collected data based on AI-based (i.e. deep 
learning mechanisms), (iii) stakeholders’ collaboration in 
vulnerability assessment, risk analysis, threat identification, 
threat mitigation, and compliance, and (iv) security 
knowledge base are being prototyped in [15]. These modules 
can be adopted and enhanced in our proposed approach for 
(a) adaptive data collection and actuation, (b) cross-cutting 
predictive analytics services, (c) privacy-aware collaboration, 
and (d) dynamic security knowledge base, respectively.  

An initial study [2] has demonstrated the effectiveness of 
the development and integration of innovative and intelligent 
mechanisms for security, privacy, metrics and run-time 
verification. These can easily be adopted and enhanced in this 
approach for the innovative mechanisms. The methods for 
situational awareness and resilience to obfuscation to deal 
with adversarial activities in changing environments with 
special focus on the IoT forensics being developed in [16] can 
be adopted and enhanced for the cross-cutting dynamic 
forensics services. The adaptive data collection for real-time 
security analytics being developed in [17] can also be 
integrated in the adaptive data collection module of this 
proposed approach. Finally the framework for simulating the 
human cognitive behaviour will be developed. 

V. CONCLUSIONS AND FUTURE WORK 

This paper presents the conceptualization and description 
of a cognitive cybersecurity architecture for simulating the 
human cognitive behaviour to anticipate and respond to new 
and emerging cybersecurity and privacy threats to CPS-IoT 
enabled healthcare ecosystems. To achieve this, it combines 
artificial intelligence, cognitive methods, forensics, and 
innovative security mechanisms as cross-cutting services. It 
is structured in four layers, collaborative, perception and 
knowledge, data collection and actuation, and infrastructure. 

This architecture is developed based on different concepts 
developed in different projects the author is participating. 

In our future work, we plan to focus on defining details of 
the different components of the architecture and validate 
them through a set of simulations and demonstration systems 
in real or realistic use scenarios. We also plan to address the 
human side cognitive perspective such as cognitive overloads 
and biases. 
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