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Abstract— A new algorithm for deconvolution of sparse
spike trains is presented. To maximize a joint MAP
criterion, an initial configuration is iteratively improved
through a number of small changes. Computational sav-
ings are achieved by pre-computing and storing two cor-
relation functions, and by employing a window strategy.
The resulting formulas are simple, intuitive, and efficient.
In addition, they allow much more complicated transitions
than state-space solutions such as Kormylo and Mendel’s
single most likely replacement algorithm. This makes it
possible to reduce significantly the probability that the
algorithm terminatesin a local maximum. Synthetic data
examples are presented that support these claims.
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I. INTRODUCTION

ANY natural phenomena can be approximated by
the discrete-time convolutional model

o

> h(n—k)z(k) + e(n). (1)

k=—o00

z(n) =

For example, in echographic applications, h will be a
transmitted wavelet, z 1s the reflectivity of the mate-
rial, e 1s additive noise, and z is the observed reflection.
The purpose of deconvolution is to estimate x, based on
knowledge of z and h. In practical applications i will of-
ten be narrow-band. Such problems are ill-conditioned,
and highly different z will be compatible with the same
observation z. The consequence is that meaningful re-
sults can only be achieved by employing some a priori
information about z.

The model considered here 1s based on the assump-
tion that only a small part of the components of z are
non-zero. Signals with this characteristic are commonly
referred to as “sparse spike trains” or, under a special dis-
tributional assumption, as Bernoulli-Gaussian processes.
Such models arise naturally within a number of fields:
e.g. seismic exploration [1], ultrasonic non-destructive
evaluation [2], communication theory [3], and speech pro-
cessing [4].
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Due to the sparse structure of z, classical linear meth-
ods such as Wiener filtering are not appropriate, and a
large number of alternatives have been proposed. An in-
complete list includes: One-at-a-time spike extraction
techniques [3], [5], the single most likely replacement
(SMLR) algorithm [6], Viterbi algorithm detector [7],
L, deconvolution [2], [8], stochastic Bayesian methods
[9], and multipulse methods [10].

In the present article a Bayesian viewpoint will be
taken, and reconstruction will be based on a Maximum A
Posteriori (MAP) estimator. The sparse spike train will
be represented by two vectors, a giving the amplitudes of
the spikes and t giving their (time) positions. The MAP
estimator is the values of a and t that maximizes the
posterior density p(a,t|z). For given t the optimal am-
plitudes, &, is found by linear methods. But p(&, t|z) is
non-linear and maximization with respect to t is carried
out by iteration. Since a depends on t, each evaluation
of p(&,t|z) requires the initialization and inversion of a
new linear system. Fast initialization is achieved by ex-
ploiting a simple relationship between the linear system
and two correlation functions. These are computed and
stored prior to the iteration.

The iterative search starts by comparing a reference
value of t to a number of neighbors. The transitions
linking two neighbors will typically consist of changing
one or a couple of components. As soon as a neighbor is
found which increases p(&,t|z), it is adopted as the new
reference value, and the search is repeated. The itera-
tion stops when no improving neighbors can be found.
Similar to existing MAP/Maximum Likelihood estima-
tors [6], [7], [11], [12], the search may terminate with a
sub-optimal value for t.

Because only neighboring t values are compared, great
computational savings are possible. The strategy is to
recompute only the components of & in a small window
covering the area where the neighboring t values differ.
Although the immediate result is only local optimality
of &, increase of p(&, t|z) is still guaranteed for each ac-
cepted update. Furthermore, repeating the local opti-
mization with changing window positions will continu-
ously improve the global fit of 4. As long as t changes
the fit will remain an approximation, but when t reaches
its final value, a will converge quickly to its correspond-
ing global optimum.

Combination of window maximization and initializa-



KAARESEN: DECONVOLUTION OF SPARSE SPIKE TRAINS BY ITERATED WINDOW MAXIMIZATION. 2

tion from correlation functions yields highly efficient
evaluation of p(&,t|z). The major burden is inversion
of the linear system, whose order will typically vary in
the range 1-5.

The MAP criterion and some of the formulas employed
here are similar to those used by Kwakernaak [3]. But
Kwakernaak maximizes his criterion by a one-at-a-time
spike extraction technique, which may easily estimate
the spikes at wrong locations when the wavelets are over-
lapping [5]. This problem is not shared by the approach
developed here. In addition, higher efficiency may be
achieved since much smaller matrices need to be inverted.

The present iterative search has more in common with
the approach used by Kormylo and Mendel in their pio-
neering work on the SMLR algorithm [6]. But a major
difference is that the efficiency of the SMLR is based on
a restrictive definition of neighboring sequences. No such
restrictions apply here, and a higher degree of optimality
can be achieved. In addition, the present approach will
in many cases lead to faster computation.

The rest of the paper is organized as follows: In Sec-
tion II the mathematical structure of the algorithm is
derived in detail. Implementation issues are considered
in Section IIT and selection of parameters in Section TV.
In Section V some synthetic data examples are provided
which demonstrate that the new algorithm can simul-
taneously improve both optimality and execution time
relative to an efficient version of the SMLR algorithm.
Finally, parallelization possibilities are pointed out in
Section VI.

In the following no assumptions on the wavelet such as
symmetric, minimum phase or low-order ARMA will be
needed, but it is necessary that it has a finite support. In
most cases of practical interest this should be satisfied,
either exactly or by appropriate truncation.

II. DERIVATION OF THE ALGORITHM

A. Convolutional Model

Assume that a data record of N samples is observed,
and let M denote the number of spikes. In terms of a
and t the model (1) becomes

z(n) =Y h(n—ti)a;+e(n), n=12... N (2

i=1
Equation (2) can be rewritten in matrix as form as
7z =Ha+ e, (3)

with obvious interpretations of z and e. Note that H
depends on t and is given by Hp; = h(n —t;). Thus,
each column of H contains a copy of the wavelet that
are shifted to the corresponding spike position.

B. Dustributional Assumptions and MAP Estimator

By Bayes formula the posterior density can be factored
as

pla, t|z) o« p(z]a, t)p(alt)p(t). (4)

The following distributional assumptions are introduced:
The noise is zero mean Gaussian and white, independent
of a and t, and has variance ¢. This implies a Gaus-
sian likelihood, which except for constant factors, can be
written as

p(zla, t) o< exp {—(a’H'Ha — 22'Ha)/(202)} . (5)

The prior distribution of a given t is also zero mean
Gaussian and white. The variance is 2. Thus,

p(alt) = (2#02)_M/2 exp {—a'a/(202)} . (6)

The prior density of t can be arbitrary as long as it can
easily be evaluated at any given point. If t is a geomet-
ric process, then x has the commonly used Bernoulli-
Gaussian distribution [6], [7], [9], [13]. This will be re-
ferred to as the Bernoulli case.

Combining (4), (5), and (6) and reorganizing gives the
following expression for the log-posterior density:

Inp(a, t|z) =
—[(a—8""v)'S(a—S~'v) —v'S7'v] /(202)
- % In ('271'0'2) + In p(t) + const. (7)

The matrices

S=HH++I and v=H'z (8)
will be important in the following. The parameter ~ is
02 /0?2 and can be thought of as an inverse signal-to-noise
ratio. Since S is positive definite symmetric, it is clear
that the maximizing value of a is

a=S"1v. (9)

The remaining problem is to maximize Inp(4, t|z) with
respect to t. Defining 6, = 202 and 63 = o2 In(2702), it
is easily seen that it is equivalent to maximize

I(t) =v'a+g(t), (10)
where

g(t) =61 Inp(t) — 2 M. (11)

Unfortunately, there is no easy way to locate the max-
imum of {(t), even for particularly simple g(t). Except
in pathological cases, such as when g(t) is an increas-
ing function of M, exact maximization seems to require
something close to an exhaustive search. Evaluating the
function for all 2%V possible values of the argument soon
gets prohibitive as N grows. The solution is to limit
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the search by the iterative procedure described in the
introduction. Computationally efficient formulas will be
derived in the next two sub-sections.

An interpretation of the criterion to be maximized is
possible. For given t, (9) is the Bayes estimator of a, and
if 4 = 0 it is the least squares estimator from multivariate
regression. Using some algebra on (10) shows that

1(t) = |lzl” — [1&]|* — vllall* + g(t), (12)
where &€ = z — Ha. The first term of (12) is only a
constant. The second term is the square-sum of resid-
uals, and the third is the square-sum of estimated am-
plitudes weighted by an inverse signal-to-noise ratio. In
the Bernoulli case g(t) also assumes a particularly sim-
ple form. Then, p(t) = AM(1 — \)V=M where X is
the probability of a spike at any given point. Insert-
ing this in (11), ignoring a constant term, and defining

6 = 6y — 61 In[\/(1 — \)], yields g(t) = —0M, which is
simply a deduction proportional to the number of esti-
mated spikes.

C. Initialization of Matriz Elements from Correlation
Functions

The criterion (10) depends on the two matrices S and
v. Note that their dimensions, M x M and M x 1, depend
on the number of spikes, which will normally be much
smaller than the number of data points. Note further
that the matrices depend on t (through H) and must
therefore be reinitialized for each new candidate value of
t. Direct computation from the defining equations (8)
would be burdensome, but can fortunately be avoided as
described next.

Assume that the wavelet has finite support, and let
D be such that h(d) = 0 for |d| > D. (No loss of
generality follows by assuming that the support of A is
placed roughly symmetrically around zero.) Consider
two copies of the wavelet that are separated by a dis-
tance d, and introduce their correlation:

crn(d) = cnn(—d)= Y h(k—d)h(k)
_ ZD: h(k —d)h(k), d=0,1,...,2D
07__ d=2D+1,...
(13)

Consider also a copy of the wavelet placed at position n,
and introduce its correlation with the observed data:

chz(n) =

> h(k —n)z(k)

min(N,n+D)

-y

k=max(1,n—D)

h(k=n)z(k), n=12,..., N.
(14)

The elements of v can now be given as:

E Hkizk = E h(k — tZ)Z(k)

= cpa ().

Vg

To link S and cpp, assume for simplicity that all ¢; are
chosen such that the columns of H contain non-truncated
versions of h. This is satisfied if D < t; < N — D.
Consider the non-diagonal elements of S first:

N N
Sy = > HeiHgj=> h(k—t)h(k —1;)
k=1 k=1
= io: h(k—ti)h(k—tj)
k=—o0
= D h(k=(ti—1)h(k)
k=—o00
= enn(lti = 15]). (15)

The diagonal elements of S are constant, and given by
Sii = cpn(0) + 7.

In sum, it has been shown that if the two correlation
functions (13) and (14) are computed and stored prior to
the iterative phase of the algorithm, the necessary matri-
ces can be initialized directly in each iteration, without
any computation. The implication is that the work of
computing /(t) will be independent of the wavelet length
and affected only by the number of spikes. Note finally
that the correlation functions may be reformulated as a
convolution and computed by the fast Fourier transform.
This may be more efficient than direct computation for
long wavelets.

D. Local Mazrimization

If the number of spikes is large, computing & = S~'v
may still require a substantial effort. To reduce the di-
mension of the problem, only a subset of the components
will be recomputed at each iteration. As a motivation,
suppose the algorithm has determined a good fit of a for
a given t-value. The next step is to change a few com-
ponents of t and perform a new fitting of a. The new
optimal fit may possibly be different from the old one
in all components, but large changes are likely to take
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place only close to the changed components of t. The
large number of remaining amplitudes will probably be
quite optimal already. In particular, when the algorithm
is far from convergence, it seems inefficient to spend a
lot of time on doing minor adjustments to these.

Maximization will thus be constrained to a small win-
dow, w. The window will be chosen to cover at least
the area where the competing t values differ. The com-
ponents of a and t that are inside the window will be
denoted by a® and t“. For each candidate value of t*
the posterior density will be maximized with respect to
a¥, giving a maximizing value denoted by a*. Finally,
the current configuration will be updated with the t*
and &" pair corresponding to the largest value of the
posterior density.

It will now be shown that the formulas for windowed
maximization can be obtained from previous results. In
addition to the notation introduced above, let a¥ and
t” be the components of a and t that are outside the
window. Start by restating the matrix model (3) in a
partitioned form:

z= ( HY, HY ) +e. (16)

aw

The blocking of H corresponds to that of a and t. The
components of a that are inside the window may without
loss of generality be positioned first in the vector. (If
this is not the case, it can be arranged by performing
the same permutation to the components of a and the
columns of H. Such an operation will not change the
equation.) Further, rewrite (16) as
Y = HYa" + e, (17)
where
z¥ =z—H"a".

(18)

Consider now the posterior density (4), which can be
factored as

pla, tz) = p(a®, t*|z,a”, t7)p(a”, t7]z). (19

The second factor is constant in the present setting and
can be ignored. The first factor can be rewritten as fol-
lows:

p(a¥, t¥|z,a", tv)
= p(aw,tw|zw,am7 tU)
p(z¥]a”, t¥, a%, tV)p(a [t, a”, t¥)p(t¥]a"”, tv)
= p(a"[a", t*)p(a” [t*)p(t" [¢7). (20)
Here, the first equality is due to the fact that the condi-

tioning variables in the second density are a one-to-one
transformation of those in the first. The proportionality

K

is Bayes formula, and the last equality follows from (17)
and the distributional assumptions of Section II-B. Com-
paring (17) with (3) and (20) with (4) makes it clear
that the situation is completely analogous to the non-
windowed case. After substituting a with a%, t with
t¥, z with 2z and p(t) with p(t*[t¥), all the formulas
derived in Section II-B can be used.

Tt is possible to interpret this result. Note from (18)
that z" is obtained from z by removing the effect of the
spikes outside the window. It is intuitively reasonable
that the amplitudes within the window should be fitted
to the “unexplained” part of z.

To make the window maximization effective, it is im-
portant that the matrices 8* = (HY)'H" + ~4I and
v?” = (H")'z" can be initialized efficiently. Consider
first v¥, which by (18) can be written as

— (Hw)lz _ (Hw)IHEaE.
The components of the second term can be found from
the correlation functions (13) and (14) as follows:

ZszHklal

= Za;UZh k—t¥)h(
l k

>

{l:|t» —t®|<2D}

((Hw le w
(k — )

aicnn (1t} —t7]). (21)

The derivation for the first term of v* and for SY is
completely analogous to the non-windowed case, and is
omitted. For easy reference all formulas needed by the
iterative part of the algorithm are now stated:

ean (b —42)), i 4 ],
5o = we([t —t51), i# ] (22)
cnn(0) + 7, i=J
v = cn:(8) — > aenn ([t —1771),  (23)
{l:|t»—t®|<2D}
= (sv)~! (24)
l(tw) = (v¥)'a" + g( “)s (25)
w 01 Inp(t¥[t¥) — 0, M®, In general,
g(t") = o (26)
—60MY, Bernoulli.

In (26) M denotes the number of spikes within the win-
dow. Equations (25) and (26) can be seen to be valid also
in the case of a window containing no spikes, provided
that (v*)'a" is interpreted as zero.

Finally note that (22) and (23) is derived under the
assumption that no spikes are closer to the border than
D (the half-length of the wavelet). If this assumption is
removed, it can be seen that such spikes will normally
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Compute correlation functions
cn and cp. by (13) and (14).

Select starting values for t and a.

!

Choose a new window w,
containing the spikes t*.

¥
Compute 4* and [(t™)
using (22)-(26).

!

B .
Choose a new candidate value t*°,
which differ from t* in one or more
components.

!

Compute 4" and [(t°)
using (22),(26)_

update
t with t¥°
l—]
and

a with a»°.
More candidates YES
in this window ?

No improvement found for t*.
Update & with a*.
N, Convergence ?
Solution t and &.
Fig. 1. The structure of the proposed algorithm. Boxes labeled

A, B, and C are discussed in corresponding sub-sections to
Section ITI.

be estimated somewhat too small and possibly at wrong
locations. Ignoring this should usually be of minor im-
portance, since typically D << N. Alternatively, it can
be seen that the border effects can be removed at the ex-
pense of computing and storing an additional 2D? + D
correlation elements. Each element should correspond to
a possible combination of truncated versions of h. This
would also allow (highly uncertain) estimation of spikes
slightly outside the observed data record.

I11. IMPLEMENTATION

Based on the formulas of the previous section, the al-
gorithm can be implemented as depicted in Fig. 1. This
basic structure leaves considerable flexibility, and some

important issues will be discussed further here.

A. Window Selection

A reasonable choice of window positions is to cycle
sequentially through all currently existing spikes, and
for each spike try transitions with a window centered
on that spike. It is proved in Appendix A that such
systematic update guarantees convergence to amplitudes
that are globally optimal given the final value of t. The
iterations should be continued until a complete scan fails
to change either t or & by more than an error threshold.
(Note from Fig. 1 that an iteration may improve & even
though no improvement is found for t.)

The window size is important for efficiency. Gener-
ally, the computational burden is an increasing function
of this variable, since the cost of computing (24) grows
rapidly when the number of spikes in the window in-
creases. Very small windows may, however, also slow the
algorithm down. In this case the necessary number of it-
erations will typically increase considerably because the
strong interactions between close spikes are not taken
into account at each update.

The window size may also affect the optimality of the
algorithm. Even though the conditional optimality of
the final amplitudes is independent of the window size,
the final value of t i1s not. In general, a smaller window
size can be expected to yield reduced optimality. The
window size should therefore be selected to balance the
conflicting interests of optimality and computational ef-
ficiency. The simulations in Section V (and numerous
others performed by the author), indicate that a window
size approximately equal to the length of the wavelet will
usually lead to negligible loss of optimality, while still re-
taining efficient execution.

B. Choice of Transitions

The number of new candidate values for t considered
in each window can dramatically change the behavior
of the algorithm. One possibility is to determine the
candidates from a limited number of possible transitions.
This will give a fast, but quite sub-optimal algorithm.
The other extreme is a very rich transition set, which
will make the algorithm slow, but nearly optimal. The
possible choices include the following variants:

1. Consider only transitions involving one spike at a
time. For example: delete the spike, insert a spike,
move the spike one sample to the left or one sample
to the right.

2. In addition to the transitions above, try also a num-
ber of transitions involving two spikes, e.g. move
both to the left, move the two spikes together, and
sO on.

3. The brute force method: Try all possible combina-
tions of spikes in the window, maybe excluding com-
binations with more spikes than a predetermined
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maximum. Such a procedure may in many cases
present a computationally feasible solution that are
practically equivalent to the (unattainable) global
brute force method, which consist of testing all 2V
possibilities.

It is not necessary to try the most complicated tran-
sitions when the algorithm is far from convergence. For
increased efficiency it is better to start with the simplest
transitions involving one spike, and to try the more ad-
vanced transitions only when the simple ones fail to pro-
duce any more changes. This approach was used in the
implementations tested in Section V.

It may be noted that even transition set 1 above is
more general than the one used in the SMLR algo-
rithm [6]. For example the left move, will require two
iterations in the SMLR, one deletion and one insertion.
Even though the left move increases the posterior prob-
ability, it may very well be that neither the insertion
nor deletion do, and the SMLR will be stuck in a lo-
cal maximum. The effects of this are pointed out by
Chi and Mendel [14]. They also proposed a modification
of the SMLR that can perform the left and right move
(at the expense of some additional complexity), but it is
not obvious how to generalize to even more complicated
transitions.

C. Solution of the Linear Systems

The major computational burden of the algorithm is
to compute the optimal amplitudes by (24). Since S is
positive definite symmetric, a natural choice is to com-
pute the Cholesky decomposition of S* and “back sub-
stitute” with v*. This requires a computational effort
of approximately (M*)3/6 + (M*)? multiplications and
additions and M" square roots [15]. However, with a
sensible choice of window size, one may find that in a
majority of cases the dimensions of the matrices are 3 or
less. For such small matrices the overhead in the gen-
eral Cholesky decomposition routine is considerable. It
1s more efficient to handle each of the low order cases sep-
arately, using closed form solutions of the linear system
which directly give the components of 4" in terms of the
components of S¥ and v¥. This approach was used in
the implementations tested in Section V. A further sim-
plification is obtained with appropriate normalization of
the wavelet, which makes the diagonal elements of S*
equal to one. (Together with the symmetry property
this makes the number of variable elements in S¥ equal
to only 0,1 and 3 for respectively 1,2, and 3 spikes.)

IV. SELECTING PARAMETER VALUES

The inverse signal-to-noise ratio v will be treated first.
Then the discussion will be specialized to the Bernoulli
case, and selection of the spike-penalty parameter 6 will
be considered in detail. Finally some comments on the
general case will be given.

A. The Inverse Signal-to-Noise Ratio

If estimates or a priori knowledge about the noise and
amplitude variance are available, v can be determined
directly from its definition, ¥ = 02/02. Otherwise, an
alternative is to use v = 0. This corresponds to a non-
informative prior [16] for the amplitudes. Simulation
tests indicate that little is lost by this simplification.
An exception is when the wavelet is distinctly non-spiky.
In that case the algorithm may come up with two or
more closely spaced spikes with unreasonably large am-
plitudes. Such spikes will invariably have opposite signs,
and their effects will almost completely cancel. Using a
small value of v removes the problem.

B. The Spike-Penalty Factor 8

In the Bernoulli case, the only parameter left to deter-
mine is §. This parameter clearly determines the number
of spikes produced by the algorithm, cf. (26). Small val-
ues increase the risk of false detections, and large values
increase the risk of missing true spikes. The optimal
value will thus depend on the relative importance given
to each of these two sources of error. Since 6 is defined as
a function of 62, 02, and A, estimates for these quantities
could be used to determine #. It is, however, argued in
Appendix B that the value thus implied by the MAP cri-
terion is in general not suitable. Some other suggestions
for selection will be given here instead.

A practical approach is to regard 6 as a filter-tuning
parameter which is adjusted to obtain the best visual
deconvolution result. An important advantage 1s that
detailed knowledge of the statistical properties of the
data (parameter values, fit to model, etc.) is not nec-
essary. If such knowledge really is available, a “training”
approach may be a better alternative. A large synthetic
data set with identical statistical properties to the real
data could be generated. Then, 6 could be selected to
optimize average performance on this data set relative
to a realistic loss function. An example is found in [17].
The advantage of this approach is that the influence of
factors such as estimation of the wavelet can easily be
incorporated.

Within a reasonable range, the performance of the al-
gorithm is not critically dependent on the optimal choice
of 6 (see [17]). A simple guideline for choosing a sensible
value will now be given. The argument is based on re-
quiring a certain probability of false detection to equal a
(small) constant. This leads to a value of § proportional
to o2, To define the error probability, suppose the algo-
rithm is trying to decide whether to insert a spike at a
given position in an otherwise empty window. Assume
further that possible spikes outside the window which are
“overlapping” with the spike under consideration (dis-
tance 2D or less), have already been correctly estimated.
Finally, suppose for simplicity that ¥ = 0 is used. Define
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Pfalse a5 the probability that the algorithm accepts the

spike, given that the window contains no real spikes. In
Appendix C it is shown that

0
pllse — 1 < ) : (27)

o

where F' is the cumulative distribution function of a chi-
square variable with one degree of freedom. From (27)
it is clear that choosing § = xo?, where x is a quantile
high up in the tail of the chi-square distribution with
one degree of freedom, yields a small error probability,
independent of the noise variance. For the simulation
examples in the next section, x = 10 was used, corre-
sponding to P™!*¢ x~ 0.0016. Numerous other simula-
tions performed by the author show that choosing x in
the range 10-20 works well for a wide range of wavelet
shapes, spike densities, and noise levels. The conclusion
18, however, dependent on the correctness of the assumed
model. In practice, slight misspecification of the wavelet
and other modeling errors may be taken into account by
choosing a larger x.

C. The General Case

In the non-Bernoulli case, there are three quantities
left to determine: The prior density p(t) and the pa-
rameters #; and f;. Note from (25)-(26) that 6; and 6
weights the relative influence of three factors: The fit
to the data, the prior knowledge about t, and the num-
ber of produced spikes. As in the Bernoulli case, the
parameter values implied by the MAP criterion can not
be expected to give optimal results. A reasonable choice
is to model p(t) as realistic as possible, but to select 6;
and #5 without regard to their definition. Selection may
be based on trial and error or the training approach. In
the latter case the some gradient search could be used.
Due to the rapid execution of the algorithm this should
be feasible even for a quite large training set. A sensible
starting point is to choose both parameters on the form
of a constant multiplied by 2.

Concrete specification of alternatives to the Bernoul-
li/geometric form of p(t) is application dependent, and
will not be considered here.

V. COMPUTER SIMULATION

To evaluate the new algorithm, two implementations
were tested. The first, denoted by IWM 1 (iterated win-
dow maximization 1), corresponded to transition set 1
from Section III-B where only single insertions, deletions,
and motion of one spike with one sample were consid-
ered. The second, IWM 2, was based on transition set
2, where the following two spike transitions were consid-
ered: Splitting one spike into two, joining two spikes into
one, and moving two spikes simultaneously. In each case
all possible replacements were tried, subject to the con-
dition that each new spike should be positioned no more

TABLE 1
CPU EXECUTION TIMES USED TO COMPUTED THE
RECONSTRUCTIONS IN F1Gs. 2-4. MEASURED ON A 60 MHz
PenTIUM PC.

Wavelet SNR Execution times (s)
IWM 1 | IWM 2 | SMLR
broad-band | 10 dB | 0.044 0.071 0.720
narrow-band | 10 dB | 0.028 0.049 0.500
narrow-band | 20 dB | 0.066 0.110 1.100

than 5 samples from one of the replaced ones. Only
spike pairs with inter-distance of no more than 10 sam-
ples were considered for join or simultaneous move. In
both versions border effects were treated as indicated at
the end of Section II-D. The two IWM versions were
compared to an efficient implementation of the SMLR
algorithm [6] proposed by Goussard et. al. [12]. (This
implementation was chosen for comparison because it
shares the advantage of the IWM that no state-space rep-
resentation of the wavelet is needed. Though state-space
based alternatives [6], [11], [13] are highly efficient for
synthetic low-order models, their efficiency rapidly de-
clines for higher-order models that are typically needed
to fit real wavelets satisfactory.) For all algorithms, the
iterations were started from an initial estimate without
any spikes.

For easy comparison with previously published results,
a 300 samples long sparse spike train explicitly defined
in [18] was used for the simulations. The spike train was
convolved with a broad-band Kramer wavelet (Fig. 2a),
defined e.g. in [19] p. 85. White Gaussian noise was
added to make the SNR (defined as the ratio of mean
power of noise free signal to noise variance) equal to 10
dB. For these data, the IWM 1 detected all major spikes
correctly, whereas several small ones that were “buried
in noise” went undetected (Fig 2). This compares well
with other results in the literature [6], [7], [11], [20]. The
IWM 2 and the SMLR gave identical reconstructions to
the IWM 1 for this example. However, the IWM 1 and
IWM 2 were faster than the SMLR by a factor 16 and
10 respectively (Table I).

The Kramer wavelet was considered mainly because of
its widespread use in the literature. The broad-band na-
ture of this wavelet makes the deconvolution problem
unrealistically easy compared to many wavelets com-
monly encountered in seismic and ultrasonic applica-
tions. Therefore a narrow-band wavelet (Fig. 3a), ex-
plicitly defined in [19] p. 85, was selected for the next
simulations. Using the same spike train as before and
keeping the SNR at 10 dB, showed that all algorithms
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Fig. 2.  Deconvolution of broad-band data: (a) Fourth order
Kramer source wavelet; (b) Synthetic data, SNR = 10 dB; (c)
The identical results obtained by two versions of the proposed
algorithm, IWM 1 and IWM 2, and by the SMLR algorithm.

Bars depict estimates and circles depict true values.

performed markedly worse (Fig. 3) than in the broad-
band situation . The estimate from the IWM 1 was still
identical to the SMLR, whereas the IWM 2 managed to
resolve some closely spaced spikes where both the others
failed (cf. the estimate around sample 170 and 220).

Increasing the SNR to 20 dB lead to improved detec-
tion for all algorithms (Fig. 4), but this time also the
IWM 1 performed better than the SMLR, which ap-
peared to have locked into sub-optimal configurations
at several places (cf. e.g. the estimate around sample 50
and 160). The TWM 2 again improved further on the
IWM 1, thus demonstrating the advantage of including
two-spike moves.

For both narrow-band examples the IWM versions im-
proved the execution times of the SMLR by approxi-

TABLE 11
EXECUTION TIME AS A FUNCTION OF WINDOW SIZE WHEN
PROCESSING THE DATA IN F1G 4 wiTH THE IWM 1.

Window size | Execution time (s)
3 0.038
11 0.033
21 0.060
31 0.066
41 0.099
61 0.154
o0 1.582

mately the same factors as in the broad-band exam-
ple (Table I). The speed advantage of the IWM will,
however, increase with the record length due to a non-
linearity of the SMLR version used here [12], [17]. TableT
also shows some variation in execution time between the
different data sets. This is mainly due to differences in
the number of estimated spikes, with more spikes giving
slower execution. If very dense estimates are sought, the
IWM may become inefficient, and other methods should
be considered.

For all reconstructions above, a window size of 31 sam-
ples was used. Execution times for some other window
sizes are given in Table II. For the given example, the
execution time increased with the window size, except
for the two smallest sizes (3 and 11) where increasing
the window size actually decreased the execution time
slightly. The corresponding reconstructions (not shown)
were virtually identical for window sizes from 21 to oo,
but slightly inferior for window sizes 3 and 11. These
results quantify the discussion in Section ITI-A| and con-
firms the suggestion that a window size approximately
equal to the length of the wavelet (disregarding small
samples at the end) combines efficient execution with no
significant loss of optimality. Note in particular from Ta-
ble IT that the chosen window size of 31 samples reduced
the execution time with a factor 24 compared to the non-
windowed strategy (window size co). This illustrates the
computational savings resulting from the window maxi-
mization. This advantage will of course increase rapidly
with the record length.

VI. PARALLELIZATION AND RECURSIVE PROCESSING

Two forms of parallelization are possible. First, note
that it is valid to perform updating in several windows
simultaneously. The only condition is that the windows
must be separated by a distance corresponding to the
length of the wavelet. This resembles the parallelization
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10 dB; (c) Results obtained by both the IWM 1 and the SMLR;
(d) Results obtained by the IWM 2. Bars depict estimates and
circles depict true values.

-0.05

-0.1

-0.15

0.3

SPARSE SPIKE TRAINS BY ITERATED WINDOW MAXIMIZATION.

I I
50 100 150

I
200

I
250

300

0.2r

0.1

0.3

50 100 150

(b)

200

300

0.2r

0.1

0.3

I
200

I
250

300

0.2r

0.1

Fig. 4.

I I
50 100 150

(d)

I
200

I
250

300

Deconvolution of high SNR narrow-band data: (a) Syn-

thetic data, SNR = 20 dB; (b) Results obtained by the IWM 1;
(c) Results obtained by the IWM 2; (d) Results obtained by
the SMLR. Bars depict estimates and circles depict true val-
ues. The wavelet used in this example is depicted in Fig. 3

(a).



KAARESEN: DECONVOLUTION OF SPARSE SPIKE TRAINS BY ITERATED WINDOW MAXIMIZATION. 10

property often noted for Monte Carlo methods such as
Gibbs sampling (see [21]).

The second possibility has no obvious analogue in the
Monte Carlo methods. Within each window, any number
of new configurations can be examined simultaneously,
before the best is finally chosen. If the number of con-
figurations to be tested within each window is large, this
could mean a vast improvement in speed.

In some applications it is desirable to process the data
on-line before the entire data record is collected [20]. A
modification to allow such recursive processing is: Start
with a block of data, n = 1,2,..., B. Run the algorithm
on the data contained in the block to obtain spike esti-
mates. When the next sample arrives the algorithm is
rerun on thedatan = 1,2,..., B, B+1. But this timeall
windows are constrained to the interval n = 2,..., B+1.
Thus, an eventual spike estimate in position 1 is fixed
and will not be changed any more. In general, when
the k’th sample arrives, a new estimate for the block
k—B+1,...,kis computed. The spikes in the interval
1,...,k — B are fixed, but observe that those in the in-
terval k— B—2D +1,...,k — B will still influence the
new estimate.

When rerunning the algorithm on a new block of data,
simplifications occur. The only necessary recomputation
of correlation functions is one additional element of ¢,
cf. (14). Furthermore, since a good initial estimate exists
from the previous restoration, convergence is likely to be
very fast.

For a small block size B, a particularly simple strat-
egy 1s to use only one window containing the entire block.
Combined with parallel examination of the possible tran-
sitions, very fast execution would result.

VII. CONCLUSION AND SUMMARY

A promising new algorithm for deconvolution of sparse
spike trains has been presented. A sub-optimal iterative
search 1s used to maximize a joint MAP criterion. Over-
fitting problems [3], [6] are avoided by appropriate choice
of parameter values. The level of sub-optimality is deter-
mined by the number of transitions considered at each
iteration. Since the derived formulas allow arbitrarily
complicated transitions, any tradeoff between execution
speed and quality of reconstruction can be made. The
given simulations indicate that simultaneous advantages
in speed and optimality can be obtained relative to ex-
isting alternatives. Further evidence is presented in [17].
Since the algorithm allows extensive parallelization and
recursive processing, it may also be interesting for real-
time applications.

The window strategy is central to the efficiency of the
algorithm. It is based on the fact that the dependencies
in the posterior distribution tends to die out over large
spatial distances. Since local maximization is iterated,

it does in a certain sense not introduce additional sub-
optimality.

Implementation of the basic version of the algorithm is
simple. In particular, evaluation of all necessary formu-
las is straightforward. However, considerable flexibility
exists in how the iterative search is performed. To opti-
mize execution speed for a desired level of optimality, a
rather sophisticated implementation may be necessary.

In the present paper the wavelet has been assumed
known, but the fast execution of the algorithm suggests
its use also for “blind deconvolution”. Combined de-
convolution and estimation of the wavelet could be per-
formed by a “block component method” similar to those
used by Mendel [1]. Due to the simple structure of the
derived formulas, a number of other generalizations are
also possible. Some of these are discussed in [22].
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APPENDICES
A. PrRoOF oF A CONVERGENCE PROPERTY

Theorem:

Let (&,t) be an estimate produced by the algorithm.
Suppose that after reaching the final estimate, each esti-
mated spike has been included in at least one window for
which the algorithm could find no improvements. Then
a globally maximizes p(a, t|z) with respect to a.

Proof:

Note first that since each accepted update in the al-
gorithm increases p(a¥,t¥|z,a”, t¥), factorization (19)
shows that the algorithm increases the posterior density
at each step, and therefore must be convergent.

From (7) it is clear that the log-posterior density is a
concave function of a which has only a global maximum.
Suppose that the global maximum for a has not been
reached. Since the function to be maximized is differen-
tiable, there exist an 7 and a small d such that when d is
added to a; the function value is increased. This can be
written as

p(a+d, t|z) > p(a, t|z), (28)

where d is a vector which has its i’th component equal
to d, and zeros elsewhere. Now, use the assumption of
the theorem and denote by w a window, containing the
t’th spike, for which the algorithm could not improve the
estimate for a. Using the factorization (19) on both sides
of (28) and canceling the two equal factors gives

p(&Y +dY, "]z, 47, t7) > p(a", t"[z, &7, t7),
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where d" is the part of d corresponding to the spikes
inside the window. But this is a contradiction since the
algorithm has already determined &Y to maximize this
conditional density with respect to a¥.

B. THE MAP ESTIMATOR; DEFICIENCIES AND
REMEDIES

It 1s known that uncritical maximization of joint MAP
criteria will not give satisfactory estimates for sparse
spike trains. The problem has been compared to model-
order selection [6], and overfitting has been reported [3].
It has also been found that Akaike’s criterion for model
selection does not present a satisfactory solution [3].

In the present context, the problems are most eas-
ily demonstrated in the Bernoulli case. For example, if
M /(1= XN)? > 2702, then § will be negative. And with
a negative 6, it can be seen that the estimate will con-
tain spikes at all possible positions. As another example,
consider increasing o, by a given factor, and decreasing
h by the same factor. In this case the deconvolution
problem is not really altered, see [23]. As expected, v'a
is unchanged, cf. (10). But since ¢ is a function of o2,
its value will indeed change. Actually, it can be seen
that maximization of the unmodified MAP-criterion in-
volves comparison of quantities with different dimension.
As a result, the corresponding estimate will not be scale
invariant.

In a decision theoretic framework the problems of the
MAP estimator may be seen as a consequence of its im-
plicit loss function. It is known that the MAP estimator
corresponds to a loss function which assigns loss 0 to a
completely correct configuration, and loss 1 to all other
configurations [21]. Assigning the same loss to an es-
timate that has only missed a single small spike as to
an estimate which is nowhere near the true solution, is
of course highly unrealistic in most practical situations.
The most satisfying solution would be to redo the whole
calculation with a realistic loss function, but this would
hardly give simple computational formulas.

The approach adopted in this article is to use the func-
tional form suggested by the MAP estimator, but to al-
low other parameter values than those which have gener-
ated the data. From (26) it is clear that overfitting can
be avoided by appropriate choice of § in the Bernoulli
case or #7 and 65 in the general case. It can also be
seen that selecting these parameters proportional to o2,
as suggested in section IV, will make the estimator scale
invariant.

The approach taken here differs from the commonly
advocated solution [1], [6], which is to do the decon-
volution by a two stage procedure. First, detection of
the spike-positions through maximizing of their marginal
posterior distribution. Then, estimation of the ampli-
tudes conditional to the detected spike-positions. (Such
a marginal MAP estimator is also used in the SMLR

version tested here.) Since the number of spikes can be
controlled in the joint MAP approach by appropriate
choice of parameter values, it is interesting to examine
which remaining differences exist. Within the framework
of this paper a marginal MAP estimator for t is easily
derived. Except for constants and terms which can be
absorbed in 6 (assuming the Bernoulli case), the corre-
sponding criterion differs from the joint criterion (10)
only by a term of the form —¢21n|S|. As long as v is
not chosen very large, S is approximately equal to H'H.
Thus, relative to the joint criterion, the marginal crite-
rion favors configurations where the columns of H are
close to linearly dependent, since this makes the deter-
minant small. (One such typical situation is when two
or more spikes are very close together.) The implica-
tion is that the configurations favored by the marginal
criterion are exactly those which make the amplitude es-
timation difficult. This is also intuitively reasonable; the
marginal criterion favors the values of t which correspond
to a wide range of probable values for a. If, in a given
practical problem, valuable information is also contained
in the amplitudes, the desirability of this property seems
doubtful.

C. DERIVATION OF AN ERROR PROBABILITY

The distributional result reached here will be some-
what more general than necessary to deduce the prob-
ability of false detection defined in section IV-B. All
probabilistic statements are conditional on t and a®.

Note from (24), (25) and the Bernoulli case of (26)
that the maximization criterion may be written as

() = I8") v |F o (29)
Assume that the spikes outside the window have been
correctly estimated and that there are no true spikes
inside the window. From (17) it follows that z¥ = e,
which implies that v = (H")'z" has covariance ma-
trix 028™. (Recall that it was assumed that v had been
chosen equal to zero, giving S* = (H"¥)'H".) The vari-
able (S¥)~'/2v" will thus have a covariance matrix of
02Iprw. In addition, it is easily seen to be Gaussian with
zero mean. Combining this with (29) shows that [(t")
has the distribution of o2z — 6 MY, where z is a chi-
squared variable with M™ degrees of freedom. The error
probability (27) follows by setting M* = 1 and noting
that the spike will be inserted if [(t*) > 0. (An empty
window yields {(t¥) = 0, cf. (25), (26), and the following

comment.)

The assumption of correct estimation outside the win-
dow can be relaxed. Since v¥ only depends on spikes
with distance less than 2D + 1 from the spike under con-
sideration, only such spikes need to be correctly esti-
mated.
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