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1 Introduction

The work presented in this note describes preliminary testing performed in the early
stage of the research project defined by the BIP (“Brukerstyrt Innovasjons Prosjekt”)
agreement between Norsk Forskningsråd and Norsar Innovation AS. Norwegian Com-
puting Center (NR) is one of the research partners in this project. The main objective in
the project is to develop a method for elastic inversion that combine the very fast inver-
sion technique (CRAVA) developed by NR with a novel technique for modelling prestack
depth migrated seismic data (SIMPLI) developed by the other research partner NORSAR.
The theory behind the Bayesian Inversion used in CRAVA is described in Buland et al.
(2003) and a presentation of a real case where the program has been used is given in Dahle
et al. (2007). The SIMPLI technology is described in Lecomte (2008) showing how the use
of a spatial filter based on the concept of point-spread functions (PSF) as an alternative
to traditional 1D convolution in the forward modelling, gives more realistic simulated
PSDM cubes. The main idea in the BIP-project is to perform the bayesian inversion on
PSDM cubes by using PSFs, or the time-domain analog, 3D wavelets, and to incorporate
this method in the existing seismic analysis software (SeisRox).

As a simple test of concept the Bayesian Inversion has been performed on a 2D target
area using both a 1D- and a 2D-wavelet. This note describes the application of formulas
given in Buland et al. (2003) and how this theory easily can be extended to a wavelet
of higher dimension. Some test examples are presented. In addition an inversion with a
bayesian trend in the elastic parameter is presented.

In the appendices some theory on Fourier transformation and matrix operations is
given. This theory is either used in the present paper or in Buland et al. (2003).

2 Seismic convolutional model

The Fourier transform of the convolutional model for the seismic data is given by expres-
sion (9) in Buland et al. (2003). When k is the spatial frequency vector, ω the temporal
frequency and θ the reflection angle, this expression can alternatively be written as

d̃(k, ω, θ) = s̃(k, ω, θ)a(θ)m̃′(k, ω) + ẽ(k, ω, θ) (1)

where ˜refers to the Fourier domain, d the seismic data, s the wavelet, a the reflection
coefficient based on the weak contrast approximation (Aki and Richards, 1980) and m
the natural logarithm of the elastic parameters. Note that, unlike in the 1D convolution
case, the wavelet, s, will generally also be dependent on the spatial frequency k. When
operating on a discrete grid the differentation of m w.r.t t becomes a difference,

∂

∂t
m(x, t) = m(x, t+ 1)−m(x, t)

Taking the DFT of this gives (when leaving out x and k)
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DFT (
∂

∂t
m(t)) = m̃′(ω) =

N−1∑
t=0

(m(t+ 1)−m(t)) exp{−2πi
ωt

N
}

=
N−1∑
t=0

m(t+ 1) exp{−2πi
ωt

N
} −

N−1∑
t=0

m(t) exp{−2πi
ωt

N
}

=
N∑

s=1

m(s) exp{−2πi
ω(s− 1)

N
} − m̃(ω)

=
N−1∑
s=0

m(s) exp{−2πi
ωs

N
} exp{2πi ω

N
} − m̃(ω)

= m̃(ω)(exp{2πi ω
N
} − 1)

= m̃(ω)(exp{−2πi
ω

N
(−1)}+ (−1) exp{−2πi

ω

N
(0)}

= m̃(ω)
N−1∑
j=0

h(j) exp{−2πi
ω

N
(j)}

= m̃(ω)h̃(ω),

where

h(0) = −1

h(−1) = h(N − 1) = 1

h(j) = 0 for j ∈ {1, . . . , N − 2}.

Then the convolutional model from expression (1) can be written as

d̃(k, ω, θ) = h̃(k, ω)s̃(k, ω, θ)a(θ)m̃(k, ω) + ẽ(k, ω, θ)

For the cases treated in the remaining we assume θ = 0, so a(θ) = 1
2 . Setting g(k, ω) =

1
2 h̃(k, ω)s̃(k, ω) we then get

d̃(k, ω) = g(k, ω)m̃(k, ω) + ẽ(k, ω) (2)

3 Bayesian inversion with 2D wavelet in 2D target
area

In the following the theory from above will be applied in a 2D space (i.e. x respectively k
is one-dimensional) with a 2D wavelet, restricted to one elastic parameter,

m(x, t) = log(ZP (x, t)). (3)

where Zp is the acoustic impedance.
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3.1 Spatial wavelet
The 2D wavelet used below is defined as

s(x, t) = exp{−(
x

Wx
)2}[1− 2π2ω2

0t
2] exp{−π2ω2

0t
2}, (4)

with x measured i meters, t in seconds, Wx being the wavelet range in x and ω0 the
peak frequency. The vertical part of the wavelet is a Ricker. Figure 1 shows the vertical,
horizontal and combined wavelets.

Figure 1. Spatial wavelet used in test examples. Left: Vertical wavelet. Centre: Horizontal wavelet.
Right: Compined spatial (2D) wavelet.

3.2 Prior parameter model and seismic model
Let m = {m(x, t); ∀(x, t)} be the vector of the elements in expression (3) defined on a
regular grid with n = nxnt nodes where nx and nt are the number of gridnodes and ∆x
and ∆t the sampling distances in the x- and t-directions respectively. To use the theory of
circulant covariance matrices from appendix B.5 , m is assumed to be sampled on a circle
in both x and t, meaning that the first and the last node in the sample in each direction
are neighbours.

The model parameter m is assumed being Gaussian with a stationary and homoge-
nous covariance function

m ∼ Nn(µm, σ
2
mΥm), (5)

with µm = {µ(x, t); ∀(x, t)} being the expectation vector for m, σ2
m being the variance

for all m(x, t) and Υm = {νm(|x−x′|, |t− t′|), ∀(x, t), (x′, t′)} being the correlation matrix
for m. To make sure that this is a proper circulant covariance matrix the ranges must be
less than ∆x · nx/2 and ∆t · nt/2. We then have, for the Fourier transformed parameter
vector,

m̃ ∼ Nn(µ̃m, σ
2
mΛ̃m) (6)

with µ̃m being the Fourier transformed expectation vector andΛ̃m = {λ̃m(k, ω); ∀(k, ω)}
being the diagonal matrix with the eigenvalues of Υm multiplied by n on the diagonal
in accordance with expression (B.5). The eigenvalues are found by taking the DFT of the
first row as shown in appendix B.4. Expression (6) implies that each of the frequency
components of m̃ are independent

m̃(k, ω) ∼ N(µ̃m(k, ω), σ2
mλ̃m(k, ω)).
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By the same argument we get that the Fourier transformed error terms in the convo-
lutional model (2) are componentwise independent

ẽ(k, ω) ∼ N(0, σ2
e λ̃e(k, ω)),

where σ2
e is the noise variance and {λ̃e(k, ω); ∀(k, ω)} are the eigenvalues of the correla-

tion matrix for the noise term e = {e(x, t) ∀(x, t)} multiplied by n.
This gives that the Fourier transformed seismic data defined in expression (2) are

componentwise independent

d̃(k, ω) ∼ N(µ̃d(k, ω), σ̃2
d(k, ω))

where

µ̃d(k, ω) = g(k, ω)µ̃m(k, ω) (7)

σ̃2
d(k, ω) = g(k, ω)σ2

mλ̃m(k, ω)g(k, ω)∗ + σ2
ε λ̃ε(k, ω) (8)

and the crosscovariance between the seismic data and the model parameter is

Cov[d̃(k, ω), m̃(k, ω)] = σ̃d,m = g(k, ω)σ2
mλ̃m(k, ω). (9)

3.3 Posterior model
The Fourier transformed observed seismic data in position (k, ω) is denoted d̃obs(k, ω).
Using formulas for conditional multinormal distribution (see for instance Johnson and
Wichern (1988)) and expressions (7 - 9) gives the following componentwise posterior
model

m̃(k, ω)|d̃obs(k, ω) ∼ N(µ̃m|d(k, ω), σ̃2
m|d(k, ω))

where

µ̃m|d(k, ω) = µ̃m(k, ω) + (σ̃d,m)∗
1

σ̃2
d(k, ω)

(d̃obs(k, ω)− µ̃d(k, ω))

σ̃2
m|d(k, ω) = σ2

mλ̃m(k, ω)− (σ̃d,m)∗
1

σ̃2
d(k, ω)

(σ̃d,m).

4 Examples

The inversion with spatial wavelet is performed on three different examples. Two sets of
synthetic seismic data are produced by performing a forward modelling using the con-
volutional model with a spatial (2D) wavelet. In the three examples the inversion method
described in the previous section is performed and the posterior expectation µ̃m|d is cal-
culated and used as a prediction for the elastic parameter. In each example an inversion
with the traditional 1D wavelet is also performed, and the result is used for comparison.

4.1 Forward modelling
Synthetic seismic data are constructed by the convolutional model (2) on a grid with
nx = nt = 100, and grid distance 25 meters in x and 0.004 seconds in t. The wavelet used
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in the forward modelling is the one described in expression (4) withWx = 200 meters and
ω0 = 20 hz. The error term is white noise with zero expectation and standard deviation
of 0.01. In both datasets the target area is divided in two parts M1 and M2 with a low and
a high constant value for m(x, t) in each part, defined by

m(x, t) =

ln 5.0 if (x, t) ∈M1

ln 4.5 if (x, t) ∈M2

This gives one single reflector in the target area. In the first dataset the division follows a
horizontal line between t = 50 and t = 51, and in the other the division line is diagonal
starting between t = 25 and t = 26 on the left side (x = 1) of the target area and ending
between t = 75 and t = 76 on the right side (x = 100). This is illustrated in Figure 2.

Figure 2. Model used for reflectors in constructing seismic datasets used for inversion.

Figure 3. The synthetic seismic data corresponding to the reflectors in Figure 2.

The described procedure gives the synthetic seismic data shown in Figure 3. The sig-
nals visible on both sides of the figure to the right in Figure 3 are solely border effects
caused by the fact that no padding has been used in the FFT-calculations.

4.2 Inversion
Three inversion example are constructed. In the first the inversion is performed on the
dataset with a horizontal reflector. In the second example the dataset with diagonal re-
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flector is used and with a correlation structure for the model parameter that does not
follow the reflector. In the last example the dataset with diagonal reflector is used, but
with a correlation function that is rotated to follow the reflector. In all examples the pa-
rameters for m in expression 5 are µm = 1.557, σm = 0.0527. In case the correlation
function is not rotated let ∆x be the distance in x and ∆t the distance in t between two
points (x1, t1) and (x2, t2), so ∆x = |x1 − x2| and |∆t = |t1 − t2|. In the rotated case
the slope of the rotated reflector in the (x, t)-system is (50 · 0.004)/2500 = 0.08. Trans-
formation gives ∆x = cos [arctan (0.08)] · |x1 − x2| + sin [arctan (0.08)] · |t1 − t2| and
dt = − sin [arctan (0.08)] · |x1 − x2| + cos [arctan (0.08)] · |t1 − t2|. The correlation term
in Υm in all examples is given by

νm(∆x,∆t) = exp{−3.0 ·
√

(
∆x
Rx

)2 + (
∆t
Rt

)2} (10)

where Rx = 1000m and Rt = 0.01s.
For each of the three examples an inversion of the synthetic seismic data is performed.

The horizontal reflection case is illustrated in Figures 4 and 5.

Figure 4. Results of the inversion with 2D wavelet for horizontal reflector. Left: Predicted value for
accoustic impedance in the whole target. Right: Predicted value along one trace.

Figure 5. Results of the inversion with 1D wavelet for horizontal reflector . Left: Predicted value for
accoustic impedance in the whole target. Right: Predicted value along one trace.
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Figure 4 (left) shows the predicted values for the acoustic impedance in the whole
target area after inversion with 2D wavelet. To the right is shown one single vertical trace
after the inversion. In Figure 5 the corresponding figures are shown for the inversion with
1D wavelet. As one would expect, there is no significant difference between the two cases.
When the reflector is horizontal there is no gain in using a 2D wavelet in the inversion.
The inversion results from the case with dipped reflector, but non-rotated correlation
function are shown in Figures 6 and 7.

Figure 6. Results of the inversion with 2D wavelet, dipped refelctor and non-rotated correlation
function. Left: Predicted value for accoustic impedance in the whole target. Right: Predicted value
along one trace.

Figure 7. Results of the inversion with 1D wavelet, dipped reflector and non-rotated correlation
function. Left: Predicted value for accoustic impedance in the whole target. Right: Predicted value
along one trace.

Even if the differences between the inversions with 2D and 1D wavelet are not big,
the figures indicates clearly that the inversion with 2D wavelet gives a sharper inversion
result. The inversion results from the case with dipped reflector and rotated correlation
function are shown in Figures 8 and 9.
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Figure 8. Results of the inversion with 2D wavelet, dipped reflector and rotated correlation function.
Left: Predicted value for accoustic impedance in the whole target. Right: Predicted value along
one trace.

Figure 9. Results of the inversion with 1D wavelet, dipped reflector and rotated correlation function.
Left: Predicted value for accoustic impedance in the wholde target. Right: Predicted value along
one trace.

5 Bayesian trend in elastic parameter

Let m(x, t) be the logarithm of the acoustic impedance defined by (3). A linear trend in
m = {m(x, t); ∀(x, t)} is introduced by setting

m(x, t) =
L∑

l=1

fl(x, t)βl + r(x, t) = f(x, t)β + r(x, t), (11)

where f(x, t) is a 1× L-vector of the (known) f -functions in (x, t) and β is a L× 1-vector
of the (unknown) β-parameters. The residual term r represents the fluctuations around
the trend. The trend vector β has a prior distribution given as NL(µ,Σ). In order to do
an inversion the posterior distribution for β is calculated.

The seismic data d(x, t) in the n locations are represented by the n-vector d. Let r be
the vector of the n residual terms r(x, t) and e the vector of the n noise terms e(x, t), with

e ∼ Nn(0, σ2
eΓe) and r ∼ Nn(0, σ2

rΓr),
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where σ2
e and σ2

r are the variances of e(x, t) and r(x, t) respectively for all (x, t) and Γe

and Γr are the correlation matrices for e and r respectively. The Fourier transformed
convolutional model from (2) can be written as

d̃(ω, k) = g(k, ω)
[
f̃(k, ω)β + r̃(k, ω)

]
+ ẽ(k, ω)

= g(k, ω)f̃(k, ω)β + ε̃(k, ω), (12)

where

ε̃(k, ω) = g(k, ω)r̃(k, ω) + ẽ(k, ω). (13)

Let G be a n× n diagonal matrix with the g(k, ω) elements on the diagonal, F̃ a n×L
matrix with the f̃ vectors on the rows, ε̃ the vector of the ε̃(k, ω)-terms and H = GF̃. Then
expression (12) can be written on vector form as

d̃ = Hβ + ε̃,

where

ε̃ = Gr̃ + ẽ ∼ Nn(0, Σ̃ε) and Σ̃ε = GΣ̃rG∗ + Σ̃e.

Using the theory on circulant covariance matrices described in appendix B.5 gives that

Σ̃e = σ2
eΛ̃e and Σ̃r = σ2

rΛ̃r

where Λ̃e = diag{λ̃e(k, ω), ∀(k, ω)} and Λr = diag{λ̃r(k, ω), ∀(k, ω)} are n × n diagonal
matrices with the eigenvalues for Γe and Γr respectively on the diagonals, mulitiplied by
n. This means that

Σ̃ε = diag{σ2
r λ̃r(k, ω)g(k, ω)g(k, ω)∗ + σ2

e λ̃e(k, ω)}.

Straighforward calculations of the posterior (marked by ?) mean and covariance for
β gives

µ? = µ + (ΣH∗(HΣH∗ + Σ̃ε)−1(d̃−Hµ)

Σ? = Σ−ΣH∗(HΣH∗ + Σ̃ε)−1HΣ.

The matrix to be inverted in these expressions is a n× n-matrix which is typically big. To
save computational efforts the posterior mean and covariance can be written as

µ? = µ + (H∗Σ̃−1
ε H + Σ−1)−1H∗Σ̃−1

ε (d̃−Hµ) (14)

Σ? = (I− (H∗Σ̃−1
ε H + Σ−1)−1H∗Σ̃−1

ε H)Σ, (15)

which implies inversion of a much smaller L× L-matrix. Expressions (14) and (15) gives
an estimate and corresponding uncertainty for β which can be used in expression (11) to
perform the inversion. The proof for the formulas (14) and (15) is given in appendix C
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5.1 Example
The following simple example is constructed on basis of the division of the target area in
section 4.1 with the diagonal reflector. This means thatL = 2 and f1(x, t) = 1 if (x, t) ∈M1

and 0 elsewhere and f2 the opposite. The distribution for β is given by

µ =

[
µ1

µ2

]
=

[
1.6
1.5

]
and Σ =

[
0.0025 0

0 0.0025

]
The covariance structure for the residuals r is given by the correlation function νm in (10)
and σ2

r = 0.000625 and the noise term is white noise with variance σ2
e = 0.0001. The

synthetic seismic data generated by the convolutional model are shown in Figure 10. The
sharp signals in the top and bottom are border effects due to lack of padding.

Figure 10. Synthetic seismic data generated by convolutional model with trend

Using formulas (14) and (15) to compute the posterior expectation and covariance for
β gives

µ? =

[
µ?

1

µ?
2

]
=

[
1.603217
1.496783

]
and Σ? =

[
0.00125222 0.00124778
0.00124778 0.00125222

]
(16)

The values for µ are inserted into the expressionZ?
p(x, t) = exp [f1(x, t)µ1 + f2(x, t)µ2]

giving an inverted value for the acoustic impedance. Figure 11 shows these values for the
whole target area to the left, and along one trace to the right.

Expression (14) can alternatively be written

µ? = [I− (H∗Σ̃−1
ε H + Σ−1)−1H∗Σ̃−1

ε H)]µ + [(H∗Σ̃−1
ε H + Σ−1)−1H∗Σ̃−1

ε ]d̃.

For the presented model this can be reformulated to[
µ?

1

µ?
2

]
=

[
1− a a

a 1− a

] [
µ1

µ2

]
+

[
b

−b

]
(17)

with appropriate values for a and b. From expression (17) it can be deduced that

µ?
1 + µ?

2 = µ1 + µ2

which means that wrong levels in the prior leads to wrong levels in the posterior as seen
in the left figure in Figure 11.
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Figure 11. Results of the inversion. Left: Predicted value for the trend in accoustic impedance in
the whole target area. Right: Predicted value along one trace.

6 Conclusions

Formulas for inverting seismic data in a 2D target area with a 2D wavelet has been de-
veloped and used on simple test cases. The test cases show that for dipping reflectors it
seems to be a source to improved inversion results to use a spatial wavelet instead of the
traditional 1D deconvolution approach.
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A Fourier transformation theory

A.1 Fourier transform of the derivative
In the expression for the reflection function the derivative of m̃(ω) appears. Here it is
shown that taking the Fourier transform of the derivative of a function involves multi-
plying the function itself by iω.

m̃′(ω) =
∫
m(t+ ∆t)−m(t)

∆t
exp{−iωt}dt

=
1

∆t

[∫
m(t+ ∆t) exp{−iωt}dt−

∫
m(t) exp{−iωt}dt

]
=

1
∆t

[∫
m(t+ ∆t) exp{−iω(t+ ∆t−∆t)}dt− m̃(ω)

]
=

1
∆t

[∫
m(t+ ∆t) exp{−iω(t+ ∆t)} exp{iω∆t}dt− m̃(ω)

]
=

1
∆t

[m̃(ω)(exp{−iω∆t} − 1)]

= m̃(ω)
[

1
∆t

(cos(ω∆t) + i sin(ω∆t)− 1)
]

= m̃(ω)
[
cos(ω∆t)− 1

∆t
+ iω

sin(ω∆t)
ω∆t

]
.

Taking the limit when ∆t → 0 gives that the first part inside the paranthesis goes to 0
while the second part converges to iω giving

m̃′(k, ω) = iωm̃(k, ω).

This relation is used in expressions (10) and (11) in Buland et al.

A.2 Discrete Fourier Transformation (DFT)
The one-dimensional DFT of order n, of a sequence f(j) for j = 0, . . . , n − 1, can be
written

f̃(k) =
n−1∑
j=0

f(j)ψjk, k = 0, . . . , n− 1,

where ψ = exp{−2πi/n}. The inverse transform (IDFT) is then

f(j) =
1
n

n−1∑
k=0

f̃(k)ψ−jk, j = 0, . . . , n− 1.

Alternatively the DFT can be written on matrix form as

f̃ = Ff (A.1)

where f = [f(0), . . . , f(n− 1)]T and

F =


1 1 . . . 1
1 ψ1 . . . ψ(n−1)

...
...

...
...

1 ψ(n−1) . . . ψ(n−1)2

 , (A.2)
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and the IDFT
f =

1
n
F∗f̃ . (A.3)

A.3 Circularity
An important property of the DFT is that it is invariant to a shift by n elements.

f̃(l + n) =
n−1∑
k=0

f(k) exp{−2πi
k(l + n)

n
}

=
n−1∑
k=0

f(k) exp{−2πi
kl

n
} exp{−2πik}

=
n−1∑
k=0

f(k) exp{−2πi
kl

n
}

= f̃(l)

because exp{−2πik} = i sin(−2πk) + cos(−2πk) = 1 when k is an integer. This justifies
centering the frequency domain around 0. (In < −n/2, n/2])

B Matrix theory

B.1 Cholesky decomposition
If A is a hermitian (symmetric) and positive definite matrix, then A can be written as

A = LL∗

where L is lower triangular with positive elements on the diagonal.

B.2 Singular value decomposition
If A is a p× q-matrix with rank r, then A can be written as

A = ULV ∗,

where U and V are p × r and r × q orthonormal matrices (i.e. U∗U = V ∗V = I) and L is
a r × r-matrix with positive elements on the diagonal and zero elsewhere.

B.3 Spectral decomposition
Every symmetric p× p matrix A can be written as

A = Γ∗ΛΓ =
∑

λiγiγ
∗
i , (B.4)

where Λ is a diagonal matrix of the eigenvalues λ1, . . . , λp ofA. The eigenvectors γ1, . . . ,γp

can be chosen such that γ∗
i γi = 1 for all i and γ∗

i γi = 0 for all i 6= j. Then Γ = [γ1, . . . ,γp]
is an orthonormal matrix with Γ∗ = Γ−1 and expression (B.4) is equivalent with

ΓAΓ∗ = Λ.
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B.4 Circulant matrices
A n× n matrix is called circulant when it is on the form

C =


c0 c1 . . . cn − 1

cn − 1 c0 . . . cn − 2
...

...
...

...
c1 c2 . . . c0

 .
The matrix has only n different elements and each row is a cyclic shift of the above row.
It can be shown that the eigenvalues of the circulant matrix C are

λk =
n−1∑
j=0

cj exp{−2πi
jk

n
} =

n−1∑
j=0

cjψ
jk,

where ψ = exp{−2πi/n} and that the corresponding orthonormal eigenvectors are

ek =
1√
n


1
ψk

. . .

ψ(n−1)k

 .
Define the eigenvalue matrix ΛC = diag{λ0, . . . , λ(n−1)} and the eigenvector matrix E as

E = [e0, . . . , en−1].

Then, by performing a spectral decomposition (see section B.3) C can be diagonalized as

ECE∗ = ΛC

This means that the eigenvalues of a circulant matrix C are equal to the DFT of the first
row and that the Fourier matrix from A.2 is given by F =

√
nE.

B.5 Circulant covariance matrix
Let Z(x) be a zero-mean Gaussian random field defined on a regular discrete grid, xk =
k∆x, where k = 0, . . . , nx. The homogenous covariance matrix for Z is given by

Σ = σ2


ν0 ν1 · · · νnx−1

ν1 ν0 · · · νnx−2

...
...

...
νnx−1 νnx−2 · · · ν0

 ,
where νk = ν(k∆x) is the correlation between two gridpoints seperated by k gridcells.
Set n = 2(nx − 1). Then a circulant n × n matrix ΣC can be constructed from Σ by the
extension

ΣC = σ2



ν0 ν1 · · · νnx−1 νnx−2 · · · ν1

ν1 ν0 · · · νnx−2 νnx−1 · · · ν2

...
...

...
...

...
νnx−1 νnx−2 · · · ν0 ν1 · · · νnx−2

νnx−2 νnx−1 · · · ν1 ν0 · · · νnx−3

...
...

...
...

...
ν1 ν2 · · · νnx−2 νnx−1 · · · ν0


,
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where Σ is the upper left corner of ΣC . This matrix is is a legal covariance matrix if and
only if it is positive definite. This can be ensured by truncating the correlation function ν
in k0 where k0 < nx.

Let ZC the the random field with covariance matrix ΣC . The Fourier transform of ZC ,
Z̃ = FZC , has covariance matrix

Σ̃C = FΣCF∗ =
√
nECΣC

√
nE∗

C = nECΣCE−1
C = nΛC , (B.5)

where EC is the matrix of the orthonormal eigenvectors of ΣC (so E∗
C = E−1

C ) and ΛC is
the diagonal matrix of the (real, nonnegative) eigenvalues of ΣC . From above we know
that ΛC is calculated from the DFT of the first row in ΣC . This means that this operation
is enough to specify the distribution for ZC of n independent Gaussian variables, and
thereby also for the nx independent variables in Z.

C Proof of expression for posterior mean and co-
variance for trend coefficient

Setting ε̃′ = Σ̃−1/2
ε ε̃ gives that ε′ ∼ Nn(0, I). Let L be the lower triangular Cholesky

decomposition matrix of Σ (see section B.1), i.e. Σ = LL∗, set β′ = L∗Σ−1β and consider
the transformation

d̃′ = Σ̃−1/2
ε d̃ = Σ̃−1/2

ε (Hβ + ε̃) = Σ̃−1/2
ε HLβ′ + ε̃′ = Kβ′ + ε̃′

where K = Σ̃−1/2
ε HL. This gives

Cov(β′) = Cov(L∗Σ−1β) = L∗Σ−1ΣΣ−∗L = I

Cov(β′, d̃′) = Cov(β′,Kβ′) = Cov(β′)K∗ = K∗

Cov(d̃′) = Cov(Kβ′) + Cov(ε̃′) = KK∗ + I,

and by using formulas for multinormal conditional distributions, the posterior mean and
covariance for β′ are

E?(β′) = E(β′) + K∗(KK∗ + I)−1(d̃′ − E(d̃′)) (C.6)

Cov?(β′) = I−K∗(KK∗ + I)−1K (C.7)

In the expressions (C.6) and (C.7) the term K∗(KK∗ + I)−1 which involves inversion
of a n×n-matrix appears. Since n is typically large, and much larger than L, consider the
relation

K∗(KK∗ + I)−1 = (K∗K + I)−1K∗. (C.8)

which involves inversion of a L × L-matrix. To prove the relation (C.8), consider the
singular value decomposition (see section B.2)

K = UΛV∗
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where U and V are orthonormal matrices and Λ is a diagonal matrix with positive ele-
ments on the diagonal. This gives

(KK∗ + I)−1 = (U(Λ2U∗ + U∗))−1 = ((Λ2 + I)U∗)−1U∗ = U(Λ2 + I)−1U∗,

so
K∗(KK∗ + I)−1 = VΛ(Λ2 + I)−1U∗. (C.9)

On the other hand,

(K∗K + I)−1 = (V(Λ2V∗ + V∗))−1 = V(Λ2 + I)−1V∗,

so
(K∗K + I)−1K∗ = V(Λ2 + I)−1ΛU∗

which equals expression (C.9) since Λ and (Λ2 + I)−1 are both diagonal matrices and
thereby (Λ2 + I)−1Λ = Λ(Λ2 + I)−1. Using K = Σ̃−1/2

ε HL gives

K∗(KK∗ + I)−1 = (K∗K + I)−1K∗

= (L∗(H∗Σ̃−1
ε HL + Σ−1L))−1L∗H∗Σ̃−1/2

ε

= ((H∗Σ̃−1
ε H + Σ−1)L)−1H∗Σ̃−1/2

ε

= L−1(H∗Σ̃−1
ε H + Σ−1)−1H∗Σ̃−1/2

ε .

Applying this to expressions (C.6) and (C.7) gives

E?(β′) = L∗Σ−1µ + L−1(H∗Σ̃−1
ε H + Σ−1)−1H∗Σ̃−1/2

ε (d̃′ − E(d̃′))

Cov?(β′) = I− L−1(H∗Σ̃−1
ε H + Σ−1)−1H∗Σ̃−1

ε HL

Since β = ΣL−∗β′,

µ? = E?(β) = µ + (H∗D−1H + Σ−1)−1H∗D−1(d̃−Hµ)

Σ? = Cov?(β) = ΣL−∗ [
I− L−1(H∗D−1H + Σ−1)−1H∗D−1HL

]
L−1Σ

= (I− (H∗D−1H + Σ−1)−1H∗D−1H)Σ.
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