

SnowLab

A System for Automated
Snow Product Generation

Software documentation

Note no SAMBA/56/09

Authors Jostein Amlien
Hans Koren
Line Eikvil
Rune Solberg

Date 15 Dec 2009

Norsk Regnesentral

Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-profit
foundation established in 1952. NR carries out contract research and development projects in
the areas of information and communication technology and applied statistical modeling. The
clients are a broad range of industrial, commercial and public service organizations in the
national as well as the international market. Our scientific and technical capabilities are further
developed in co-operation with The Research Council of Norway and key customers. The
results of our projects may take the form of reports, software, prototypes, and short courses.
A proof of the confidence and appreciation our clients have for us is given by the fact that most
of our new contracts are signed with previous customers.

 3

Title SnowLab - Software documentation
Authors Jostein Amlien

Hans Koren
Line Eikvil
Rune Solberg

Date 15 Dec 2009

Year 2009

Publication number SAMBA/56/09

Abstract

This note is a documentation of the SnowLab software system for the automatic generation of
snow related geophysical products from satellite data of moderate resolution. The system is
designed for the daily generation of Snow Covered Area (SCA), Snow Temperature Surface
(STS), Snow Grain Size (SGS), and Snow Surface Wetness (SSW). In addition, the cloud cover
is generated for masking purposes. Currently MODIS and AATSR are supported, but some
products are not available for AATSR.

The generated products can be categorized as basic products or as derived products. The basic
products are generated from satellite data from one day or one pass only. The derived products
are generated from the basic products for several days. The derived products part also includes
multi-sensor functionality. The basic products are SCA, STS and SGS. The derived products
are SSW and an improved SCA.

The software system is designed as an automatic production chain, implemented in IDL/ENVI,
and runs on a Linux platform. It takes care of the complete process from the downloading of
satellite data until the final products have been generated.

Keywords Snow products, geophysical parameters, SCA,
STS, SGS, SSW

Target group Snow hydrologists, hydropower companies

Availability Open

Project number

Research field Earth observation

Number of pages 46

© Copyright Norsk Regnesentral

 SnowLab software documantation 5

Contents

1 System overview.. 7
1.1 Purpose ... 7
1.2 System architecture... 7

1.2.1 Modules.. 7
1.2.2 Main process.. 8
1.2.3 The framework ... 9

1.3 Overview of the system modules and their main functions....................................... 10
1.3.1 Import module .. 10
1.3.2 Basic products module... 10
1.3.3 Geometric correction module... 10
1.3.4 Derived products module ... 10
1.3.5 Export module .. 11

1.4 Outline of the production chains.. 11
1.4.1 Outline of the MODIS production chain ... 11
1.4.2 Outline of the AATSR production chain ... 12

1.5 Retrieval algorithms for basic snow parameters ... 12
1.5.1 Cloud Cover Mask ... 12
1.5.2 Snow Covered Area (SCA) ... 13
1.5.3 Surface Temperature Snow (STS).. 14
1.5.4 Snow Grain Size (SGS) ... 15

1.6 Derived product algorithms ... 15
1.6.1 Multi-SCA... 15
1.6.2 Snow Surface Wetness (SSW).. 15
1.6.3 Other .. 16

2 System Operator’s Manual ... 17
2.1 System Installation Guide.. 17

2.1.1 Unpacking the software ... 17
2.1.2 Directory structure.. 17
2.1.3 Setup of the production chain .. 18

2.2 System Operator’s Guide .. 20
2.2.1 Starting the software .. 20
2.2.2 Remote modus... 21
2.2.3 Local modus... 21

6 SnowLab software documentation

2.2.4 Process control .. 22
2.3 Instructions for operating in local modus... 23

2.3.1 MODIS data ... 23
2.3.2 AATSR data ... 24

3 System Developer’s Manual ... 25
3.1 Introduction.. 25
3.2 Interaction between the framework and the application software 25

3.2.1 Main principles ... 25
3.2.2 Modifications and specifications .. 26

3.3 Module descriptions .. 27
3.3.1 Module data import .. 27
3.3.2 Module basic products ... 30
3.3.3 Module projectProducts ... 36
3.3.4 Module derived products.. 38
3.3.5 Module data export .. 40

4 Appendix .. 42
4.1 Configuration files.. 42

4.1.1 The main configuration file... 42

5 References ... 45

 SnowLab software documantation 7

1 System overview
1.1 Purpose
This report describes and documents a software system for the automated retrieval of various
snow products from remote sensing data. The basic idea behind the software system is to
consider the retrieval process as a production chain, consisting of certain steps, as in this generic
production chain:

• Data download
• Data import and pre-processing
• Basic products generation
• Geo-correction
• Derived products generation
• Product export

The production chain is controlled by a production chain framework, which retrieves data and
leads them through the various steps in the production chain.

The actual steps in the chain are defined by the application software. Although the current
application is the generation of snow products, the application software could in principle
address virtually any production purpose. The application software for the generation of snow
products is organized as modules that are closely related to the steps in the production chain.

This document describes the production chain and its individual steps. It documents the various
software modules, and how they interact with other modules and with the framework.

1.2 System architecture
This section introduces the main modules in the system, the main process of the production
chain, and the main principles for the framework that controls the dataflow through the system.

1.2.1 Modules
As shown in Fig. 1 the application software is grouped into five main modules. Each module
provides at least one function that interacts with the framework through a standardized interface.

Framework

Data
import

Basic
products

Derived
products

Product
export

Tools

Geo-
correction

Figure 1 : The main modules

8 SnowLab software documentation

• Data import module: Provides functions for converting downloaded satellite image data to
the ENVI format, which is the internal format in the software system. The result of the
import may be as swath (as for MODIS) or grid (as for AATSR). In any case, each location
have been observed only once.

• Basic products module: Provides snow parameter retrieval functions that derive snow
parameters directly from the imported dataset.

• Geo-correction module: Provides functions for the projection of the basic products to a grid
reference. This module is redundant for data imported as grid data.

• Derived products module: Provides functions that combine a set of basic products into a
derived snow product. This dataset in typically a multi-temporal one. This module is
optional.

• Product export module: Converts the products into user specified format. This may also
include inclusion of mask data

• Toolbox: Provides basic tool functions to the other modules.

1.2.2 Main process
The main process for the retrieval of cryospheric products is shown in Fig 2. The arrows show
the sequence of the various functional steps. The colours in the diagram refer to the main
modules above. When derived products are not requested, the process proceeds directly to the
export step.

For the AATSR process note that the import undertakes the geometrical projection into a map
grid. This is done by the BEAM software, which is external to the system. There is therefore no
need for the projection step for AATSR data.

For the MODIS process note that the projection step may also be undertaken before the basic
product generation. However, this is not required since the system have means to link auxiliary
data to swath data.

Import
MODIS data

as swath

Make
basic products
from MODIS

Project
products

Export products

Figure 2. The main process

Import
AATSR data

as grid

Make
basic products
from AATSR

Make derived
products Export products

Make derived
products

 SnowLab software documantation 9

1.2.3 The framework
The framework is intended for automatic processing of remote sensing datasets through a
production chain. A simple controller controls the production chain, where one dataset is
processed at the time, running the process through the necessary steps.

The main principle behind the interaction between the application software and the framework
is that the framework does not need to know the application software. The framework can thus
be applied for any application. This principle is obtained by:

• Defining a standardized API (Application Program Interface)
• Saving all processing results in files between each step
• Transferring application specific arguments through text files

No functions performing operations on the data are part of the framework, but should all be
given in the application specific modules. Any application can be plugged into the framework,
if it is possible to call its functions from the framework’s method API, which is described more
detailed in section 3.2.

The framework takes care of retrieving the input data from some source and making them
available to the application software. It controls the sequence the application functions are
being called, and the dataflow through the system.

The framework is written in IDL and C++, and is intended to run on a Linux platform. Fig. 3
gives an overview of the framework.

/tmp
/static

/cat1 /cat2

Controller

Method API

GUI

…

/catN

Get next
dataset

Step 1 Step 2 Step N

/tmp
/static
/tmp
/static

/cat1 /cat2

Controller

Method API

GUI

Controller

Method API

GUI

ControllerController

Method APIMethod API

GUIGUI

…

/catN

Get next
dataset

Step 1 Step 2 Step N

Figure 3. The framework

1.3

10 SnowLab software documentation

 Overview of the system modules and their main
functions

The system consists of the framework, the production modules, and a toolbox of common
functions. This section gives an overview of the main functions in the production modules.
These functions correspond to the main steps described above, and are callable from the
framework, following the requirements outlined in section 1.2.3. Also some functions at a
lower level follow these requirements.

1.3.1 Import module
The import module reads data from satellite images and stores them in a set ENVI files
comprising a dataset. There is one import function for each satellite sensor:

• Import MODIS data
• Import AATSR data

The MODIS import results in a swath dataset that is a continuous portion of a satellite orbit. The
swath may be composed on adjacent scenes. The AATSR import function is a wrapping
function around the BEAM function ‘mosaic’. All satellite passes during on single day is
projected into a grid.

1.3.2 Basic products module
This module controls the production of basic products, i.e. products that can be retrieved from
one dataset. The module has function on different levels. On the top level we have one generic
function retrieve_basicproducts, which is called from the sensor specific functions. These
functions can be specified in the production chain setup, and they are:

• MODIS_basicproducts
• AATSR_basicproducts

The basic products to retrieve are specified in the corresponding configuration file. Each basic
product can be retrieved from at least sensor by one or more methods. There is one sub-module
for each of the basic products:

• Cloud Mask module (both sensors, two methods)
• Snow Covered Area (SCA) module(both sensors, several methods)
• Surface Temperature of Snow (STS) module (optional; Modis only; one method only)
• Snow Grain Size (SGS) module (optional; Modis only; one method only)

The methods for creating a specific product can be called form either the sensor specific top
level function, but it is also possible to call most of them from the production chain setup via
specific application functions specific to product and sensor.

1.3.3 Geometric correction module
The geometric module undertakes the geometrical projection of swath data into a map grid. The
data to be resampled is typically a set of basic products, but may also be original swath data.
The module is called by the function projectProducts.

Note that he geometrical correction module is not needed for AATSR data in grid format. These
data are projected and mosaiced under the import by calling the external BEAM software.

1.3.4 Derived products module
This module handles products where one needs to consider multiple basic products, e.g. in a
time-series, or derived from multiple sensors. A central part of this module is a time-series /
multi-product controller, which all main function relies on. These functions are:

• SCA multi-scene / multi-sensor / time-series combination

 SnowLab software documantation 11

• Snow surface wetness (SSW)

1.3.5 Export module
The purpose of the export module is to export the product to a format tailored to the end-user of
the product. This may involve combination of basic products with masks, inclusion of meta data
and colour tables, and saving files in specified formats.

1.4 Outline of the production chains
The production chains are controlled by the framework its setup file. The mains steps
correspond to the main functions in the modules.

The product chains for MODIS and AATSR data are somewhat different. For AATSR data only
cloud mask generation and SCA is available, but with the choice of different methods. For times
series ‘derived’ products, only multi-scene and multi-sensor SCA are available for AATSR.

1.4.1 Outline of the MODIS production chain

The production chain is controlled by the framework. The mains steps mainly correspond to the
main functions in the modules.

• Import data
Import MODIS data

• Basic products generation
a. Make cloud mask
b. Make SCA – Snow Covered Area

Make cloud mask

Resample products

Export products

Make SCA

Make SGS

Make
 multi-product

Import MODIS scene

Figure 4a. Outline of the MODIS production chain

Make STS

12 SnowLab software documentation

c. Make STS – Snow Temperature Surface (optional)
d. Make SGS – Snow Grain Size (optional)

• Resample to geometric reference
• Time-series ‘derived ’ products (optional)

a. Make SSW (Snow Surface Wetness) : based on STS and recent change in SGS
b. Make multi-scene SCA: estimate current SCA using a time-series of basic SCA
c. Make multi-sensor SCA: estimate current SCA using multiple sensors

• Export products

1.4.2 Outline of the AATSR production chain

• Import data

Import AATSR data into a geocorrected grid, using of BEAM software
• Basic products generation

a. Make cloud mask
b. Make SCA – Snow Covered Area

• Time-series ‘derived ’ products (optional)
a. Make multi-scene SCA: estimate current SCA using a time-series of basic SCA
b. Make multi-sensor SCA: estimate current SCA using multiple sensors

• Export products

1.5 Retrieval algorithms for basic snow parameters
The basic snow parameters that can be produced are Cloud Cover mask, Snow Covered Area
(SCA), Surface Temperature Snow (STS), Snow Grain Size(SGS), and Snow Surface Wetness
(SSW).

1.5.1 Cloud Cover Mask
A particular problem for practical use of the snow algorithms has been cloud detection. NR has
experimented with several approaches, and the current best cloud detection algorithm is based
on K Nearest Neighbour (kNN) classification of MODIS or AATSR data. In a kNN classifier a

Make cloud mask

Export products

Make SCA

Make
 multi-product

Import and geocorrect
AATSR scene

Figure 4b. Outline of the AATSR production chain

 SnowLab software documantation 13

pixel, represented by a vector of band values, is assigned the label, which is most prevalent
among the K nearest labelled vectors from a reference set. A kNN classifier is an asymptotically
optimum classifier as the size of the reference set increases. This algorithm has been described
in a more detail in the Envisnow report D1-WP3, Part 1 (Solberg et al., 2005). Reference sets
(‘codebooks’) have been defined for MODIS as well as for AATSR. For AATSR all 7 nadir
bands are used, and for MODIS also 7 bands are used.

For the GlobSnow project, the SYKE cloud algorithm has also been included in the production
chain for AATSR data. This algorithm uses three thermal bands and three reflectance bands.
The normalized vegetation and snow indices (NDVI and NDSI) are calculated and used with
various thresholds to detect clouds (see below).
Tdiff = T11 - T3.7
ndvi = (R0.87 – R0.55) / (R0.87 + R0.55)
ndsi = (R0.55 – R1.6) / (R0.55 + R1.6)
thres1 = -9K
thres2 = -7K

Cloud IF
Tdiff<Thres1 & R0.55>10% & ndvi<0.5
OR
Tdiff<Thres2 & (ndsi*100%/R0.55)< 1.115 & ndvi<0.5 & 0.0<ndsi< 0.8 & T12<275K

1.5.2 Snow Covered Area (SCA)
For MODIS data the NRL algorithm is used. For AATSR data NRL, Shi and SYKE algorithms
are available.

1.5.2.1 NLR
The NLR algorithm for the retrieval of SCA stands for the Norwegian Linear Reflectance-to-
Snow-Cover algorithm. The algorithm is based on an empirical reflectance-to-snow-cover
model originally proposed for NOAA AVHRR by Andersen (1982) and later refined by Solberg
and Andersen (1994). The algorithm was later tailored to MODIS data by NR.

The NLR algorithm retrieves the snow-cover fraction for each pixel. The model is calibrated by
providing two points of a linear function relating observed radiance to fractional snow-cover

Figure 5 The Norwegian Linear Reflectance-to-Snow-Cover (NLR)
algorithm illustrated. A pixel value is linearly transformed to a snow cover
percentage for that pixel. The algorithms are based on the assumption that
the bare-ground reflectance is constant. (Andersen 1982)

14 SnowLab software documentation

area (see Figure 5). The calibration is usually done automatically by means of calibration areas.
Statistics from the calibration areas is then used to compute calibration points for the linear
relationship. The statistics need to pass a series of tests, where the thresholds have been learned
empirically. This algorithm and its validation has been reported in more detail from the project
Envisnow, see D1-WP3, Part 1 (Solberg et al. 2005).

The algorithm was recently adapted to AATSR data by NR. Note that the various empiric para-
meter settings refer to radiance values, and therefore the AATSR radiance had to be converted
to radiance values to pass the tests.

As an option the radiance values may be topographically corrected. The effects of illumination
variations caused by the topography are modelled and then used to correct the data. The effect
of the solar elevation is also taken into account in this correction. In order to preserve the
validity of the statistical tests, the topographical corrected data should be in the same range as a
typical radiance image for Norway, i.e. it is required to specify a moderate standard solar
elevation in the algorithm, instead of a zenith position. In order to take the diffuse illumination
into account, and avoid over-correction of dark slopes, a C-correction is applied with a default
C=0.1.

When cloud-free calibration areas are totally missing, the calibration value from the preceding
days will be used. Alternatively, each missing area will be simulated by looking at the history
for that calibration area and derive the value from the last 5 observations.

1.5.2.2 Modified Shi
The Shi algorithm (Shi 2000) has been modified into a simpler version by ENVEO IT GmbH in
Innsbruck, Austria. It has been included in the SnowLab production chain for AATSR data
during the GlobSnow project. The method is based on the same principals as NRL, but the
calibration is done in a different manner. Certain thresholds for NDSI and the reflectance in the
0.67 µm band are used to classify 100% snow covered pixels, mixed snow pixels and 100%
snow free pixels. For each mixed pixel the snow fraction (SCA) is estimated based on linear
spectral unmixing between the pure classes 100% snow covered and 100% snow free. The
unmixing process estimates the end-menber values from the 5 spatially closest pixels for each of
the pure classes. For areas within the forest, a binary snow or no snow detection is done. Since
the algorithm needs to identify the 5 closest neighbours the processing time will vary from
image to image. Topographic correction is optional.

1.5.2.3 SCAmod
The SCAmod (SYKE) algorithm is developed at the Finnish Environment Institute (Metsämäki
et al 2005). This algorithm use constant reflectance values for snow free ground, forest canopy
and wet snow (e.g. 7, 6, and 66). In addition a transmissivity map is required. This map
specifies the fraction of the reflected radiation that will transmit the vegetation layer and reach
the satellite sensor observing forest areas. This means that the transmissivity is an expression of
the effect of forest on local reflectance observations. SCA can then be derived from observed
reflectance based on the reflectance constants and the transmissivity values. Topographic
correction is optional, but the effect of the solar elevation must be corrected. The coefficients
are given under the assumption that the sun is in zenith.

1.5.3 Surface Temperature Snow (STS)
The retrieval of STS is based on Key’s algorithm (Key 1997), which has been calibrated for
various AVHRR sensors as well as for Modis, see http://stratus.ssec.wisc.edu/products/surftemp/.
The application of Key’s algorithm for the retrieval of snow surface temperatures in Norwegian
mountains was recommended by Amlien and Solberg (2004). The standard method for

http://stratus.ssec.wisc.edu/products/surftemp/

 SnowLab software documantation 15

correcting the atmospheric attenuation is the split-window technique. In Key’s algorithm the
atmospheric path-length is also taken into account by introducing the view angle as a parameter.

1.5.4 Snow Grain Size (SGS)
The idea behind the SGS parameters is that the spectral signature of snow depends on the grain
size. The spectral signature curves show a clear drop in reflectance when moving towards the
longer wavelengths. The effect is more prominent for larger snow grains. The method has been
described and evaluated by Koren et al. (2004). The algorithm compares the reflectance in
MODIS bands 2 and 7 and calculates a grain size index, defined as SGS = (M2-M7)/(M2+M7).

1.6 Derived product algorithms
The derived snow parameters that are produced are SnowCoveredArea multi-product (multi-
SCA), and SnowSurfaceWetness (SSW). Common for the derived products are that they are
derived from a set of basic products.

1.6.1 Multi-SCA
Due to cloud cover problems there are large difficulties in obtaining an updated product every
day. In order to overcome these problems, the SCA value must be predicted by means of recent
results from the same sensor (multi-temporal), or from a different one (multi-sensor).

Each observation will be given a confidence value, which is declining with the time. As long as
the confidence value is above a threshold, the observation is considered as useful. When new
data arrives, the SCA value will be updated where the confidence for the new observations are
better than the old ones. The confidence depends on the cloud cover and the view angle, in
addition to the time since the acquisition.

The multi-SCA algorithm is described by Solberg et al. (2004a, 2004b, 2005b), and Malnes
et al. (2005). It has also been described in a more detail in the Envisnow report D1-WP3, Part 1
(Solberg et al. 2005).

1.6.2 Snow Surface Wetness (SSW)
The main idea is to compare the temporal development in the SGS with the current value of
STS. Where the temperature is close to 0 °C and the grain size is increasing, it is likely that the
snow is becoming or has become wet.

The temperature observations give a good indication of where wet snow may be present, but are
in themselves not accurate enough to provide very strong evidence of wet snow. However, a
strong indication of a wet snow surface is a rapid increase of the effective grain size observed
together with a snow surface temperature near 0°C. The algorithm can be expressed in a
simplified version as

if (SGStoday - SGSrecently > SGSsnowmelt-tresh)
 and (STSlow < STStoday < STShigh) then
 SSW = WET-SNOW
else
if SGStoday < SGSbare-ground-tresh then
 SSW = SNOW-FREE
else
if STStoday > STShigh then

16 SnowLab software documentation

 SSW = SNOW-FREE
else
 SSW = DRY-SNOW

Note that more temperature classes are used in the implemented algorithm. Also a threshold of
the SCA product is applied in order to mask out snow-free areas. The algorithm will also
identify partly bare ground from temperature observations above 0°C and a rapid developing
negative gradient for SGS (both due to appearance of snow-free ground patches at the sub-pixel
level).

1.6.3 Other
Other derived snow parameters can also be estimated. The snow distribution pattern of a local
area, like a drainage area, can be retrieved from the SCA product and a snow distribution model
for that local area. The snow distribution model is an empirical one, based on classifications of
the snow cover in a series of high-resolution images, like Landsat. The series must be
representative for the development of the snow cover during a typical melting season. The
model is represented by a likelihood function that gives the sequence the pixels will become
snow-free.

The algorithm for the snow distribution pattern goes like this: Retrieve the SCA for the local
area from the SCA product. Then produce a corresponding SCA from the empirical model by
applying a threshold of the likelihood function. The value of the threshold should be the one that
generates a snow mask that corresponds to the retrieved SCA value. This mask is the estimated
snow distribution pattern.

 SnowLab software documantation 17

2 System Operator’s Manual
2.1 System Installation Guide

2.1.1 Unpacking the software
The software of the framework is contained in the tar-file cryo.tar. To install the framework, do
the following:

• Copy the tar-file to the directory where you want to put the software.

• Unpack the tar-file:
> tar –xvf cryo.tar

• Go to the sub directory cryo/programs:
> cd cryo/programs

• Run the setup script cryo_setup from this directory:
> source cryo_setup
The environment variable CRYO_TOP will be set to the top directory where the
software was unpacked, and IDL/ENVI variables and configurations will be set up.

2.1.2 Directory structure

The contents of these directories will be as follows:

data default directory for list files containing specifications of local datasets. Root of
data directory tree.

static configuration files, calibration data, codebook for cloud classification etc.

tmp temporary data.

<datatype> intermediate and final results from the processing of a given data type. The
directory has the same name as the processed data type. It contains a number of
sub-directories, out*, each of them with a subdirectory for each processed
dataset.

programs setup and the main configuration file. Root for software directory tree.

etc ftp-configuration files for data providers.

CRYO_TOP

programs

framework methods

data

etc log save_add src

framework

graphicsstatic tmp <datatype>

18 SnowLab software documentation

log logfiles.

graphics logos etc.

save_add *.sav files (compiled IDL code).

src root directory for source code

framework source code for the framework, if provided

methods root directory for application source code, if provided

The data directory will initially be empty, except that static/ will contain various files needed
for the application.

As the datasets are processed, sub-directories holding the intermediate results from each step of
the processing chain will be created under the data directory, and given names based on the data
type, the current step in the process and the original name of the dataset:

<datatype>/out*/<dataset>

In a process with n steps, the final results will be stored in out<n>, while the intermediate results
are stored in the subdirectories out1 to out<n-1>.

2.1.3 Setup of the production chain
Although the production chain is started from a GUI available in the ENVI menu, its behaviour
is controlled by predefined configuration files. When running the system the user has no
possibilities to control the behaviour of the system.

The behaviour of the system can be changed by manipulation of these configuration files. This
section presents the main principles for the configuration files and gives an overview of how
they are used in the current system.

NOTE that the system operator should avoid changing the configuration files.

2.1.3.1 Configuration file format
The general format of the configuration file is simple. The configuration file is a text file that
contains keyword–value pairs, where the keyword is separated from the value with an '=' sign:
<keyword> = <value>. The value may be one single item or a list of items. When the value
consist of a list of items, the list is enclosed in {} and each item separated by comma, like this:
<keyword> = { <item1>, <item2>,…, <itemN> }

2.1.3.2 Main configuration file
The main configuration file is usually named current.cfg and always located under the
programs/ directory (see above description of the directory structure). This file will be read
once as the program is started.

The purpose of the main configuration file is to define:
• the parameters needed by the automatic downloading routine of the framework
• one or more production chains
• a few optional parameters

Configuration of automatic download
The automatic download part is controlled by parameters defining one or more data providers,
as well as a local mail user receiving messages about data ready to be downloaded. Below the
addresses of NR has been used as an example. They should be changed to the correct addresses
for mail host and ftp host.

 SnowLab software documantation 19

The specification of a local mail user is required for receiving messages that will trigger the
automatic remote download of data:
mailusr user name
mailpwd password
mailhost mail host, e.g. mail.nr.no
mailport local port e.g. 110

The various data providers are identified by:
nof providers number of data providers
providers list of data providers

<provider> sender: email-address that each of the providers will use to send the message

For each provider there is also a separate configuration file, <provider>.cfg, located in
programs/etc/. The ftp-download from that provider is specified by these parameters:
host name of ftp host, e.g. ftp.nr.no
user user name, e.g. anonymous
pass password, e.g. anonymous

Configuration of the production chains
There should be specified one chain for each data type.

The parameters controlling the production chains are:
nof datatypes: number of data types
datatypes: list of data types

For each data type there should be defined a production chain
<datatype> nof steps number of steps for this specific data type
<datatype> steps list of the steps in the production chain for specific data type

Each step is specified by a describing name, the function to call, an input dataset, an output
dataset, and a configuration file

Optional main configuration parameters
The other main parameters are optional:
project default is ‘cryo’
maxLog maximum size of logfile in Bytes, default is 100KB
image catalog full path to an existing directory, default is $CRYO_TOP/data

2.1.3.3 Setup of the production steps
In the current system, there is defined a production chain for MODIS data. This is done through
the definition of the parameter modis steps in the main configuration file. This parameter
comprises several items that represent the steps in the production chain. The steps are
performed in the sequence that they are listed in the modis steps parameter.

Each step is defined by a corresponding item in the parameter modis steps. Each item will
typically fill one line in the main configuration file, consisting of a number of strings that
represent:
 - a reference name (one or more strings) to be shown in the GUI
 - name of function to call (one string)
 - input directory (one integer)
 - output directory (one integer)
 - the name of a configuration file (one string)

The following example shows how the production chain could be defined in the main
configuration file. Note that the parameter modis nof steps will determine how many steps in

ftp://ftp.nr.no/

20 SnowLab software documentation

the chain that actually will be performed. Also note that each step, except the last one, should
be followed by a comma.

modis nof steps = 4 # Number of steps in the chain
modis steps = {
import import_modisdata 1 2 importModis.cfg,
make products basic_products 2 3 makeProd.cfg,
resample products projectproducts 3 4 resampl.cfg,
export products export_modisproducts 4 5 export.cfg }

The system programmer may control what will happen in each step by editing the
corresponding configuration files, according to section 2.3. As a general rule the operator
should not change these files.

• The import step will consider a list of MODIS swath files and import specified subsets
of these files.

• The basic_products step will consider a list of basic products and make these products.
Although the list of products to make is defined in the corresponding configuration file,
makeProd.cfg, the sequence of their processing is controlled by the basic_products step.
The geometrical reference grid will also be produced in this step.

• The resample step will consider a list of basic products and resample them into a
specified map projection. The geometrical reference grid established in the previous
step will be utilized.

• The export step will consider a list of products and export them to final products
intended for some users.

2.2 System Operator’s Guide
The CRYO production chain for snow products are implemented as a plug-in to the ENVI
software. It is started from a simple GUI, but the interactions during the processing steps are
kept to a minimum.

From the GUI, the user may choice to
 - perform ENVI and IDL commands
 - run the production chain in remote modus
 - run the production chain in local modus
 - stop the processing

2.2.1 Starting the software
The production chain should be run on a linux platform. In order to start the production chain,
the user needs to run a setup program, and then start ENVI:
> setenv IDL_PATH ‘<IDL_DEFAULT>’
> source cryo_setup
> envi

Now the user will see the ENVI prompt and may enter ENVI and IDL
commands from that prompt. In addition, a simple menu will be available:

The lower ‘ENVI’ button gives access to the complete ENVI menu. By clicking
the button labelled ‘SNOW’, a pulldown menu appears and the user will start the automatic
production chain by clicking ‘Snow process’. Depending on the implementation, the label on
the ‘SNOW’ button may differ, e.g. ‘CRYO’. After calling the automatic production chain, the
GUI on the next page will become available, and the prompt will be locked for input.

 SnowLab software documantation 21

The user may choose to start the production chain in local modus (‘process local data’) or in
remote modus (process remote data’). In both modi the central field of the GUI will report back
the progress through the various steps. Only the remote modus utilize the automatic down-
loading facilities in the framework.

The user may stop the processing by clicking the ‘Stop’ button. By clicking the ‘Close’ button,
the control is returned to the ENVI prompt and the initial menu will be made available.

The operator may monitor the progress by means of the GUI. The lower left pane gives an
overview of the steps in the chain. The lower right pane identified the step that is currently
being processed. The central pane yields a more detailed log of the steps in the chain, including
if some steps return with an error.

2.2.2 Remote modus
When run in remote modus, the system will wait for e-mails to arrive. Each e-mail will be
parsed, and the specified files will be downloaded and put through the production chain
according to the data type specified the e-mail. When a dataset has been processed, the system
will wait for the next e-mail to arrive. The control may be returned to the user by pushing the
‘stop’ button.

2.2.3 Local modus
The local modus of the production chain does not utilize the automatic downloading facilities in
the framework, but requires that the datasets exist somewhere in the local file system.

22 SnowLab software documentation

By selecting the local modus, the user will get access to ENVI’s file selector in order to select a
text file containing a list of local datasets. A dataset is a set of files, representing one single
scene, residing in a separate directory. The dataset list file will contain one line for each dataset.
This line consists of the full path to the directory, followed by a specification of the image type
in order to identify the appropriate production chain.

When run in local modus, the system goes through the list in sequence and processes one
dataset at the time undertaking all steps required for the given data type. When all datasets are
processed, the control is returned to the production line menu.

A more detailed set of instructions for running the chain in local modus is given in section 2.3.

2.2.4 Process control
The user may stop the processing by pushing the ‘stop’ button. In some cases it may take some
time for the system to react to the stop request.

Temp files
Note that the directory tmpdir in the current system will not be strictly temporary. It may also
contain files needed by the software for the management of multi-temporal data series. As a
general rule assume that temporary files will be removed by the software itself.

NOTE that when starting a new series of data processing, the old calibration values should be
removed by cleaning up the tmp directory.

Logfiles
Log messages from the system will be written to the command window, as to the logfile, which
resides in the programs/log directory. When the logfile cryo.log reaches its maximum size it
will be backed up as cryo.log.prev.. If it is required to save more of the logging info, the user
should make copies of the logfile regularly or change the maximum allowed filesize.

Error handling
If the system aborts, the software should be terminated and then restarted. However, a lot of
error situations are managed by the software without aborting the processing. In these cases, the
processing of the current dataset will be terminated and the processing of the next dataset will
be started.

In the central field of the GUI the main steps in the process are being logged, with a simple error
message if something has gone wrong. If an error has occured, the program stops the process for
the given dataset and starts processing the next dataset. No detailed error messages are given
here, but you can see in which step in the process the error has occurred. In the logfile more
detailed error messages are given.

The most common errors happen during import of data. Typical errors are:

1. The directory containing the input-files does not exist. Error in the list file (see 0).

2. One or more of the input files are missing. For calculating the SCA, files with names
MOD021KM* and MOD02QKM* must be present.

3. One or more files are incomplete.

From the message in the logfile you should be able to find the type of error.

 SnowLab software documantation 23

Warnings
In the log file or the command window warnings may appear. Most of these warnings may be
ignored by the operator. When old calibration data have been used, you will get a message, and
you have to notice that the confidence of the result is being reduced.

If the resulting SCA image is showing clouds or no data for the complete area, there are two
possible reasons:

1. The complete area is covered by clouds. This will rarely happen.

2. Too many of the calibration areas are covered with clouds. A number of chosen areas
completely covered with snow and some areas completely without snow are used as
calibration for the SCA algorithm. If too few of these areas are seen from the satellite,
the value of SCA can not be calculated, unless calibration values can be retrieved by
other means.

In such cases the last calculated calibration values are being used. These values could originate
from an earlier pass of the same day or from an earlier day. As the signals received by the
satellite from one location may change during the day, and from day to day, the use of old
calibration data is not optimal. The calculated SCA values should be considered less confident
than values calculated with calibration data from the same scene. In the log file you will get
warnings if old calibration data has been used. If no old calibration data exist, there will be no
SCA result.

When old calibration data have been used, you will get a message, and you have to notice that
the confidence of the result is being reduced.

2.3 Instructions for operating in local modus
The steps to be handed by the operator when operating in local modus are:

• Download data
• Edit .lst file
• Start processing chain
• Upload products

2.3.1 MODIS data
Data download
Create a directory for the new dataset
> mkdir <path_to_modis_data>/yyyy.mm.dd_hhmm

Download data from KSAT or NASA by means of ftp. The dataset are represented by two
products of level1b (MOD021KM and MOD02QKM). Download both of them.
KSAT data should be found in the MODIS-testdata directory on the ftp-server ftp3.tss.no.
> cd <path_to_modis_data>/yyyy.mm.dd_hhmm
> lftp -u norskr,<passwd> ftp3.tss.no
lftp cd MODIS-testdata
lftp mget MOD021KM* MOD02QKM*

Edit list file
Edit the file $SNOW_TOP/data/modis_sca.lst (or make a new file modis_yyyymmdd.lst)

For each scene to be processed, the file should contain one line like:
 <path_to_modis_data>/yyyy.mm.dd_hhmm modis

ftp://ftp3.tss.no/

24 SnowLab software documentation

Start the processing chain
> setenv SNOW_TOP <path_to_processing_chain>
> cd $SNOW_TOP/programs
> setenv IDL_PATH ‘<IDL_DEFAULT>’
> source cryo_setup
> envi

From the GUI:
• Select ‘SNOW’ and then ‘Snow process’
• Select ‘Process local data’
• Pick the appropriate .lst file (the one you just edited)

$SNOW_TOP/data/modis_sca.lst

Upload the product
The end product from the processing chain is located in the directory:
$SNOW_TOP/data/modis/out<n>/yyyy.mm.dd_hhmm

The .png file in this directory can easily be inspected visually. It should show ocean water,
clouds, and SCA values.

Copy the product directory to the outgoing FTP:
> cp $SNOW_TOP/data/modis/out4/yyyy.mm.dd_hhmm <outgoing_ftp>

2.3.2 AATSR data
The processing of AATSR data is always undertaken in local mode. There are some
modifications compared to MODIS.

Data download
The AATSR data is delivered from ESA on high-capacity tapes. The data should be copied to
disk by the linux tar command. There is one directory for each day, containing orbits that day.
The directory structure of the tar-set is yyyy/mm/dd/ATS_TOA_1P

Edit list file
The production chain needs to refer to unique datasets. Therefore the list file should therefore
refer to datasets named as ATS_TOA_1PRUPAyyyymmdd/.

Start the processing chain
This is similar to MODIS.

Upload the product
This is similar to MODIS.

 SnowLab software documantation 25

3 System Developer’s Manual
3.1 Introduction
The application software is programmed in IDL, with calls to ENVI. Some functions are
programmed separately and are available as system calls to executable binaries.

The application software is organized into software modules, providing one or more functions
that can be called by the framework as a step in the production chain.

3.2 Interaction between the framework and the
application software

Since the framework does not know the application software, the application functions must
fulfil some requirements in order to interact with the framework (see sect. 1.3). This section
describes these requirements.

The application program interface (API) in the framework will call the application functions
through this specified function call:
status = funcName(dataset_in, dataset_out, $
 staticdir, tmpdir, logfile, configFileName)

All arguments are input arguments that specify directories and files that are made available to
the application function. The return value is the error status, which may force the production
chain to terminate. The relationship between the function call and the corresponding line in the
main configuration file is illustrated by an example: Consider the production chain
specification in section 2.1.3.3. The item
”make products basic_products 2 3 makeProd.cfg”
will define the following function call:
status = basic_products(CRYO_TOP/data/modis/out1/<dataset_name>, $
 CRYO_TOP/data/modis/out2/<dataset_name>, $
 CRYO_TOP/data/static, $
 CRYO_TOP/data/tmp, $
 CRYO_TOP/programs/log/cryo.log, $
 makeProd.cfg)

Note that the numbers 2 and 3 correspond to out1 and out2 respectively.

3.2.1 Main principles
The dataflow through the chain is controlled by the two first arguments dataset_in and
dataset_out, which refer to two different directories that are unique to each specific scene. Thus
they are dynamic arguments that will depend on the actual scene being processed.

The argument dataset_out in one function will typically be identical to the argument dataset_in
in a function called in a later step in the production chain. This directory thus serves as the
connection between the two steps.

The other arguments always refer to the same directories or files, independent of what scene that
is being processed. These directories and files are thus common data.

Since the framework lacks the possibility to provide the functions with application specific
arguments, all such arguments are transferred by means of configuration files. The system
operator controls the production chain by managing the configuration files.

26 SnowLab software documentation

• Input directory – dataset_in:
The input directory is dynamically set by the framework. It will typically be the output
of a preceding step in the production chain.

• Output directory – dataset_out:
The output directory is dynamically set by the framework. It will typically become the
input to a succeeding step in the production chain.

• Static directory – staticdir:
The static directory ($SNOW_TOP/data/static) is a fixed directory where static data
should be found,. Such data may be configuration files, water masks, training areas,
class definitions, colour tables, etc. The static data may be organized in sub-directories.

• Temporary directory – tmpdir:
The temporary directory ($SNOW_TOP/data/tmp) is a fixed directory where temporary
file could be put by the application software. The files in this directory could be deleted
at any time when they are not being actively used. However, note that the tmpdir in this
application is used for storing the state of multi-scene processing.

• Logfile:
This argument identifies a fixed text file ($SNOW_TOP/programs/log/snow.log)
intended for appending log-messages.

• Configuration file – configFileName:
This argument identifies the name of a text file that contains the input parameters
required by the application software. The application software should know where this
file is expected to be found, but it is common practice to use the static directory for
these files. The format of the configuration files is described in Appendix.

• Return value – status:
A successful completion should return 1.

3.2.2 Modifications and specifications
This section describes the practices that have been followed concerning the files and directories
referred in the API. Note that the practice concerning temporary files may be considered as a
violation or modification of the main principles that were initially defined for the framework.

Temp files
In order to manage multi-temporal datasets, some commonly available data directory had to be
made available for temporary versions of a multi-temporal product. The problem is that the
framework does not provide a directory for this purpose. The chosen strategy was to store such
temporary multi-temporal products in the scene-specific directories and their references in the
tmpdir directory. This directory should therefore not be deleted.

Since the role of the tmpdir directory was changed to managing multi-temporal scenes, all
temporary files relating to specific scenes was put into the scene-specific directories dataset_in
and dataset_out. Typically, temporary subdirectories are being used for this purpose in the
current application software.

Input/output directories
These directories may contain temporary subdirectories, as described above.

The output directory may already contain data produced in a preceding step or sub-step,
typically when more than one product are being produced. In some cases the application
functions may need to use these files as input files.

 SnowLab software documantation 27

The application software should never use the input directory for output, but may optionally
delete files no longer needed.

Configuration files
The configFileName parameter may contain any string variable. It is assumed that this string
contains the name of a file residing in the staticdir directory, and that this file is a configuration
file, i.e. a text file that follows the configuration file format defined in the framework.

The current software does not expect to find all configuration parameters directly in the file
referred to by the configFileName parameter. Instead it is expected that this file refers to other
configuration files, which may contain configuration parameters common to more than one
function. The intension of this strategy is to reduce the risk of inconsistent configuration data.

3.3 Module descriptions
In this chapter each module is described in more detail. For each module its main functions are
described. All the functions are named like functionName, while the modules will be referred to
as ‘module name’ in this chapter.

3.3.1 Module data import

The data import module consists of one main function and an optional one:

• importModisData is the main function and reads MODIS images and stores specified
image layers (spectral subsets) of them as ENVI files

• importAatsrData is the main function that use BEAM software to rectify and mosaic
AATSR data and stores specified image layers of them as ENVI files

3.3.1.1 Function importModisData
The purpose of the function importModisData is to import subsets of MODIS datafiles,
including radiometric data, geo-location data and view angle data.

Input data
MODIS calibrated data (MOD02) stored as *.hdf files. These files also contain meta-data.

The input directory may contain MODIS files of these types:
• MOD021KM: Image data, 1 km resolution
• MOD02HKM: Image data, 500 m resolution
• MOD02QKM: Image data, 250 m resolution
• Metadata, including acquisition date and time

The scenes are in the original acquisition geometry (swath geometry).

The hdf-files contain a lot of data, including:

Framework

import
ModisData

Basic
products

Geo-
correction

Derived
products

Product
export

import
AatsrData

28 SnowLab software documentation

• Calibrated image data, represented as integers, and supplied with calibration
coefficients for converting the integers to real radiance values. When applicable, there
are also calibration coefficients for reflectance values.

• Geo-location info, for points regularly distributed over the image grid
• View angle info, for points regularly distributed over the image grid. Note that this data

field is contained in MOD021KM only.

Output data
For each specified input image, there may be generated three types of ENVI-files:

data: containing the specified spectral bands from the hdf-file, stored as integers

latlon: containing the latitude and longitude for the geo-location points, stored as a two-layer
float image with one cell for each geo-location point

angle; containing the view angle from the hdf-file, stored in a one-layer integer image. The
angle image will be expanded to the same dimensions as the data image. Note that
angle data will be produced for MOD021KM only.

Configuration data
The configuration file may contain these parameters:
imgTypes: list of image types, allowed values are ‘1KM’, ‘500’, ‘250’
250_import: name of cfgFile, triggered if imgTypes contains ‘250’
500_import: name of cfgFile, triggered if imgTypes contains ‘500’
1KM_import: name of cfgFile, triggered if imgTypes contains ‘1KM’

Each of these files provides these configuration arguments for their respective imgType:
imgType: for identification only
bandnames: list of band names identifying the spectral bands to retrieve
angleFields: list of angle ‘bands’ to read,
 should specify SensorZenith, SolarZenith, SolarAzimuth
latLon: flag (0 or 1) whether latlon data should be read for this imgType

Interactions
Called from framework

Calling: getSpatialSubset if requested

Optional function getSpatialSubset
The purpose of the getSpatialSubset function is to compile a contiguous swath-scene that covers
a given region of interest (ROI) from north to south. This process may include the merging of
adjacent scenes and the removal of scans that are outside the region.

The function is called from the importModisData function as an option. It will be trigged if
importModisData identifies the configuration parameter clip or merge as set.

This function substitutes the current imported scene with a compilation of the existing imported
data that fulfil the requirements. These requirements are specified in the file given by the
configuration parameter ROI, e.g. ROI=clip.cfg

If merge is set, the configuration file should also contain the parameter sceneList, which
identifies a file in tmpdir that will refer to the preceding scene processed

The configuration parameters for this function are omitted in this version of the document.

Configuration data
The configuration file provides these parameters for the getSpatialSubset function.

 SnowLab software documantation 29

clip flag if scenes are to clipped, i.e. spatial subset extracted
ROI triggered by clip; defines the area to be covered by the clipped scene
merge flag if adjacent scenes are to merged
sceneList keep track of previous scenes

3.3.1.2 Function importAaatsrData
The purpose of the function import_AatsrData is to act as a wrapper to the two functions
undertaking the geometrical and radiometrrical corrections. These two functions does not follow
the standard parameter interface.

The input and output to the wrapper function is given by input to the geometrical correction and
the output of the radiometrical correction.

Input data
AATSR data in Envisat format (N1-files) residing in dataset_in. All files to be merged should
reside in one directory. There will typically be one file per orbit and one directory for each day.

These data are typically received on tape or portable hard disks. In that case they may reside in a
separate directory given by the parameter ‘remoteDir’. The purpose of dataset_in will then only
be to specify the name of the dataset, following the convention above.

Output data
The default output of the geo-corrected data is the DIMAP-format. This format is a hierarchical
format. The DIMAP file itself (<dataset>.dim) contains metadata only. The image data resides
as Envi-files in a directory with the same name (<dataset>.data) as the dataset. There will be
one output file for each band. In the lab prototype the dim-file is ignored, and the Envi-headers
used instead.

This convention is followed for all data in DIMAP format: The data are found in a directory
found by adding ‘.data’ to the datasetname. This is taken care of by the reading tools.

If radiometrical correction is requested, the output will be in Envi-format, in the <dataset>
directory.

Configuration data
The parameters to the import function are simply the configuration files for two functions that
are being called:
beamMosaicCfg = dimapMosaic_Europa.cfg

topoCfg = topoPanEuropa.cfg

If one of these parameters is unspecified, the corresponding function will not be called.

3.3.1.3 Function beam_mosaic
This function will import AATSR data, including radiometric data and view angle data into a
predefined grid. The function is a wrapper around the BEAM program mosaic, which projects
and merges a set of Envisat scenes.

Input data
The input data are as specified for the wrapper function.

Output data
The default output is the DIMAP-format as specified for the wrapper function.

30 SnowLab software documentation

Configuration data
bandNames: list of band names identifying the spectral bands to retrieve
angleNames: list of angle ‘bands’ to read, e.g. ‘SensorZenith’
projection : e.g. geographic
mapExtent : UL_E UL_N LR_E LR_N (in degrees)
cellSize : (in degrees, eg. 0.01)
resampling : method for resampling, eg. BL
background : value for missing data, e.g. ‐1
orthoDem : e.g. GETASSE30
remoteDir : path to where N1‐data has been downloaded
firstHour : ignore orbits earlier than this hour
lastHour : ignore orbits later than this hour
prep : set this flag to prepare for BEAM only
post : set this flag to postprocess BEAM result only
call : set this flag to a full import, incl. a call to BEAM

Comment
The BEAM software is controlled by a request file. The beam_mosaic function can be
considered as composed of three parts 1) making the request file and copying the N1- data from
the repository (‘remotedir’), 2) running Beam, 3) checking and correcting the result.

The import function can be configured to exit after the request files have been generated
(prep=1: step 1 only) in order to run the BEAM as a standalone program. In that case it is
necessary to re-run the import function in order to fix some errors produced by the BEAM
software (post=1; step 3 only). Setting call=1 will run all 3 steps.

3.3.1.4 Function getilluminationmodel
Input data
The input data is the output of the beam_mosaic function, found in dataset_out. The image
bands used are the solar elevation and azimuth angles. In addition a terrain gradient file is used.
This location of the gradient file is given on the configuration file. It contains gradients derived
from the DEM, and are I the same grid system as the image.

Output data
The output data is an Envi file containing the direct illumination of each pixel relative to the
illumination from zenith on a horizontal surface.

Configuration data
gradientFile = terrain/gradients_panEuropa_cdeg

The terrain directory is a subdirectory of staticDir.

3.3.2 Module basic products
This module undertakes the production of basic products. By basic products are meant products
that can be retrieved from one single dataset. This input scene will typically be in image
(swath) geometry in the Modis production chain and in a map grid for the AATSR production
chain. For swath data the latlon file will be copied forward in the processing chain for later
resampling.

 SnowLab software documantation 31

The basic products that can be produced by this module are: Cloud Cover, and Snow covered
Area (SCA). In addition Surface Temperature Snow (STS) and Snow Grain Size (SGS).

3.3.2.1 Function makeBasicProducts
This function serves as an organizer of the basic product generation functions. Essentially it
produces all requested products from the data stage to the basic product stage.

One important issue for the function makeBasicProducts is to process the cloud mask before the
other products. Therefore, independent of the sorting of the products in the configuration file,
the makeBasicProducts will ensure that the cloud cover will be produced before the snow
products. For swath data it will ensure that required geolocation information will follow the
basic products.

Input data
The input directory contains ENVI files produced by the data import module.

data: files of the required types

latlon: files (will be copied forward, unless data files are already resampled)

angle: data for 1KM data only, to be used in cloudCover and in STS

Configuration data
The configuration data simply defines what to produce. There is one list for the basic products
and one list for the map reference grids (geo-index maps). For each of the listed items, there
must be specified a configuration file.

The list of products is defined by specifying the cfgFiles that should be used in the functions
that produces the requested products, e.g.
products: list of basic products to make, i.e. among {cloud, SCA, STS, SGS}
cloud.cfg: cfgFile for cloudModis
sca.cfg: cfgFile for scaModis
sts.cfg: cfgFile for stsModis
sgs.cfg: cfgFile for sgsModis

Output data
basic-conf file containing the basic confidence, used for retrieving the product confidences

<prod>: product files

Framework

makeBasic
Products

Geo-
correction

Retrieve
cloud

Sgs
Modis

Sts
Modis

Derived
products

Retrieve
SCA

Data
import

Product
export

32 SnowLab software documentation

<prod>-conf product specific confidence files

latlon geolocation files, copied forward if present in input

Interactions
Called from framework

Calling makeGeoIndex if requested
 cloudModis
 scaModis
 stsModis
 sgsModis

3.3.2.2 Function cloudModis
The purpose of the cloudModis function is to make a cloud mask from the image data.

The cloud mask is the result of a kNN classification of the MODIS data. It requires 1KM data,
but can be resampled to a different cell size.

Input data
The input directory contains ENVI files produced by the data import module.

data file should represent a MODIS scene of type 1KM that
contains the MODIS bands 1, 4, 6, 19, 20, 26, and 31 as its first 7 layers.

Configuration data
maskCodeFile: specifies the classCodes to be used in the output product
ROI defines the geographical area where cloud classification is required
knn.cfg: defines a configuration file for the details of the kNN classification.
 The knn.cfg file should never be modified.

Output data
cloud product resolution as specified; classCodes as specified

Interactions
Called from makeBasicProducts function

3.3.2.3 Function cloudAatsr
The purpose of the cloudAatsr function is to make a cloud mask from the image data.

The cloud mask is the result of a kNN classification of the AATSR data or by using SYKE’s
SCDA algorithm for cloud masking.

Input data
The input directory contains files produced by the data import module.

dataset_in: AATSR data containing all nadir bands
AATSR data containing solar elevation

static_dir: watermask

Parameters
method = syke specifies the method for the cloud classification

syke.cfg: defines a configuration file for the details of the SYKE classification.

maxSolarZenith = 70.0 specifies a value for the maximum solar zenith angle allowed

 SnowLab software documantation 33

maskName = masks/PanEur_watermask_wgs84_latlon01deg_envi

maskCodeFile: specifies a file containing the classCodes to be used in the output product

Output data
dataset:out/cloud the mask contains codes for clouds and other features

Interactions
Called from the framework and not from makeBasicProducts function

3.3.2.4 Function retrieveSCA
The retrieveSCA function is a wrapping function that retrieves the snow covered area (SCA)
from the image data using NLR or another available method.

Configuration data
scaResol: defines the resolution for the SCA product

method defines if the NLR, SCAmod or Shi/Enveo algorithm should be used.

SCAmod.cfg identifies a configuration file that defines parameters used in the algorithm

ShiEnveo.cfg identifies a configuration file that defines parameters used in the algorithm.

Note
If the method is nlr, the same config file is used as for the wrapper

3.3.2.5 Function sca_aatsr
The sca_aatsr function is a function that retrieves the Fractional Snow Cover (FSC) from the
AATSR image data using a specified method. It is assumed that a cloud mask resides in the
dataset_out directory.

Configuration data
method defines if the NLR,SCAmod or Shi/Enveo algorithm should be used.

calibMask mask for the NLR algorithm

nlr_threshold_file.cfg configuration for nlr

topo.cfg config file for toographical correction

SCAmod.cfg identifies a configuration file that defines parameters used in the algorithm.

combMask defines where to use SCAmod and where to use nlr

3.3.2.6 Function nlr_sca_compute
This nlr_sca_compute function retrieves the snow covered area (SCA) from the image data
using the NLR algorithm. Some of the parameters are valid for Modis only.

Input data
The input directory contains ENVI files produced by the data import module.

data file should represent a MODIS scene of any type
should contain MODIS band 1 as its first band

cloud file residing in the output directory,
it should have the same geometry as the data file

calib file: residing in the static directory, defining training areas in a map
geometry

34 SnowLab software documentation

latlon file: geolocation file for MODIS swath data, to be used for transfer the
training areas from the map geometry to the input image geometry

basic-conf file, residing in the output directory, for producing the SCA-confidence

Configuration data
scaResol: defines the resolution for the SCA product from MODIS
nlr_threshold_file: identifies a configuration file specific for the NLR method.
 Details are not shown here. This file should never be modified
calibMask_<scaResol> calibration mask to be applied by the NLR method for given scaResol

Output data
SCA product file: basic product with SCA values for every cell without respect to

confidence, cloud cover or land mask

SCA-conf file: confidence for basic SCA product

Interactions
Called from retrieveSCA function

3.3.2.7 Function scamod_fsc_compute
This scamod_fsc_compute function retrieves the snow covered area (SCA) from the image data
using the SYKE (SCAmod) algorithm.

Input data
The input directory contains ENVI files produced by the data import module.

data file should represent a MODIS scene of any type
should contain MODIS band 1 as its first band

cloud file residing in the output directory,
it should have the same geometry as the data file

Configuration data
transFile : path to the file containing the trasmittivity map
forest_refl e.g 6 (6%)
ground_refl e.g.7 (7%)
wetsnow_refl e.g.66 (66%)

Output data
SCA product file: basic product with SCA values for every cell without respect to

confidence, cloud cover or land mask

SCA-conf file: confidence for basic SCA product

Interactions
Called from retrieveSCA function

3.3.2.8 Function enveo_sca_compute
This enveo_sca_compute function retrieves the snow covered area (SCA) from the image data
using the Shi (enveo) algorithm.

 SnowLab software documantation 35

Input data
The input directory contains ENVI files produced by the data import module.

data file should represent a MODIS scene of any type
should contain MODIS band 1 as its first band

cloud file residing in the output directory,
it should have the same geometry as the data file

Configuration data
forestFile path to forestmask
waterFile path to watermask

Codes: waterCode = 40
forestThres = 30
thres_ndsi = 0.7
thres_ndsi_mixed = 0.12
thres_refl06 = 15
thres_refl06_mixed = 7.0
snowOpenCode = 1
snowMixedOpenCode = 2
snowForestCode = 3
snowFreeOpenCode = 4
snowFreeForestCode = 5

Minimum number of endmembers needed to make fsc‐estimate
noEndMemb = 3
searchRadius = 30

nofbands = 4

#Code used for mixedpixel where number of endmembers located are below noEndMemb
nonValidCode = 200

Output data
SCA product file: basic product with SCA values for every cell without respect to

confidence, cloud cover or land mask

SCA-conf file: confidence for basic SCA product

Interactions
Called from retrieveSCA function

3.3.2.9 Function stsModis
This function retrieves the surface temperature (STS) of snow from calibrated thermal MODIS
data. The STS product is produced by means of Key’s algorithm.

Input data
The input directory contains ENVI files produced by the data import module.

data file : should represent a MODIS scene of type 1KM.
should contain the MODIS bands 31 and 32 among its layers.

angle file: should represent the view angle. It is used in Key’s algorithm

latlon file: should follow the processing chain if data file is not resampled

36 SnowLab software documentation

Configuration data
stsMethod: identifying what method to use, default is ‘Key’, no other options yet
keyFileName: identifies a file with the complete set of coefficients for Key’s algorithm

The rest of the parameters aim at identifying what subset of Key’s coefficients to use and should
not be changed

Output data
STS product file product with STS values for every cell without respect to confidence,

cloud cover, snow cover or land mask

latlon file forwarded from input directory if required

Interactions
Called from makeBasicProducts.

3.3.2.10 Function sgsModis
This function retrieves a snow grain size index (SGS) from the image data

Input data
The input directory contains ENVI files produced by the data import module.

data file: should represent a MODIS scene of type 1KM.
should contain the MODIS bands 1 and 5 among its layers.

latlon file: forwarded from input directory if required

Configuration data
This function has currently no configuration data.

Output data
SGS product file product with SGS values for every cell without respect to confidence,
 cloud cover, snow cover or land mask

latlon file: should follow the processing chain if data file is not resampled

Interactions
Called from makeBasicProducts

3.3.3 Module projectProducts

This module provides one function, which is callable from the framework through the API:

Framework

Data
import

Basic
products

project
Products

Derived
products

Product
export

 SnowLab software documantation 37

• projectProducts is a function that projects the specific image data or products into the
given geometrical reference system.

3.3.3.1 Function projectProducts
The purpose of the projectProducts is to take a swath image and/or a set of basic products
derived form such an image, and resample it into a map grid. The function will first make a
geo-index map that will map the swath image into the grid, and then use that index in the
resampling of the swath data.

Input data
The input data is a list of basic products from the makeBasicProducts module (or alternatively
image data from the dataImport module), together with their corresponding latLon file.

Configuration data
The resampling of the products is specified like this:
products: list of products to resample
<product>_resamplMet the resampling method to use for a given product
<product>_conf flag if also the product configuration file is to be resampled
cell size cell size of output products
projCfg: name of cfgFile for the projection definition, as above

This configFile specifies the map projection and area by means of these parameters:
Projection: projection type, default ‘UTM’
UtmZone: triggered if projection is UTM
Datum: datum name, default is ‘WGS‐84’
UpperLeft: map projection coordinates of upper left corner
LowerRight: map projection coordinates of lower right corner
projectionName: to be used for identification / reference

Output data
For each of the specified products, one product file and optionally one confidence file
resampled to the specified map projection.

Interactions
Called from framework

Calling makeGeoIndex

Note: The resampling method for the cloudMask should be specified as BL on order to
identify all map cells that are influenced by clouds.

Note: Former versions of the system required makeGeoIndex as a separate step in the
production chain or as a part of the basicProducts step. Now all this is handled directly by the
projectProducts step. Also note that the former calls to the compiled C-programs ‘spawn_corr’
are obsolete in the current version.

38 SnowLab software documentation

3.3.4 Module derived products

This module handles products where one needs to consider a time-series of one or more basic
products. All functions in this module require that all input products are given in a common
geometric reference. The functions also require a cloud mask or a confidence map for each
input product.

The functions need to consider the time sequence of various basic products through the
production chain. The framework itself only controls the various steps for one particular scene
at the time, and does not know anything about the other scenes in a time-series. Therefore the
multi-functions need a common toolbox, here referred to as a multi-scene controller or a time-
series controller. This controller keeps track of the current time-series, and gives access to
scenes that belong to the current time series.

3.3.4.1 Function makeSSW
This function estimates an index for snow surface wetness (SSW) based on the current change
in SGS in addition to the current value of STS

Input data
The input consists of geo-corrected ENVI product files

• STS product file

• SGS product files in a short time-series

• SCA product file

• Cloud cover product file

Configuration data
Codes for SSW
startday = 1
maxdays = 5

Temperature limits

Framework

Basic
products

Geo-
correction

Product
export

Make
SSW

product

Make multi-
sensor/ multi-

sensor product

Multi-scene control functions

Data
import

 SnowLab software documantation 39

sts_snow_tresh = 3.0
sts_wet = 0.5
sts_moist = ‐0.5
sts_dry = ‐2.0

Grain size limits
sgs_snow_tresh = 70
sgs_diff_min= ‐0.9
sgs_diff_max= 0.9
code_list = ssw_codelist.cfg

Parameters internal to the SSW algorithm, to be applied on SGS product
sgsOffset = 100 # to be added to SGS prodcut values
scaLimit = 80 # SCA limit between partly and full snow coverage
bareCode = 55 # code to be applied where SCA is below scaLimit (partly snow cover)
simpleOutput = 1

Output data
SSW product for the current day

Interactions
Called from framework

3.3.4.2 Function makeMultiSceneSCA
This module will consider current SCA results within some running time frame and identify the
best observation within that period. The required inputs are SCA products their corresponding
confidence products.

Input data
The input consists of geo-corrected ENVI product files

• sca product files in a time series

• sca confidence files that corresponds

Configuration data
listFile = images10d.lst
omask = observMask.cfg
product = sca
accType = bestobs
period = yearly
dayFactor = 10

Output data
SCA product file for the current day

Interactions
Called from framework

3.3.4.3 Function aatsr_aggregate_snowextent
This module considers current FSC results within some running time frame and identify the best
observation within that period. The required inputs are FSC products and their corresponding
confidence products.

40 SnowLab software documentation

Input data
The input consists of geo-corrected product files

• Previous aggregated product, included mask and confidence

• Current product, included mask and confidence

Configuration data
listFile = images10d.lst

maskcodefile = mask_codes.cfg defining codes for the mask

product = nlr‐SCAmod for identification of correct input files

dayFactor = 10 time span, count down from 100 until 0

Output data
FSC product file for the current day, with mask and confidence. The mask contains mask codes
for the last unconfident observation and cannot be used directly.

3.3.4.4 Function makeMultiSensorSCA
Input data
The input consists of geo-corrected ENVI product files

• sca product files from various sensors in a time series

• sca-confidence files that corresponds

Configuration data
As for multi-scene

In addition a product specific confidence factor to adjust or weight the confidences from the
various sensors.

Output data
sca product file for the current day

Interactions
Called from framework

3.3.5 Module data export

The module data export contains the function exportData, which combines basic products or
derived products with various masks in order to make a presentable final product. It also

Framework

Basic
products

Geo-
correction

Derived
products

Export
data

Data
import

 SnowLab software documantation 41

converts ENVI files to other file formats, if requested. It contains one function that can be called
from the framework:

3.3.5.1 Function exportData
The current version of exportData considers one product and exports it according to
specifications in the configuration data.

Input data
The input directory must contain a file with the specified basic or derived product.

Configuration data
The configuration files should specify these parameters:
product : what product to export; default is ‘sca’
dataOffset: offset value to add to value of geophysical parameter; default = 0
landMask_250 : landmask to be included if imgType is 250
landMask_1KM : landmask to be included if imgType is 1KM
coltab text file with colour table to be applied in the exported product

In addition the class (mask) codes in the input and output files should be specified.

Output data
The raw products are combined with the corresponding cloud mask and the static land/water
mask into a presentable result. The result may be gives as ENVI-files and/or tiff-files in gray
tones and/or colours, as well as a jpg-file or png-file in colours.

3.3.5.2 Function export_globsnow
The current version of export_globsnow combines basic products or derived products with
the corresponding mask and confidence map in order to make a presentable final product. The
product is stored in HDF-format.

Input data
The input directory must contain a file with the specified product, a mask and a confidence map.

Configuration data
product what SE product to export, e.g. SCAmod or nlr‐SCAmod

confProduct sca confidence product produced, e.g. sca‐conf

mask: maks product to export, e.g cloud

level L3A(single products) or L3B (multi products)

classCodings e.g. fsc and/ or 4cl

coltab text file with colour table to be applied in the exported product

region panEurope ; to be put in meta‐data

Output data
One HDF-file for each of the specified classCodings. In addition a color png-file is produced
according to the fsc coding.

42 SnowLab software documentation

4 Appendix
4.1 Configuration files
The configuration file should contain information needed by the controller to perform the right
operations on the different datasets. The general format of the configuration file is as follows. It
should consist of keyword-value pairs: <keyword> = <value>. (The keywords currently defined
are marked with bold font in the example below). The keyword should consist of one or more
strings and be separated from the value with the '=' sign. The value may consist of either a
single value which can be one or more strings ended by EOL, or it can be a list. The start and
end of the list should be marked by parentheses, and each item should be separated by a comma:
{<item1>, <item2>, <item3>}. Each item may consist of one or more strings, and the list may
run over several lines. Comments should start with an '#' and end at EOL.

4.1.1 The main configuration file
In the following example, the format of the configuration file is described in more detail. The
example shows the production chain for two similar processes from two different types of data.
These are MODIS and AATSR.

Note that local mode only is available for AATSR data. However, the main configuration file
still needs to contain the lines referring to remote processing.

CONFIGURATION FILE
Production line for cryospheric variables

project = cryo # Name of project. Default value: 'cryo'

--

maxLog = 100000 # Maximum size of logfile in bytes
 # Default value: 100KB

image catalog = /nr/project/bild/images
 # Must be an existing directory!
 # Default value: $CRYO_TOP/data

The following parameters must be set - there are no default values

Specify the number of (external) providers and their ID.
nof providers = 2 # Number of data providers
providers = {ksat, nasa} # Names of providers.
 # For download of data over ftp, there
 # will also need to be one ftp-configuration
 # file per provider. The format of this will
 # be explained below.

For each provider, specify the mail address of the sender
(There should only be one sender per provider)
ksat sender = mailer@ksat.no
nasa sender = mailer@nasa.no

#Specify the
nof datatypes = 2 # Number of datatypes

number of datatypes and their ID.

datatypes = { modis, aatsr} # Names of datatypes

 SnowLab software documantation 43

Specify the number of steps in the processing chain for the datatypes.
Syntax: <datatype name> nof steps = <nof steps>
There should be one processing chain for each data type.
If there are defined more steps than the number specified,
the last ones will be ignored

modis nof steps = 4

Specification of steps in the processing chain.
Syntax: <datatype name> steps = { … }
There should be one line for each step, where each step
will correspond to a function in the “method API”
Each line should be comma separated. The syntax of each line is:
<name of operation> <name of function> <dataset in> <dataset out> <cfg >
Where:
<name of operation> - the name which will appear in the GUI
<name of function> - the corresponding name of the function to be called
<dataset in> - a number specifying the input dataset
<dataset out> - a number specifying the output dataset
<cfg> - name of a configuration file for the function.
If none is needed a dummy name should be given.
(The file could be located under ‘static’ directory)
modis steps = {
import import_modisdata 1 2 ksat_import.cfg,
basic basic_products 2 3 basic_products.cfg,
project projectproducts 3 4 project_products.cfg,
export export_modisproducts 4 5 sca_export_ksat.cfg }

Here the datasets which are input and output should be given a number as
an ID, with the numbering starting from 1. This corresponds to dataset
number 1, which will always be the original raw data fetched either
remotely or locally. Hence, in the example above, the original dataset
will be input to import, and the import function will put the output in
the directory for dataset number 2 (out1). Dataset number 2 will then
be input to basic_products, which puts the results in dataset 3 (out2).
The step projectproduc reads from dataset 3 and puts the result in
dataset 4 (out3). Finally, an export function is used to show the results
in appropriate formats and the output dataset is found in dataset 5 (out4)

Specification of the steps in the Aatsr processing chain.

aatsr nof steps = 6
aatsr steps = {
import aatsr import_aatsrdata 2 2 preprocessing.cfg,
cloud cloud_aatsr 2 3 cloud_aatsr.cfg,
sca sca_aatsr 2 3 sca_aatsr.cfg,
multi aggregate_snowextent 3 5 aggregate_10d.cfg,
export single export_globsnow 3 4 export_L3A.cfg,
export multi export_globsnow 5 6 export_L3B.cfg}

Specification of local mail. (Needed for automatic remote download.)
mailusr = cryo # local mail user
mailpwd = cryo # local mail password
mailhost = mail.nr.no # local mail host
mailport = 100 # local mail port

44 SnowLab software documentation

4.1.2 The relationship between the configurations files
The main configuration file makes references to each function to run, and to a corresponding
configuration file. Each of these configuration files will specify a set of arguments. These
arguments may be

• Ordinary arguments

• References to static or dynamic files

• References to other configuration files

The references to other configuration files build up a hierarchy or network of configuration
files. In particular this is the case for AATSR data where the range for choosing methods is
wide. This purpose of this section is to give an overview of this structure.

• aatsr_prepocessing.cfg

o dimapMosaic.cfg [bands to read; map coordinate system and extent]

o topoCorrection.cfg [how to calculate the illumination]

• aatsr_basic_products.cfg

o cloud_aatsr.cfg

 method

 cloud_syke.cfg

 cloud_knn.cfg

 mask_codes.cfg

 mask_name [watermask to be used

o sca_aatsr.cfg

 method

 calibMask [to be used by the NLR method]

 nlr_thresholds.cfg

 SCAmod.cfg

 ShiEnveo.cfg

 combMask [for combining nlr and scamod]

• aggregate.cfg [for making multi-products]

o mask_codes.cfg [same as for cloud masking]

o list_file [to keep record of former products]

• export.cfg

o colTab [file with color table]

 SnowLab software documantation 45

5 References
Andersen, T. 1982, "Operational snow mapping by satellites," Hydrological aspects of alpine and high

mountain areas, Proceedings of the Exeter symposium, July 1982, IAHS publ. no. 138, pp. 149-154.

Amlien, J and Solberg, R, 2004. “Evaluation of algorithms for the retrieval of snow surface temperature

from medium resolution satellite data”. The 8th Circumpolar Symposium on Remote Sensing of
Polar Environments, Chamonix, France, 08-12 June, 2004.

Key, J.R., J. B. Collins, C. Fowler, and R. S. Stone, 1997. “High-latitude surface temperature estimates

from thermal satellite data”, Remote Sensing of Environment, 1997. 61(2), pp. 302-309.

Koren, H, Solberg, R and Amlien, J. 2004. “Evaluation of algorithms for the retrieval of snow grain size

from optical satellite data”. The 8th Circumpolar Symposium on Remote Sensing of Polar
Environments, Chamonix, France, 08-12 June, 2004.

Malnes, E, Storvold, R, Lauknes, I; Solberg, R; Amlien, J and Koren, H, 2005 “Multi-sensor monitoring

of snow parameters in Nordic mountainous areas” IEEE International Geoscience and Remote
Sensing Symposium (IGARSS 2005), Seoul, Korea, 25-29 July 2005

Metsämäki, S.J., Anttila, S.T, Huttunen, J.M and Vepsäläinen, M, 2005. A feasible method for fractional

snow cover mapping in boreal zone based on a reflectance model. Remote sensing of Environment
2005, 95, pp 77-95.

Shi, J, 1999 “Estimation of snow fraction using AVIRIS simulated ASTER image data” Proc. of Eighth

Airborne Geos. AVIRIS Workshop JPL, Calif. Inst. of Technology, Pasadena, CA, February 10-11,
1999

Solberg, R. and T. Andersen, 1994. “An automatic system for operational snow-cover monitoring in the

Norwegian mountain regions,” Geoscience and Remote Sensing Symposium (IGARSS), Pasadena,
California, USA, 1994.

Solberg, R, Amlien, J, Koren, H, Eikvil, L, Malnes, E, and Storvoll, R. 2004a. Multi-sensor and time-

series approaches for monitoring of snow parameters. IEEE International Geoscience and Remote
Sensing 2004

Solberg, R, Amlien, J, Koren, H, Eikvil, L, Malnes, E and Storvold, R, 2004b. “Multi -sensor/multi-

temporal analysis of ENVISAT data for snow monitoring” ESA ENVISAT & ERS Symposium,
Salzburg, Austria, September 06-10, 2004.

Solberg, R, J Amlien, H Koren, E Malnes and R Storvold 2005, “Multi-sensor multi-temporal snow cover

area algorithms. Part 1: Mountain regions ” Envisnow EVG1-CT-2001-00052. Norut, Feb. 2005.

Solberg, R, Amlien, J, Koren, H, Eikvil, L, Malnes, E and Storvold, R 2005b “Multi-sensor/multi-

temporal approaches for snow cover area monitoring” EARSeL LIS-SIG Workshop, Berne, February
21-23, 2005.

	1 System overview
	1.1 Purpose
	1.2 System architecture
	1.2.1 Modules
	1.2.2 Main process
	1.2.3 The framework

	1.3 Overview of the system modules and their main functions
	1.3.1 Import module
	1.3.2 Basic products module
	1.3.3 Geometric correction module
	1.3.4 Derived products module
	1.3.5 Export module

	1.4 Outline of the production chains
	1.4.1 Outline of the MODIS production chain
	1.4.2 Outline of the AATSR production chain

	1.5 Retrieval algorithms for basic snow parameters
	1.5.1 Cloud Cover Mask
	1.5.2 Snow Covered Area (SCA)
	1.5.2.1 NLR
	1.5.2.2 Modified Shi
	1.5.2.3 SCAmod

	1.5.3 Surface Temperature Snow (STS)
	1.5.4 Snow Grain Size (SGS)

	1.6 Derived product algorithms
	1.6.1 Multi-SCA
	1.6.2 Snow Surface Wetness (SSW)
	1.6.3 Other

	2 System Operator’s Manual
	2.1 System Installation Guide
	2.1.1 Unpacking the software
	2.1.2 Directory structure
	2.1.3 Setup of the production chain
	2.1.3.1 Configuration file format
	2.1.3.2 Main configuration file
	Configuration of automatic download
	Configuration of the production chains
	Optional main configuration parameters

	2.1.3.3 Setup of the production steps

	2.2 System Operator’s Guide
	2.2.1 Starting the software
	2.2.2 Remote modus
	2.2.3 Local modus
	2.2.4 Process control
	Temp files
	Logfiles
	Error handling
	Warnings

	2.3 Instructions for operating in local modus
	2.3.1 MODIS data
	Data download
	Edit list file
	Start the processing chain
	Upload the product

	2.3.2 AATSR data
	Data download
	Edit list file
	Start the processing chain
	Upload the product

	3 System Developer’s Manual
	3.1 Introduction
	3.2 Interaction between the framework and the application software
	3.2.1 Main principles
	3.2.2 Modifications and specifications
	Temp files
	Input/output directories
	Configuration files

	3.3 Module descriptions
	3.3.1 Module data import
	3.3.1.1 Function importModisData
	Input data
	Output data
	Configuration data
	Interactions

	Optional function getSpatialSubset
	Configuration data

	3.3.1.2 Function importAaatsrData
	Input data
	Output data
	Configuration data

	3.3.1.3 Function beam_mosaic
	Input data
	Output data
	Configuration data
	Comment

	3.3.1.4 Function getilluminationmodel
	Input data
	Output data
	Configuration data

	3.3.2 Module basic products
	3.3.2.1 Function makeBasicProducts
	Input data
	Configuration data
	Output data
	Interactions

	3.3.2.2 Function cloudModis
	Input data
	Configuration data
	Output data
	Interactions

	3.3.2.3 Function cloudAatsr
	Input data
	Parameters
	Output data
	Interactions

	3.3.2.4 Function retrieveSCA
	Configuration data
	Note

	3.3.2.5 Function sca_aatsr
	Configuration data

	3.3.2.6 Function nlr_sca_compute
	Input data
	Configuration data
	Output data
	Interactions

	3.3.2.7 Function scamod_fsc_compute
	Input data
	Configuration data
	Output data
	Interactions

	3.3.2.8 Function enveo_sca_compute
	Input data
	Configuration data
	Output data
	Interactions

	3.3.2.9 Function stsModis
	Input data
	Configuration data
	Output data
	Interactions

	3.3.2.10 Function sgsModis
	Input data
	Configuration data
	Output data
	Interactions

	3.3.3 Module projectProducts
	3.3.3.1 Function projectProducts
	Input data
	Configuration data
	Output data
	Interactions

	3.3.4 Module derived products
	3.3.4.1 Function makeSSW
	Input data
	Configuration data
	Output data
	Interactions

	3.3.4.2 Function makeMultiSceneSCA
	Input data
	Configuration data
	Output data
	Interactions

	3.3.4.3 Function aatsr_aggregate_snowextent
	Input data
	Configuration data
	Output data

	3.3.4.4 Function makeMultiSensorSCA
	Input data
	Configuration data
	Output data
	Interactions

	3.3.5 Module data export
	3.3.5.1 Function exportData
	Input data
	Configuration data
	Output data

	3.3.5.2 Function export_globsnow
	Input data
	Configuration data
	Output data

	4 Appendix
	4.1 Configuration files
	4.1.1 The main configuration file
	4.1.2 The relationship between the configurations files

	5 References

