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The Log Gaussian Cox Process (LGCP) is a frequently applied method for modeling point pattern

data. The normalization constant of the LGCP likelihood involves an integral over a latent field.

That integral is computationally costly to compute, making it troublesome to perform inference

with standard methods. The so-called SPDE-INLA framework enables fast approximate inference

for a range of hierarchical models, where a key component is to approximate the latent field

to lie on a triangulated mesh. Recent research has made it possible to fit LGCP models with

this framework using an approximate integration method to compute the troublesome integral.

We carefully describe several alternative variants of that approximate integration method and

derive an analytical formula for the integral in questionwhich actually is exact under the triangular

mesh assumption used by SPDE-INLA. We compare the different integration strategies through

a comprehensive simulation study and find that the analytical formula is often more accurate, but

not always. Among the approximate integration methods, we recommend a simple extension to

a method implemented in an R-package for fitting LGCP models.
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1 INTRODUCTION

Several phenomenon in the world we live in may be viewed as stemming from a spatial point process. Examples ranges from the appearances of
earthquakes (Eberhard, Zechar, & Wiemer 2012), terror attacks and crimes (Mohler, Short, Brantingham, Schoenberg, & Tita 2011), the locations
of certain plant and animal species both at sea and on land (Jullum, Thorarinsdottir, & Bachl 2020; Waller et al. 2011; Yuan et al. 2017), all the
way to stars and planets in the outer space (Babu & Feigelson 1996; Stoica, Tempel, Liivamägi, Castellan, & Saar 2014).

The most fundamental type of point process model is the Poisson point process. Assuming an observation domain Ω ⊂ R2, this model is fully
determined by a deterministic intensity function λ : Ω 7→ [0,∞). Under this model, the number of points N(B) in any Borel set B ⊆ Ω is Poisson
distributed with mean µ(B) =

∫
B λ(s) ds, and independent of any other non-overlapping Borel set B∗. For this model, the likelihood of an observed

point process (point pattern) Y with observations at locations s1, . . . , sn, takes the form

p(Y|λ) = exp(|Ω| −
∫
Ω

λ(s) ds)
n∏

i=1

λ(si), (1)

where exp(|Ω| −
∫

Ω λ(s) ds) is the normalization constant. Carrying out maximum likelihood type of inference based on (1) is not too hard when
λ(s) is restricted to be constant (homogeneous Poisson process), or takes a simplified (possibly covariate dependent) parametric form with few
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parameters such that the integral
∫

Ω λ(s) ds can be solved analytically. In general, performing traditional inference based on (1) requires numerical
integration to compute the normalization constant, which is often computationally costly.

To appropriately model natural phenomenon as those mentioned above, standard (homogeneous or inhomogeneous) Poisson processes are
typically not sufficient to capture the complexities involved. The Cox process (Cox 1955) is a natural extension of the Poisson process, where the
intensity function λ is no longer deterministic, but rather a (latent) random field. The most popular type of Cox Process model is the Log Gaussian
Cox Process (LGCP), where λ(s) = log(Z(s)), and Z is a Gaussian random field. Even with the simplifying and well studied structure of Gaussian
fields, fitting such models is troublesome, and has for a long time required time consuming MCMC procedures (Guttorp & Thorarinsdottir 2012).
This is particularly related to the computational complexity of the normalization constant, where the integral

∫
Ω λ(s) ds is the troublesome part.

However, recently Simpson, Illian, Lindgren, Sørbye, and Rue (2016) made approximate inference for LGCP models computationally inexpensive.
The procedure relies on the stochastic partial differential equation (SPDE) approach of the integrated nested Laplace approximation method (INLA)
(Lindgren, Rue, & Lindström 2011; Rue, Martino, & Chopin 2009). The INLA framework allows for computationally feasible approximate Bayesian
inference for hierarchical models with a discrete latent Gaussian Markov random field (GMRF), by utilizing several (nested) Laplace approximations
and clever numerical integration schemes (Rue et al. 2009). The SPDE approach essentially extends this to continuous latent Gaussian field by
approximating the (continuous) latent field Z by a triangular mesh, which through a certain SPDE solution may be mapped to a GMRF that can be
handled by INLA. The SPDE-INLA framework and the associated INLA R-package cannot, however, handle the conditional likelihood (1) out of the
box. The solution of Simpson et al. (2016) is to apply a deterministic integration method to the integral

∫
λ(s) ds, which by some re-structuring

transforms the full conditional likelihood formula to a product of conditionally independent Poisson observations. That approximate likelihood
formula may also be handled efficiently within the INLA framework.

There are also numerous variants of the deterministic integration scheme outlined in Simpson et al. (2016), mainly differing in the way they
assign weights to the deterministic integration points. In this paper we show that under the triangular mesh approximation underlying the approach
of Simpson et al. (2016), one may in fact derive an exact analytical formula for the integral

∫
λ(s) ds, and thereby the normalization constant in (1),

suggesting that more accurate inference than that achieved by Simpson et al. (2016) is possible. We perform a comprehensive simulation study
investigating the performance of the different integration schemes, compared to the true value of the integral and the analytical formula which is
exact under the triangular mesh assumption. We find that the analytical formula is typically the most accurate, but that a deterministic integration
method is better in some situations. Moreover, which of the deterministic integration performs best varies greatly depending on the specification
of the mesh and underlying latent field to integrate over. We do, however recommend a stable and decent performing method being a simple
extension to amethod implemented in a user-friendly software package for fitting LGCPmodels. All methods have been coded in the R programming
language. The source code for all integration methods and the simulation experiments, in addition to user friendly tables with summaries of all
simulation results and permutation tests performed in the study are publicly available through the GitHub repository github.com/martinju/LGCP-
normConst-simulations.

The rest of the paper is organized as follows: Section 2 contains a description of the likelihood approximation method used by Simpson et al.
(2016), in addition to an analytical formula for the integral in question, which is exact under the triangular mesh assumption used by SPDE-INLA. In
Section 3, we present four different variants of the deterministic integration method, and discuss and illustrate their differences. Section 4 contains
a comprehensive simulation study comparing the different integration methods, and discussions of the results we find. Section 5 contains a sum-
mary and some concluding remarks. Appendix A contains a table with pre-computation timings for the different integration methods. Supporting
information following this paper contains the mathematical derivation leading to the analytical formula for the integral in Section 2.2.

2 LGCP APPROXIMATIONMETHODS

In this section we lay out the assumptions and derivations behind the approach of Simpson et al. (2016), and present an analytical formula for
the integral in question which is exact under the triangular mesh assumption. Before we turn to the two approaches, we provide some necessary
background. Both type of methods we shall explore rely on a finite elementmethod (FEM) representation of the latent field. That is, we approximate
the original latent field Z(s) by Z∗(s) for s ∈ Ω, where Z∗(s) lives on a triangulated mesh with q nodes:

Z∗(s) =

q∑
j=1

zjφj(s). (2)

Here z = (z1, . . . , zq)> is a multivariate Gaussian variable, where each dimension represents the value of the field in onemesh node, and {φj(s)}q
j=1

is a set of deterministic linearly independent basis functions which are piecewise linear between the nodes. More specifically, the basis functions
are chosen such that φj(s) is 1 at mesh node j and 0 at all other nodes. This is illustrated in dimension 1 in Figure A1 below. Since the φj’s are
deterministic, the behavior of Z∗(s) is completely determined by z. An illustration on how the mesh approximates the original 2D field is provided
in Figure A2.

https://github.com/martinju/LGCP-normConst-simulations
https://github.com/martinju/LGCP-normConst-simulations
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[FIGURE 1 about here.]

[FIGURE 2 about here.]

For details on how to construct the triangular mesh and how this representation provides a framework for approximate Bayesian inference
through the SPDE-INLA framework, we refer to Cameletti, Lindgren, Simpson, and Rue (2013); Lindgren et al. (2011).

2.1 The general approach of Simpson et al.
Under the approximation in (2), the likelihood in (1) can be written as

p(Y|Z∗) = exp(|Ω| −
∫
Ω

exp(

q∑
j=1

zjφj(s)) ds)
n∏

i=1

exp(

q∑
j=1

zjφj(si)), (3)

where the component |Ω| −
∫

Ω exp(
∑q

j=1 zjφj(s)) is the normalization constant. The associated log-likelihood takes the form

`(Y) = |Ω| −
∫
Ω

exp(

q∑
j=1

zjφj(s)) ds+
n∑

i=1

q∑
j=1

zjφj(si). (4)

While the data dependent final sum in (4) is easy to compute directly, and |Ω| is a fixed (and thus irrelevant) constant, inference requires computation
of the integral ∫

Ω

exp(Z∗(s)) ds =

∫
Ω

exp(

q∑
j=1

zjφj(s)) ds. (5)

Although Z∗(s) takes a simple linear form and is easy to integrate over, the integral over its exponential is not straightforward. It is, however,
computationally fast to evaluate the integrand in (5) at specific locations. Thus, Simpson et al. (2016) suggests using a fixed set of integration points
s̃j, j = 1, . . . , k, with associated weights wj, j = 1, . . . , k, and proposes a deterministic integration method of the form∫

exp(Z∗(s)) ds =

∫
Ω

exp(

q∑
j=1

zjφj(s)) ds ≈
k∑

j=1

wj exp{Z∗(s̃j)}. (6)

Using this approximation, the full likelihood is identical to a likelihood of n + k independent Poisson pseudo-observations. More specifically, the
approximate likelihood takes the form

p(Y|Z∗) ≈ exp(|Ω|)
n+k∏
j=1

η
y∗j
j exp(−αjηj), (7)

where y∗ = (01×r, 11×n)
>, log(η) = (z>A>1 , z

>A>2 )> and α = (w1, . . . ,wk, 01×n)
>, where [A1]rj = φj(s̃r) and [A2]rj = φj(sr). See Simpson et

al. (2016, p. 53) for further details.
In order to fully specify the method, one must define a method for selecting integration points and assign weights to these points. As integration

points and their weight are direct ingredients in the likelihood formula, the approximation quality depends on the method for doing this. Simpson
et al. (2016) describes one such method, while other methods are also natural and currently in use. The methods will be introduced and discussed
in Section 3.

2.2 The mesh-exact integration method
Referring to the approximate log likelihood in (4), Simpson et al. (2016) states that “While the continuously specified stochastic partial differential
equation models allow us to compute the sum exactly, we must approximate the integral by another sum.” This is actually incorrect, as the integral
in (5) may also be computed exactly — it is just a bit tedious. We shall here present an analytical formula under the rather weak assumption that
the observation domain Ω is piecewise linear. This formula is an exact solution to (5), but an approximation to

∫
exp(Z(s)) ds, and we will refer to

this as the mesh-exact integration method.
Due to the somewhat lengthy mathematical derivations and bookkeeping required, we restrict ourselves to present the main ideas and the final

formula here. The full derivation is provided in the supporting information following this paper.
We first define a few simplifying quantities. Let the complete mesh be written as

⋃K
i T

(M)
i where T

(M)
1 , . . . ,T

(M)
K are the K disjoint triangles

constituting the complete mesh. Now, as the observation domain Ω is piecewise linear, it may be written as a finite union of disjoint triangles, each
of which is fully contained in exactly one mesh triangle T

(M)
i . That is, we may write

Ω =

K⋃
i

Li⋃
k

Tik, (8)
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where for each i = 1, . . . ,K, the Ti1, . . . ,TiLi
are the Li disjoint triangles whose union is equal to the part of the observation domain which falls in

mesh triangle T
(M)
i . The key here is that, instead of integrating over Ω directly, we can integrate over each the Tik-triangles, where the integrand

takes simpler log-linear forms, and then sum all these contributions in the end. Doing that, shows that∫
Ω

exp(Z∗(s)) ds =
K∑

i=1

Li∑
k=1

∫
Tik

exp

 q∑
j=1

zjφj(s)

 ds, (9)

where

∫
Tik

exp

 q∑
j=1

zjφj(s)

 ds =



|Jg,ik|
exp(α∗

ik)

2
, if β∗ik = γ∗ik = 0,

|Jg,ik|
exp(α∗

ik)

(γ∗ik)
2

[
exp(γ∗ik)− 1− γ∗ik

]
, if β∗ik = 0, γ∗ik 6= 0,

|Jg,ik|
exp(α∗

ik)

(β∗
ik)

2

[
exp(β∗ik)− 1− β∗ik

]
, if β∗ik 6= 0, γ∗ik = 0,

|Jg,ik|
exp(α∗

ik)

(β∗
ik)

2

[
1 + exp(β∗ik)(β

∗
ik − 1)

]
, if β∗ik = γ∗ik 6= 0,

|Jg,ik|
exp(α∗

ik)

β∗
ikγ

∗
ik(γ

∗
ik−β

∗
ik)

[
β∗ik(exp(γ

∗
ik)− 1)− γ∗ik(exp(β

∗
ik)− 1)

]
, otherwise.

(10)

Here α∗ik, β∗ik and γ∗ik are linear combinations of the elements of the latent Gaussian variable z corresponding to the three corners in triangle TM
i ,

while |Jg,ik| is the Jacobian determinant of a matrix related to the location of Tik. Thus, the final expression is a sum of a series of non-linear
combinations of linear combinations of the latent Gaussian variable z.

3 VARIATIONS OF THE DETERMINISTIC INTEGRATIONMETHOD

As mentioned, there are various ways to choose and assign weights to integration points for the deterministic integration method. When it comes
to choosing the integration points, Simpson et al. (2016) suggests to use the mesh nodes as integration points. This is natural for two reasons: (a)
Values of the triangulated field Z∗(s) are completely determined by the field value in the mesh nodes z, and can be mapped to the mesh nodes by
linear combinations. If the integrandwere linear, then this means that anyweight assigned to non-mesh nodes could bemapped exactly to themesh
nodes. Even if the integrand is not linear, it may not be very far from linear within every triangle. (b) Due to the form of (2), the integrand takes its
extreme points at the mesh nodes. Using these as integration points ensures that “peaks” and “holes” in Z∗(s) are accounted for in the integration
routine. We shall consider four different variants of the deterministic integration method, all of which uses the mesh nodes as integration points,
such that m = q1

We will consider the following four methods:

1. Dual mesh: This approach creates a so-called dual mesh based on the triangles in the mesh, where every mesh node is connected to a single
dual mesh polygon. The integration point weights equal the area of the polygons within Ω.

2. Dual mesh with extra points: This approach is identical to the dual mesh approach, but works on a refined mesh with extra points along the
boundary of Ω.

3. Barycentric point spreading approach: This approach spreads a large number of points “evenly” in every triangle, maps their weights to the
triangle corners, and use the sum of these to determine the weights of the mesh nodes.

4. Voronoi tesselation: This approach is conceptually identical to the dual mesh approach, but uses the Voronoi tessellation of the mesh nodes
instead of the triangle based “dual mesh”.

Belowwe describe these four methods in detail, and illustrate how they assign weights to integration points. As will become clear, some of these
methods give exactly or close to exactly the same weights for integration points where all neighboring mesh triangles are completely covered by
the observation domain Ω (hereafter called internal integration points), while they behave differently for points where this is not the case (hereafter
called boundary integration points). If the observation domain Ω coincides exactly with the edges in the triangular mesh, there are no boundary
points, such that methods with the sameweight for internal points will give exactly the same result.While the meshmay be constructed to coincide
with Ω in certain situations, there are many situations where this may not be appropriate, particularly when the observation domain is complex.
This is the case in most non-complete survey based application areas; see e.g. Bachl, Lindgren, Borchers, and Illian (2019) for examples in ecology.
In the below description, we consider both internal and boundary points.

1Method 2 below also uses additional integration points.
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3.1 The dual mesh approach
The dual mesh approach assigns weight to the mesh nodes based on the area of polygons in a dual mesh associated with the original triangulated
mesh. Each mesh node is associated with a single polygon in the dual mesh. The polygon is formed by connecting th midpoints of all the edges
connected to the mesh point in question, and the centroids of the triangles where that mesh node is a corner. The weight is equal to the area
of the intersection of this polygon and Ω For internal integration points, this is equal to the sum of 1/3 of the areas of the triangles where the
integration point is a corner. For boundary points this is not necessarily the case. Note that mesh nodes which lies outside Ω may also receive a
non-zero weight provided the dual mesh polygon of the node intersects with Ω. The method is illustrated in Figure A3, and described briefly in
Simpson et al. (2016, Sec. 5) and Krainski et al. (2018, Ch. 2.2.2). In this paper, we have directly used the implementation following Krainski et al.
(2018), available at http://www.r-inla.org/spde-book.

[FIGURE 3 about here.]

3.2 The dual mesh approach with extra integration points
As mentioned above, the dual mesh approach assigns 1/3 of the area of the connected triangles to internal integration points. Thus, the dual
mesh approach is simple for internal integration points, while it is not for boundary points. An alternative way to handle the latter is to add extra
integration points where the observation domain crosses an edge of the mesh or makes a direction change. With these points in place, subtriangles
between these points and the original mesh nodes which lies entirely within the observation domain and does not cross the original mesh edges,
can be constructed. Now, the observation domain is a union of disjoint triangles, and their corner points (the integration points) can receive 1/3 of
their area as integration weight, exactly as for the internal points. This method was implemented in a previous version of the R-package inlabru (v
2.1.7). inlabru is built on top of the original INLA R-package, and provides simplified access to Bayesian inference for spatial points processes using
LGCP. The implementation of this method had some stability issues, and was (probably for this reason) replaced by the method to be explained in
Section 3.3.

A drawback of this approach is that it increases the number of integration points and consequently the computational burden of approximating
the integral. A variant of the approach, proposed by Yuan et al. (2017, Section 4.2. and Supplement C), is to map the weight for the extra integration
points back to the original mesh nodes. This is done using the basis functions φ1, . . . , φq as mapping functions, cf. (2). Thus, a mesh node which
is a corner of a triangle containing at least one extra integration point will receive additional weight. This additional procedure ensures that the
integration points again corresponds to the mesh nodes. For this paper, we have re-implemented a stable version of the dual mesh approach with
extra integration points from inlabru with this additional mapping back to the mesh nodes. Figure A4 shows how internal integration points gets
the same weight as for the original dual mesh approach, while additional points and triangles are constructed for the boundary point.

[FIGURE 4 about here.]

3.3 The Barycentric point spreading approach
Starting from v 2.1.8 of inlabru a new variant of the deterministic integration method was implemented. That method is still in use as of this
writing (v 2.1.12). The idea behind the method is to first spread a large number of points (the implementation has hard-coded this to be 100), in
every triangle. Each of these points then receive a weight equal to (Area of triangle)/(#points spread in triangle). All points within Ω are then
mapped to the mesh nodes using the basis functions (φ1, . . . , φq), cf. (2). The sum of these mapped weights gives the total weight to the integration
point. The points are spread “evenly” in the triangle with reference to a Barycentric coordinate system for every triangle. In this paper, we have
modified the implementation in inlabru version 2.1.12 to allow for different number of points being spread in each triangle. Figure A5 shows how
the points are spread within the triangles and which points are mapped to the corresponding integration point. For internal integration points, this
method may be viewed as an approximation to the “dual mesh” and “dual mesh with extra integration points mapped back to the mesh points”
approaches, and yields similar integration values.

[FIGURE 5 about here.]

3.4 The Voronoi tessellation approach
The recommended way to construct triangular meshes to be used with the SPDE-INLA approach is to use a so-called (constrained) Delaunay
triangulation. Such a triangulation have a direct relationship to the so-called Voronoi tessellation as the circumcenters of the Delaunay triangles

http://www.r-inla.org/spde-book
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are nodes of the Voronoi tessellation. Just like the dual mesh polygons in Section 3.1, the Voronoi tessellation is a collection of connected, non-
overlapping polygon tiles, one for every mesh node. The Voronoi tile/polygon of a mesh node consists of the region of locations which are closer to
that mesh node, than to any other mesh nodes. Thus, contrary to the dual mesh polygons, the Voronoi tessellation only depend on the mesh nodes,
ignoring which triangles they belong to. If all triangles had exactly the same shape and size, then the dual mesh polygons and Voronoi tessellation
would be identical. Just like the dual mesh approach, the present approach uses the area of the Voronoi tile/polygon as weight for the associated
mesh node. In the present context, this integration strategy was introduced in an old version of an tutorial to SPDE-INLA2. The implementation
used in this paper builds on code from that tutorial (relying on the deldir R-package). Figure A6 shows the Voronoi tessellation of the internal and
boundary points.

[FIGURE 6 about here.]

4 SIMULATION STUDY

In this section we describe and perform a comprehensive simulation aiming at investigating which of the aforementioned methods that gives the
smallest approximation error in different situations, and thereby provides the best approximation for the normalization constant in (1). Before going
into the specifics of the simulations experiments and their results, we describe how we approximate the true latent field Z(s).

4.1 Latent field approximation
As mentioned, the SPDE approach is based on a FEM approximation of the (unknown) latent field. In this simulation case, we do however need to
approximate sampled realizations of the latent fieldZ(s) using FEM. For fixed functions, the FEMapproximation ofZ(s) is the least-squares function
approximation within the function space spanned by the basis functions φ0, . . . , φq (Langtangen & Mardal 2016, Chapter 3.). That corresponds to
minimizing the inner product

〈Z− Z∗,Z− Z∗〉, (11)

where 〈g, h〉 =
∫

g(s)h(s) ds. Recalling that Z∗(s) =
∑q

j=1 zjφj(s), it can be shown that the minima of (11) is the solution of a linear equation
system Az = b, where A is a q × q dimensional matrix with elements Ai,j = 〈φi, φj〉, i, j = 1, . . . q, and b is a vector of length q with elements
bi = 〈Z, φi〉, i = 1, . . . , q, see e.g. Langtangen and Mardal (2016, Chapter 3.). The A matrix is readily available from the INLA software, while b can
be quickly and accurately computed with numerical integration.

4.2 Simulation study specification
Each integral approximation method (the mesh-exact approach in Section 2.2) and the different variations of the deterministic integration method
in Section 3 has been applied to compute

∫
Ω exp(Z∗(s)) ds. The resulting integral values are then compared to the integral over the true latent

field
∫

Ω exp(Z(s)) ds, which we can compute exactly in the simulated setting described below.
For every combination of the below parameter specifications for the observation domain Ω, the sampling distribution of Z(s), and the

specification of the mesh, a total of K = 10 000 samples are drawn for which integrals are computed. The simulation specifications are as follows:

• The true Gaussian field has mean µ = 0 (see Remark 1 for why this suffices), and takes a Matèrn covariance function of the form
σ2

2ν−1Γ(ν)
(κ‖s− t‖)νKν(κ‖s− t‖),

where s, t ∈ Ω, ν > 0 is a smoothing parameter, Kν is the modified Bessel function of the second kind, κ > 0 is a scaling parameter and σ2

is the marginal variance. Instead of working with κ and ν, it is convenient to work with a range parameter r =
√

8ν/κ corresponding to the
distance at which spatial correlation is "small" (slightly higher than 0.1, see Blangiardo and Cameletti (2015, Sec. 6.5)). We set ν = 1, and
work will let r vary among 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, and 8. In addition, σ2 will vary among 0.1, 0.2, 0.5, and 1.

• Since themethodsmay perform differently close to the boundary ofΩ, we run simulations with four different complexities ofΩ as illustrated
in Figure A7, hereafter referred to as Ωs with equal to respectively, 1, 2, 8 and 32. All observation domains are bounded by a square box A

ranging from 0 to 16 in both the x and y direction.

2The Voronoi tessellation concept was removed from the most recent versions of the tutorial. A previous version of the tutorial is as of this writing
(January 2020) available here https://folk.ntnu.no/fuglstad/Lund2016/Session6/spde-tutorial.pdf.

https://folk.ntnu.no/fuglstad/Lund2016/Session6/spde-tutorial.pdf
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• We specify meshes with different levels of refinement, all of which extends slightly beyond A. The constructed meshes are shown in Figure
A8, and has respectively 126, 183, 359, 1179, 4324, 16429 mesh nodes whose basis functions give nonzero output for some point within
A and thus affects the approximation of Z∗(s).

• The true latent field Z(s) is sampled on an extended grid ranging from -2 to 18 in both direction. The resolution of Z(s) is 320× 320 pixels.
This totals 102 400 pixels, each of which represents an area of (1/162). Due to the structure of the observation domains, Ω, the pixels lie
either completely inside or completely outside all versions of Ω.

The integral over the true latent field is computed exactly by summing the contributions of all pixels within Ω, like a Riemann sum:

inttrue =

∫
Ω

exp(Z(s)) ds =
1

162

∑
i:pix i⊂Ω

exp(Zpix i),

where Zpix i denotes the i-th pixel value.

[FIGURE 7 about here.]

[FIGURE 8 about here.]

The methods we include in the present simulation study is listed in Table A1 along with any specifics and the names we shall use to refer to them.

[TABLE 1 about here.]

To simplify the performance comparison for different observation domains, we shall scale the integrals by the area of Ω, denoted |Ω|. Denoting
by întM the approximated integral with method M, we shall compare the performance of înt

∗
M = întM/|Ω| to that of int∗true = inttrue/|Ω|. We will

use a few different measures to study the performance differences, all of which relates to the mean squared error (MSE):

MSE(method M) =
1

K

K∑
k=1

(
int∗true(sim k)− înt

∗
M(sim k)

)2
, (12)

where “(sim k)” denotes the integral values for simulation k, and K = 10 000 is the total number of samples. It is well known that the MSE may be
decomposed into a sum of the squared bias and variance, i.e. MSE(method M) = bias2(method M) + Var(method M), where

bias2(method M) =

(
1

K

K∑
k=1

(
int∗true(sim k)− înt

∗
M(sim k)

))2

and Var(method M) =
1

K

K∑
j=1

 1

K

K∑
j=1

înt
∗
M(sim j)

− înt
∗
M(sim k)

2

.

(13)

To better grasp the magnitudes of the different quantities, it is often convenient to bring the squared-scaled quantities above back to the scale of
the quantities we measure (the normalized integrals). We shall therefore work with the rooted versions of the quantities in (12) and (13), i.e. the
root mean squared error, RMSE(method M) =

√
MSE(method M), the (absolute) bias and the standard deviation (sd).

In addition to the above quantities, we shall rely on the so-called skill score (Gneiting & Raftery 2007) associated with the RMSE:

skill(RMSE, method M) =
RMSE(method M)− RMSE(reference)

RMSE(optimal)− RMSE(reference)
= 1−

RMSE(method M)

RMSE(reference)
, (14)

where RMSE(optimal) is the RMSE of an optimal method, being equal to zero. The skill score shows how well the methods perform relative to
a reference method. Here, we will use the dual mesh method as a reference, since this was the method originally proposed by Simpson et al.
(2016). The skill score is standardized such that the reference method (dual mesh) takes the value 0. Positive scores means the method is better
than the dual mesh approach, while negative values means it is worse. The magnitudes are relative to RMSE(dual mesh), with the optimal value
taking the value 1. All these scores will be computed separately for all the integration methods listed in Table A1, and every combination of the
specifications for the mesh, Ω, the range r, and σ2 described above. This gives a total of 960 different combinations for each of the 5 methods, each
with K = 10 000 different samples. Note that to reduce the sensitivity to the true field Z(s) actually being sampled when comparing the methods,
all the 960 different combinations are performed with the same seeds when drawing the K = 10 000 latent field samples.

Remark 1. It turns out that

∀µ0 ∈ R : skillµ=µ0 (RMSE, method M) = skillµ=0(RMSE, method M), and RMSEµ=µ0 (method M) = exp(µ0)RMSEµ=0(method M),

and biasµ=µ0 (method M) = exp(µ0)biasµ=0(method M), and sdµ=µ0 (method M) = exp(µ0)sdµ=0(method M)

where the subscript denotes “simulations” executed with different values µ0 of the mean of the latent Gaussian field µ. That is, the RMSE, bias and
sd are multiplicative in µ, while the skill score is independent of µ. This is a result of two different factors: (a) Z∗(s) is the minimizer of (11), i.e. it is
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the least squares solution, such that µ simply shifts the approximation Z∗(s) by exp(µ), and (b) all approximation methods for
∫
exp(Z(s)) ds take

forms as fixed linear combinations of exp(Z∗(s)) which are evaluated at a set of fixed locations (the mesh nodes and extra points). Consequently,

inttrue,µ=µ0 =

∫
exp(Zµ=µ0 (s)) ds =

∫
exp(µ0 + Zµ=0(s)) ds = exp(µ0)

∫
exp(Zµ=0(s)) ds = exp(µ0)inttrue,µ=0, (15)

with identical expressions for all approximation methods întM. Inserting this result into respectively (12) and (14), and gathering the common factor
exp(µ0) gives the desired result. These results are confirmed by repeated simulations using the same seed for different values of µ = µ0, and
allows us to display simulation results solely for µ = 0, without loss of generality.

4.3 Simulation results
The full result tables with all the 5 aforementioned performance measures, the methods described in Table A1 and all 960 simulation combinations
(5× 8× 960 = 38 400 scores) are available in a user-friendly online table through the GitHub repository (github.com/martinju/LGCP-normConst-
simulations). The source code for the implementation of the different integration methods and the simulation scripts used to produce the results
are also available in that repository. Due to the many different combinations and scores, the present paper will only include plots of a subset of
these scores, that are indicating the main conclusions and messages.

We start out by looking at how the MeshExact method performs, both in itself and compared to the deterministic integration methods work-
ing directly on the mesh. Since the deterministic integration methods are all very similar compared to MeshExact, we will here just investigate
and compare MeshExact with AverageDetMesh, the average of the DualMesh, DualMeshExtraMeshMapped, BarycentricPointSpread, Barycen-
tricPointSpreadManyPoints and Voronoi methods, see Table A1. Figure A9 shows the RMSE, bias and standard deviation in the specific situation
where #sub domains = 1 and σ2 = 0.1 for varying range and number of mesh nodes. For this illustration we used a finer grid for the range to
present a smoother plot. The results are very similar for other σ and#sub domains.

[FIGURE 9 about here.]

For MeshExact the RMSE plot clearly shows that the longer the range and the more mesh nodes that are used, the smaller is the error. As seen
from the bias plot in the bottom left panel, this clear structure mainly stems from differences in the bias, which always is negative for MeshExact,
indicating underestimating of the true integral.

The deterministic integration methods (AverageDetMesh) has a more complex performance pattern. For the smallest and largest ranges the
RMSE behaves similarly to MeshExact (smaller errors for increased range and number of mesh nodes). For medium sized ranges, however, it is
sometimes the case that more mesh nodes or longer range gives an increased error. This behavior is also a consequence of the bias, being negative
for small ranges, and positive for large ranges, but crossing and being closest to zero at different ranges for different number of mesh nodes.

The variability (standard deviation in the bottom right panel) does not vary toomuch based on the number of mesh nodes, but has a almost linear
increase in the range parameter, for both type of methods. While it is hard to spot from the plot, the standard deviation, as expected, increases
slightly when increasing the number of mesh nodes.

Comparing the two types of approaches for a fixed range and mesh, MeshExact is best for the longest ranges, while the reversed is true for small
ranges. The location of the flipping point between the two scenarios depends on the number of mesh nodes (the more mesh nodes, the smaller
need the range be for MeshExact to be the best).

Since MeshExact performs uniformly better when increasing the number of mesh nodes, while the deterministic integration methods does not,
it is relevant to investigate how the latter performs compared to MeshExact with the largest number of mesh nodes. Figure A10 illustrates this in
terms of the differences in the RMSE of the MeshExact method with the largest number of mesh nodes, and the AverageDetMesh with different
number of mesh nodes.

[FIGURE 10 about here.]

For medium to large ranges, the MeshExact approach has the smallest error. For very short ranges it is preferable to use a deterministic integration
method with many mesh nodes instead. For short (but not very short) ranges, it is better to reduce the number of mesh nodes slightly.

Let us now look at the performance differences for the deterministic integration methods with the mesh nodes as the only integration points3.
To avoid information overload, a selection of the parameter combinations are included in the plots below. Figure A12 contains the skill score of
the RMSE with DualMesh as reference method as a function of the range, when the variance is fixed at σ2 = 0.5, while the different panels show
plots for different combinations of the four Ω-specifications, and the six different mesh specifications. Figure A11 contains the same type of plots

3For a fair comparison, the DualMeshExtra approach (but not DualMeshExtraMeshMapped) is excluded from this comparison, as that method uses more
integration points than the other methods and therefore has a clear advantage.

https://github.com/martinju/LGCP-normConst-simulations
https://github.com/martinju/LGCP-normConst-simulations
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as Figure A12, but with the densest Ω (subDomain = 1), variances at σ2 = 0.1, 0.2 and 1 (σ2 = 0.5 is already shown in Figure A12), combined with
all the six different mesh specifications.

[FIGURE 11 about here.]

[FIGURE 12 about here.]

Before we take a closer look at the specific results, it is worth mentioning that while many of the methods appear to be performing very similarly,
permutation tests of differences in their (R)MSE actually show that more than 93% of the differences between the methods with all parameter
combinations presented in Figure A11 and A12 are significantly different (p-value < 0.01). A full table of p-values for the (R)MSE difference
permutation tests for all combinations of methods and parameter combinations in the simulation study are available in a user-friendly table through
the aforementioned GitHub repository. Even though the methods perform significantly different for most parameter combinations, which method
that performs the best is strongly dependent on the specific parameter specification. This makes it a bit difficult to fully generalize on specialities
for different methods.

As seen by comparing the columns in Figure A11, increasing the variance reduces the performance difference between the methods in terms
of the skill score. This is a result of all methods getting reduced RMSE, leading to more similar skill scores. Similarly, increasing the number of mesh
nodes typically has a similar effect for the two dual mesh approaches and the two Barycentric point spreading methods, at least for smaller number
of subDomains (the sparsity of Ω). When the range is small, all methods (possibly except for Voronoi) perform quite similar. In most situations
increasing the range gives larger performance differences between the methods. As expected the performances are most stable when subDomains
= 1. However, it is hard to generalize further on the behavior of the sparsity of Ω based on these results.

Overall, Voronoi stands out negatively in small segments for the range parameter with every parameter combination. On the other hand, the
Voronoi method performs well for medium to large ranges for the two densest meshes. The BarycentricPointSpread method is the method per-
forming best for most parameter combinations, and in some cases it clearly stands out as much better than the others. However, in a few cases
(e.g. for the largest number of mesh nodes and subDomains with σ2 = 0.5, see Figure A12, it has poor performance. Behavior like this makes the
method a bit unstable, just like the Voronoi method. BarycentricPointSpreadManyPoints is a more refined version of BarycentricPointSpread, that
in theory ought to be a more precise approximation to DualMeshExtraMeshMapped – a property that is also verified in our simulation. Barycen-
tricPointSpreadManyPoints is seldom the best method, but it does not show instability problems like BarycentricPointSpread and Voronoi, is often
better than DualMeshExtraMeshMapped, and almost always better than DualMesh. In other words, BarycentricPointSpreadManyPoints is a stable
and safe choice that always performs decent. We therefore recommend this method among the deterministic integration methods working directly
on the mesh nodes.

When comparing approximation methods to be used in computationally expensive algorithms, not only the accuracy of the methods matter,
but also the computation time. First, comparing the expressions for the deterministic integration method in (6), with the formula for the mesh-
exact integration method in (9) and (10), we see that the former has a much simpler form. The former is generally much faster to compute both
since the summand is more complex and the size of the sum is larger. The increased complexity is natural as (6) is an approximation to the mesh-
exact integration method. Furthermore, the variants of the deterministic integration method using solely the mesh nodes, differ only in how they
assign the weights. These weights can be pre-computed for a given mesh. Computing the weights is therefore just a fixed one-time cost from a full
inference perspective. Table A2 in Appendix A shows the computation time for these integration weights. While our recommendation Barycen-
tricPointSpreadManyPoints often is the slowest, we deem all the one-time pre-computation costs small enough not to cause practical problems (a
few seconds up to a few minutes in the most extreme case). For completeness, the table also includes the corresponding pre-computation time
for the mesh-exact integration method (i.e. the components involved in the α∗, β∗ and γ∗ quantities), which also has a comparable speed. Note,
however, that none of the implementations are optimized for speed, so the numbers should merely be seen as rough indicators.

5 SUMMARY AND CONCLUDING REMARKS

We have investigated different methods for approximating the normalization constant in the Cox process likelihood consisting of the integral∫
Ω exp(Z(s)) ds. Our main finding is that the mesh-exact integration method is preferable when the mesh is dense and/or the range of the latent
field is long. When the mesh is sparse and the range is small, it is in many cases better to use a deterministic integration method.

As the deterministic integration methods are preferable in some situations, we also compared the different variants against each other. For sim-
ple observation domains, small ranges and large variance of the latent field, the performance differences are small such that it is not crucial which of
the variants are being used. Our general recommendation among the deterministic integration methods is, however, the BarycentricPointSpread-
ManyPoints method. This is a simple extension to the BarycentricPointSpread method implemented in inlabru (v2.1.12). The extension is, as of
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this writing (Jan 2020), available through a fork of the inlabru R-package repository at github.com/martinju/inlabru, and will hopefully make it
into the official version of the package in due time.

A practical limitation of the INLA software implementation is that it cannot handle likelihoods consisting of multiple linear combinations of
the mesh nodes (Yuan et al. 2017, Remark Sec. 3.2). This is unproblematic for the deterministic integration points, whose integrand approxima-
tion depends on a single linear combination. The formula for the mesh-exact integration method, on the other hand, depends on three linear
combinations. Thus, it is currently not possible to fit a model with the mesh-exact integration method using the INLA software. Luckily, there
exists a computationally efficient alternative to INLA which does not have such a restriction: Template Model Builder (TMB) (Kristensen, Nielsen,
Berg, Skaug, & Bell 2016) is an inference method and R-package that performs high dimensional inference by combining Laplace approximations,
automatic differentiation and non-linear optimization. Implementing the full LGCP likelihood in TMB with the mesh-exact approximation for the
normalization constant has a high potential for providing more accurate inference for LGCPmodels. While being out of scope for the present paper,
this tasks is on the top of the list of further work.
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APPENDIX

A TABLEWITH PRE-COMPUTATION TIMINGS OF THE INTEGRATIONMETHODS

[TABLE 2 about here.]

SUPPORTING INFORMATION

Additional information for this article is available, containing the mathematical derivation of the analytical formula for integral of the over the
exponential latent field, being exact under the triangular mesh assumption.

All source code and simulation scripts, in addition to user-friendly online tables with the results for the full simulation study in Section 4 and
associated permutation tests are available through the GitHub repository (github.com/martinju/LGCP-normConst-simulations).
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FIGURE A1 Illustration of three 1-dimensional basis functions appear with nodes at every integer value.
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FIGURE A2 Illustration of how a FEM based triangular mesh approximates an original smooth field.
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FIGURE A3 Illustration of how the dual mesh approach assigns weight to internal and boundary integration points (shown by blue dots). The black
triangles show the mesh and the blue square shows the extent of the observation domain Ω. The area of the green part of the polygon is the weight
assigned to the corresponding integration point. The red part of the polygon is part of the dual mesh, but not included in the weight computation.
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Dual mesh with extra points:
Internal point
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FIGURE A4 Illustration of how the dual mesh approach with extra integration points assigns weight to internal and boundary integration points
(shown by blue dots). The black triangles show themesh and the blue square shows the extent of the observation domain Ω. For internal integration
points, the area of the green part of the polygon is the weight assigned to the corresponding integration point. For boundary integration points,
green points shows additional integration points and green dashed lines indicate how new sub-triangles for which 1/3 of the area are assigned to
the integration point.
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Barycentric point spreading:
Internal point
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FIGURE A5 Illustration of how the Barycentric point spreading approach assigns weight to internal and boundary integration points (shown by
blue dots). The black triangles show the mesh and the blue square shows the extent of the observation domain Ω. Green points are mapped to the
integration points, while red points are not.
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FIGURE A6 Illustration of how the Voronoi tessellation approach assigns weight to internal and boundary integration points (shown by blue dots).
The black triangles shows the mesh and the blue square show the extent of the observation domain Ω. The area of the green part of the polygon
is the weight assigned to the corresponding integration point. The red part of the polygon is part of the Voronoi tessellation, but not included in
the weight computation.
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FIGURE A7 Illustration of the different observation domains Ω (blue polygons) used in the simulation study.



Martin Jullum 19

0 5 10 15

# Mesh nodes: 126

0
5

10
15

0 5 10 15

# Mesh nodes: 183

0 5 10 15

# Mesh nodes: 359

0 5 10 15

# Mesh nodes: 1179

0
5

10
15

0 5 10 15

# Mesh nodes: 4324

0 5 10 15

# Mesh nodes: 16429

FIGURE A8 Illustration of the different meshes used in the simulation study. The number of mesh nodes in the title refers to the number of mesh
nodes which affects approximations in the largest observation domain (shown by the blue square).
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FIGURE A9 Simulation results for MeshExact (solid lines) and AverageDetMesh (dashed lines) for the full Ω (subDomains = 1), σ2 = 0.1, the six
different meshes (shown in different colors), and a finer grid of ranges (0.1, 0.2, . . . , 7.9, 8.0). The top panel shows the RMSE, the bottom left panel
shows the bias and the bottom right panel shows the standard deviation.
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FIGURE A10 The difference in RMSE for AverageDetMesh with different number of mesh nodes compared to the (best performing) MeshExact
approach with the largest number of mesh nodes (16 429) for the setup shown in Figure A9. When the lines are above the black dashed horizontal
line at 0, MeshExact performs best, and vice versa below the 0-line.
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FIGURE A11 Simulation results for the deterministic integration methods which uses the mesh nodes as integration points. The plots show the
skill score of the RMSE with DualMesh as reference method for the five approaches (in different colors), as a function of the range. In contrast to
Figure A12, the number of Ω sub domains is fixed at 1, while plots are shown for variance 0.1, 0.2, 1 in combination with the six different mesh
specifications.
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FIGURE A12 Simulation results for the deterministic integration methods which uses the mesh nodes as integration points. The plots show the
skill score of the RMSE with DualMesh as reference method for the five approaches (in different colors), as a function of the range. The variance is
kept fixed at σ2 = 0.5 while the different panels show plots for different combinations of all four Ωs (subDomain = 1, 2, 8, 32), and the six different
mesh specifications.
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TABLE A1 List of methods included in the simulation study

• MeshExact: The mesh-exact integration method (Section 2.2).

• DualMesh: The dual mesh approach (Section 3.1).

• DualMeshExtra: The dual mesh approach with extra integration points which uses the extra integration points directly (Section 3.2).

• DualMeshExtraMeshMapped: The dual mesh approach with extra integration points, where the points are mapped back to the mesh nodes
(Section 3.2).

• BarycentricPointSpread: The Barycentric point spreading approach with 100 points as hard-coded in inlabru (Section 3.3).

• BarycentricPointSpreadManyPoints: The Barycentric point spreading approach with 1000 points (Section 3.3).

• Voronoi: The Voronoi tessellation approach (Section 3.4).

• AverageDetMesh: The average integration value among all methods using the deterministic integration method based solely on the mesh
nodes (DualMesh, DualMeshExtraMeshMapped, BarycentricPointSpread, BarycentricPointSpreadManyPoints and Voronoi).
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meshNodes subDomains DualMesh DualMesh-
ExtraMesh-
Mapped

Barycentric-
PointSpread

Barycentric-
PointSpread-
ManyPoints

Voronoi MeshExact

126 1 0.36 1.12 0.72 0.85 0.90 0.77
183 1 0.40 1.33 0.85 2.05 0.25 0.75
359 1 0.67 2.31 0.90 1.43 0.45 1.54

1179 1 2.11 5.12 1.24 3.55 1.54 3.68
4324 1 7.23 17.23 2.54 12.63 7.84 11.61

16429 1 31.69 97.04 9.59 58.02 34.22 40.39

126 2 0.28 0.96 1.43 1.64 0.17 0.54
183 2 0.34 1.15 1.50 1.81 0.23 0.85
359 2 0.58 1.88 1.60 2.22 0.43 1.23

1179 2 1.89 4.16 2.16 4.62 1.50 3.40
4324 2 6.88 13.97 4.41 16.28 6.64 10.62

16429 2 29.53 58.18 14.01 58.49 34.25 36.08

126 8 0.32 1.53 5.68 6.41 0.21 1.13
183 8 0.42 2.07 6.38 7.23 0.29 1.46
359 8 0.71 3.21 6.67 8.66 0.56 2.49

1179 8 2.22 6.94 8.23 16.95 1.83 6.00
4324 8 7.72 20.55 16.14 55.62 7.79 15.85

16429 8 32.24 79.51 53.10 192.71 36.72 48.46

126 32 0.61 6.44 21.57 24.17 0.53 5.97
183 32 0.88 8.64 24.51 28.08 0.77 8.04
359 32 1.55 13.80 24.82 32.19 1.44 12.36

1179 32 4.80 27.61 31.80 62.44 4.61 26.33
4324 32 16.55 63.67 63.74 201.65 16.16 57.89

16429 32 63.61 178.73 208.66 706.24 66.44 139.70

TABLE A2 The table shows the number of CPU seconds used to compute all mesh-related quantities (simply the integration weights for the
deterministic integration methods) for different methods on a desktop computer with a AMD Ryzen Threadripper 1950X, 3.4 GHz CPU, on a Linux
Ubuntu 18.04 system, running R version 3.6.1.


	Investigating mesh based approximation methods for the normalization constant in the log Gaussian Cox process likelihood
	Abstract
	Introduction
	LGCP approximation methods
	The general approach of Simpson et al. 
	The mesh-exact integration method

	Variations of the deterministic integration method
	The dual mesh approach
	The dual mesh approach with extra integration points
	The Barycentric point spreading approach
	The Voronoi tessellation approach

	Simulation study
	Latent field approximation
	Simulation study specification
	Simulation results

	Summary and concluding remarks
	Acknowledgments
	Appendix
	Table with pre-computation timings of the integration methods
	Supporting Information
	References


