

www.nr.no earthobs.nr.no

Time-series analysis of satellite images for forest cover change monitoring in tanzania

Øivind Due Trier and Arnt-Børre Salberg

Norwegian Computing Center

Goals

- Map forest cover
- ► Map forest change:
 - Degradation
 - Deforestation
 - Regrowth
- Record historic changes in forest cover

NR will develop methods and processing chains for these purposes

Challenges

- Data volume: Tanzania is covered by 48 Lansat scenes. Both Landsat-5 and Landsat-7 have 16 days repeat cycle.
- Overcome problems with cloud cover in optical images (and missing data in Landsat-7)
- Atmospheric disturbances
- Sparse forests and open woodland
- Natural variability

Solutions (1)

- Data volume: Tanzania is covered by 48 Lansat scenes. Both Landsat-5 and Landsat-7 have 16 days repeat cycle.
 - Solution: Automatic processing chains
- Overcome problems with cloud cover in optical images (and missing data in Landsat-7)
 - Solution: Use all available acquisitions of the same path/row in a time series analysis which allows missing observations
 - Solution: Use SAR images in addition to optical images

Solutions (2)

- Atmospheric disturbances
 - Solution: atmospheric correction
- Sparse forests and open woodland
 - Solution: Model pixels as mixtures of, say, 1-3 landcover types
 - Solution: Time series analysis to monitor gradual changes
- Natural variability
 - Solution: Time series analysis to discriminate natural variability from changes

Preprocessing

- Automatic processing chain
- Provide optical satellite images that can be used in subsequent time series analysis for the mapping of forest area and forest area change
- Provide optical satellite images (Landsat) with ground cover reflectance values
- Develop automatic processing chains

NR will develop methods and processing chains for these purposes

Landsat TM images (166/63)

1985-03-09

1986-06-16

1986-08-19

1986-10-06

1987-08-06

1995-02-01

1995-02-17

1995-05-24

2008-06-12

2009-07-01

2009-11-06

2009-11-22

2009-12-08

2010-02-10

www.nr.no earthobs.nr.no

Atmospheric disturbance

Atmospheric correction with LEDAPS preprocessing tools

Top of the atmosphere reflectance

Surface reflectance

Atmospheric correction

- The LEDAPS preprocessing is a good starting point, but has some shortcomings:
 - Requires presence of dark green forest
 - Requires less than 30% cloud cover

Cloud cover

Cloud cover

- Develop and test methods for cloud and cloud shadow
 - Detection
 - Masking
- ► No mosaicing!
 - We need to keep the dates of observations
 - We need all observations
- Radar images can penetrate cloud cover, however, these images are more difficult to interpret
 - Multisensor optical + radar time series

Terrain height correction

Terrain height correction

- Requires a good digital elevation model
- Important for multi-sensor
 - Landsat + SAR
 - Landsat + Sentinel-2
- ► Is Landsat L1T sufficiently accurate?
- Not an issue if only Landsat is used

Automatic pre-processing chain

Time series analysis

Timeline for one pixel = most likely sequence of land cover classes.

Background

- NR and Norut have created automatic processing chains at KSAT:
 - Optical images
 - Radar images
 - Multisensor optical + radar images
- Previous projects:
 - **Time series** better than individual images
 - Multisensor better than optical or radar alone

Change detection

- Naive: simply create forest cover maps from two years, and compare
 - Errors in both maps are added. *Not a good idea!*
- Better: model what is going on by using all available images from the two years (and between)
 - Time series analysis
 - Hidden Markov model
 - Viterbi algorithm
- Then: get forest cover map as a by-product of time series analysis

- Demonstrate: a concept for temporal forest cover analysis
- Products:
 - Spatial forest/land cover at any time instant.
 - Forest/land cover change detection map at any time instant
 - no propagation of classification errors from one time instant to the next.
 - Cloud free image estimate at any time instant.

www.nr.no earthobs.nr.no₁₀

Hidden Markov model

Land cover classes (or states): forest, sparse forest, soil and grass.

www.nr.no earthobs.nr.no₂₀

Model each pixel using a class transition probability

P_{jk} = P(class j|class k) is the probability that a pixel containing class k is containing class j in the next time instant.

One step in the Viterbi algorithm

earthobs.nr.no

Landsat TM image stack (166/63)

1985-03-09

1986-06-16

1986-08-19

1986-10-06

1987-08-06

1995-02-01

1995-02-17

1995-05-24

2008-06-12

2009-07-01

2009-11-06

2009-11-22

2009-12-08

2010-02-10

www.nr.no earthobs.nr.no₂₃

Landsat TM image stack (166/63)

www.nr.no earthobs.nr.no₂₄

Results - Forest cover maps

www.nr.no earthobs.nr.no₂₅

Results - Forest cover change

1986-06-16

1986-08-19

1986-10-06

2009-12-08

2010-02-10

2009-07-01

clouded observation

2009-11-22

WV2 2010-03-25

Conclusions

- Time series analysis of each pixel based on a hidden Markov model
- Finds the most likely sequence of land cover classes
- Change detection based on classified sequence
 - Does not propagate errors since the whole sequence is classified simultaneously.
 - Regularized by the transition probabilities.
- Handles cloud contaminated images
 - Cloud free land cover generated by allowing missing observations for each pixel

www.nr.no earthobs.nr.no₂₇

Future work

- A lot of work remains before this may be applied on national coverage mapping:
 - Better cloud and cloud shadow detection
 - Better atmospheric correction
 - Fine-tune transition probabilities
 - Appropriate land cover classes
 - Calibration and verification with field data
 - Integrate into automatic processing chain
- ► This will be done in the present project

www.nr.no earthobs.nr.no₂₈

Multsensor possibilities

- Multitemporal observations from other sensors (e.g., radar) may naturally be modeled in the hiddem Markov model
 - Only the sensor data distributions are needed, e.g. $p_{SAR}(\mathbf{y}_t | \text{class } k)$
- Different physical properties of the land cover may be used in a multisensor framework to enhance the performance.
- The multisensor images need to be geocoded to the same grid

Multisensor Hidden Markov model

www.nr.no earthobs.nr.no₃₀

Acknowledgements

The experiment presented here was supported by a research grant from the Norwegian Space Centre.

References

- Salberg, A.-B., 2011. Land Cover Classification of Cloud-Contaminated Multitemporal High-Resolution Images. *IEEE Transactions on Geoscience and Remote Sensing* 49 (1), pp. 377-387.
- Salberg, A.-B., Trier, Ø. D., 2011. Temporal analysis of forest cover using hidden Markov models. 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 24-29 July, Vancouver, Canada.

