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ADAPTIVE INDEPENDENT METROPOLIS–HASTINGS1

BY LARS HOLDEN, RAGNAR HAUGE AND MARIT HOLDEN

Norwegian Computing Center

We propose an adaptive independent Metropolis–Hastings algorithm
with the ability to learn from all previous proposals in the chain except the
current location. It is an extension of the independent Metropolis–Hastings al-
gorithm. Convergence is proved provided a strong Doeblin condition is satis-
fied, which essentially requires that all the proposal functions have uniformly
heavier tails than the stationary distribution. The proof also holds if propos-
als depending on the current state are used intermittently, provided the in-
formation from these iterations is not used for adaption. The algorithm gives
samples from the exact distribution within a finite number of iterations with
probability arbitrarily close to 1. The algorithm is particularly useful when
a large number of samples from the same distribution is necessary, like in
Bayesian estimation, and in CPU intensive applications like, for example, in
inverse problems and optimization.

1. Introduction. Assume we want to sample from a distribution π or make
estimates based on π, but direct samples from π are not obtainable. Rejection
sampling importance sampling, and sampling importance resampling (SIR) are
techniques for generating such samples and estimates by proposing samples from
a different distribution q . Another alternative is to use a Metropolis–Hastings al-
gorithm with a proposal function that is independent of the present position. This
approach, which we call independent Metropolis–Hastings, is also known as inde-
pendent Markov chain in Tierney (1994), or Metropolized independent sampling
in Liu (1996), or independence sampler in Roberts and Rosenthal (1998). The
efficiency of these methods depends on the proposal distribution q being close
to π. If this is not practically possible, other Markov chains such as Metropolis–
Hastings based on local moves around the present state may be better; see Meyn
and Tweedie (1993), Gilks et al. (1996) and Geyer (1992).

In all the alternatives described above, knowledge about the stationary distribu-
tion is gained as the number of iterations increases. This knowledge may be used
to adapt the proposal distribution in order to improve the convergence of the chain.
The bound on the convergence improves and the bound on the correlation between
subsequent states in the chain decreases when the proposal distribution better ap-
proximates the stationary distribution; see the proposition in Holden (1998b).
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Adaptive Markov chains is an active research area; see, for example; Atchade
and Rosenthal (2003) and the references therein. The paper Roberts and Rosen-
thal (2005) has several general results for adaptive Markov chains, but they focus
on diminishing adaption that is not necessarily satisfied by the method proposed
in this paper. Erland (2003) gives an overview of adaptive algorithms. He divides
adaptive algorithms into three groups: adaptive strategies within ordinary MCMC,
algorithms where the adaption diminishes and algorithms with regeneration. There
are several papers proposing very different algorithms within each group. The
possibilities for adaption within ordinary MCMC is limited; see Tjelmeland and
Hegstad (2001). Regeneration tends to happen so seldom in higher dimension that
this limits the applicability of these algorithms; see Gilks et al. (1998). Algorithms
where the adaption diminishes are probably the most promising; see for example,
Haario et al. (2001). However, also these algorithms have restrictions that make
them difficult to use.

The algorithm presented in this paper is within the diminishing subgroup even
though the adaption does not need to diminish. It is less technical than the other
algorithms, and it is easy to describe and use in practice. Also, it has a pro-
posal function that depends on all earlier proposed states except the current, and a
Metropolis–Hastings-like acceptance step. There is a large flexibility in the choice
of proposal function and it is a challenge to find a proposal function that is able
to use the data efficiently in order to obtain satisfactory convergence. This is dis-
cussed in the paper and four different examples are given with both parametric
and nonparametric alternatives. We call this algorithm the adaptive independent
Metropolis–Hastings algorithm. This is a special case of the adaptive chain de-
scribed in Holden (1998a). Surprisingly, the limiting density is invariant with an
independent proposal function and hence this gives much better convergence prop-
erties than in the general case. The algorithm is particularly designed for examples
where it is expensive to calculate the limiting density π. In such examples it is
most likely cost effective to use a lot of data in an adaptive scheme.

Gåsemyr (2003) describes another adaptive algorithm based on the independent
Metropolis–Hastings algorithm. The convergence rate of both that algorithm and
our algorithm depends on the ratio π/qi , where qi denotes the proposal distribu-
tion in iteration i. Both algorithms do also give exact samples in a finite number
of iterations. The adaption schemes seem different, as the algorithm in Gåsemyr
(2003) adapts on previously accepted states, whereas our algorithm adapts on pro-
posed states. However, this difference is not as essential since the algorithm pre-
sented in Gåsemyr (2003) may easily use proposed states instead. From all the
proposed states, it is possible to generate a new independent chain with the same
properties as the accepted chain. The main difference is that the algorithm de-
scribed in Gåsemyr (2003) requires that the supremum of the ratio f/qi is known,
where f = cπ and c is an unknown constant. This supremum is used in the algo-
rithm, and although the algorithm will converge without it, the convergence will
be weaker. It adapts using groups of previous states, and the adaption stops after a
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finite number of iterations. The algorithm presented in this paper only requires that
the supremum of π/qi is finite, it may use all previous states in the adaption and
the adaption does not stop. It may also include iterations with proposal functions
that depend on the present position, but the information from these iterations can-
not be used for adaption. Andrieu and Moulines (2003) also discuss independent
Metropolis–Hastings and our Theorem 1 is of interest for the research area they
focus on.

The independent Metropolis–Hastings algorithm is an efficient sampling algo-
rithm only if qi is reasonably close to π . However, it allows great freedom of
adaption, as shown both here and in Gåsemyr (2003). Adaption should also make
the proposals resemble π , and hence the adaptive version will be an efficient sam-
pler. We will prove a bound on the convergence that depends on the supremum
of π/qi . An attractive property of independent proposals is their ability to make
large jumps, and if this can be done while keeping the acceptance rate high, the
autocorrelation of the chain will decrease rapidly.

2. Definition of the adaptive independent Metropolis–Hastings algorithm.
The goal for the algorithm is to sample from a distribution π , which is known
except for a normalizing constant. The algorithm resembles the traditional
Metropolis–Hastings algorithm (MH). A chain x is generated by drawing pro-
posals zi from a proposal distribution qi(zi |xi−1, ỹ

i−1) and either accepting them,
setting xi = zi , or rejecting them, setting xi = xi−1. The proposal history vector ỹi

is defined as follows: If the proposal is independent of the current state, the history
vector is extended by including zi if zi was rejected, and xi−1 otherwise. On the
other hand, if the proposal is dependent on the current state, the history vector is
kept unmodified, that is, ỹi = ỹi−1. The difference between traditional MH and
adaptive independent MH is only that the proposal function qi may depend on the
history vector. In adaptive independent MH qi may depend on all states where the
function f = cπ has been evaluated, except the current state of the chain, and these
values can be used to make qi a better approximation of π . Also when doing local
steps conditioned on xi , all information in ỹi can be used. The limitation is that
information gained from doing the local steps cannot be used, so these iterations
do not improve the proposal.

The full algorithm is given as:

1. Set ỹ0 = ∅.
2. Generate an initial state x0 ∈ � from the density p0.
3. For i = 1, . . . , n:

(a) Generate a state zi from the density qi(zi |xi−1, ỹ
i−1).

(b) Calculate αi(zi, xi−1, ỹ
i−1) = min{1,

π(zi)qi (xi−1|zi ,ỹ
i−1)

π(xi−1)qi (zi |xi−1,ỹ
i−1)

}.
(c) Set

xi =
{

zi, with probability αi(zi, xi−1, ỹ
i−1),

xi−1, with probability 1 − αi(zi, xi−1, ỹ
i−1).
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(d) Set ỹi = ỹi−1 if qi depended on xi−1. Otherwise,

ỹi = ỹi−1 appended with
{

zi, if zi was rejected ,
xi−1, if zi was accepted.

A classical random-walk MH algorithm where only states close to the present
state in the chain are proposed, may stay close to a local optimum for a large
number of iterations such that the user believes that the chain has converged. This
may also be a problem with the presented algorithm, but if the proposal function
is used properly, the probability for staying close to a local optimum is less with
this algorithm than with classical MH since more information may be included
in the proposal. However, if the proposal function adapts too fast, the presented
algorithm may be even worse than classical MH.

The presented algorithm gives a very large flexibility in choosing the proposal
function qi. Creating a good proposal function may be difficult. The choice de-
pends on the problem we want to solve, the function π , the time used for an eval-
uation of π , how to let qi approximate π , and the CPU and software resources
available. It may also be a challenge to use all the data ỹi effectively, in particular
in higher dimensions. Theorem 2 gives a bound on the convergence based on how
well qi approximates π , similar to the convergence bounds for the Metropolis–
Hastings algorithm given in Holden (1998b). High convergence rate also implies
that the correlation between state xi and xi+k decreases quickly as k increases.
This may be as important as convergence if the chain is used to compute averages
such as

1

N

N∑
i=1

F(xi)

for some function F .
Finding a suitable representation of qi that is able to use all the data ỹi ef-

fectively may be a challenge. For a parametric qi this is done by estimating the
parameters from the knowledge about π in the history states. This is illustrated in
Example 4. However, π may be too complicated for a simple parametric descrip-
tion. In these cases, nonparametric approaches can be used, as is done in three of
the examples. It is always important that the proposal function does not adapt too
fast and has heavy tails. This becomes clear when we see the convergence proper-
ties and the examples. Another problem is that the history vector grows large, and
using all the information there for an update may become time consuming. Again,
the method used in the examples shows how this information may be reduced. In
cases where the evaluation of f = cπ is expensive, the overhead in computing the
proposal even with a full history vector may be insignificant. Kriging or other spa-
tial statistical methods are possible, but these alternatives may be complicated if
the number data points become large. In a large class of problems [see, e.g., Park
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and Jeon (2002) and Kleijnen and Sargent (2000)],

f (x) =
m∑

j=1

ωj

(
gj (x) − dj

)2
,

where (g1, g2, . . . , gm) is the vector-valued response of a simulation model, ωj

are weights and dj are the data. This is an inverse problem where it is necessary to
find the parameter values x with uncertainty that give an observed response. For
these problems we may use the evaluations of gj (zi) to find an approximation to
the functions gj (x) parametrically or nonparametrically. Example 4 illustrates this
approach.

3. Convergence. Let �1 = � ⊂ R
n be a Borel-measurable state space or,

alternatively, let � be a discrete state space, and �i+1 = � × �i , and x̃i =
(x1, . . . , xi) ∈ �i. Let μ(x̃i) be the product measure on �i of a σ finite measure
μ(x). Further, let the density π and the proposal functions qi be integrable with
respect to μ including point mass distribution. In the notation we neglect that ỹi

may have dimension less than i in order to simplify the notation. This is the case
if some of the proposal functions qi use local proposals.

The convergence rate depends on the constant ai(ỹ
i−1) in the strong Doeblin

condition: Let ai(ỹ
i−1) ∈ [0,1] satisfy

qi(z|x, ỹi−1) ≥ ai(ỹ
i−1)π(z) for all (z, x, ỹi−1) ∈ �i+1 and all i > 1.(1)

The Doeblin condition essentially requires that all the proposal distribution has
uniformly heavier tails than the target distribution. This condition is always satis-
fied for ai(ỹ

i−1) = 0. Theorem 2 below is valid also in this case, but we only prove
convergence if the expected value satisfies E(

∏∞
i=1(1 − ai(ỹ

i−1)) = 0. However,
it may be useful to allow that ai(ỹ

i−1) = 0 for some values of i. It is possible to
obtain ai(ỹ

i−1) > 0 by making the tails in the proposal function sufficiently heavy.
This will usually be satisfied in a Bayesian approach using a prior with heavy tails.
Alternatively, we may replace qi(z|x, ỹi−1) by (1 − ε)qi(z|x, ỹi−1)+ εg(z) where
g(z) is a density with extremely heavy tails and ε is small. The assumptions in the
theorem are satisfied and we only “waste” at most ε of the proposals. However,
a small ε may give slow convergence in the tails. The Doeblin condition is natural
for an independent sampler. If it is not satisfied for some states in �, the algorithm
will tend to undersample these states. This is not crucial if the probability mass
of these states is low and further inference does not depend on tail behavior. In
one of our examples the stationary distribution has heavier tails than the proposal
distribution, but convergence is still achieved with the measure we use.

Let pi(xi) be the distribution for xi after i iterations and p̂i(xi |ỹi) the condi-
tional distribution for xi given the history vector. The following theorem is crucial
in the understanding of the algorithm, and is the basis for the convergence result.
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THEOREM 1. The limiting density π conditioned on the history is invariant
for the adaptive independent Metropolis–Hastings algorithm, that is, p̂i(xi |ỹi) =
π(xi) implies p̂i+1(xi+1|ỹi+1) = π(xi+1).

It is possible to combine this theorem with Theorem 6 in Roberts and Rosenthal
(2005) to get the following result: If we assume that the proposal function for
all histories is uniform ergodic and the adaption diminishes, then the algorithm
converges in the total variance (TV) norm

‖pi − π‖TV =
∫
�

|pi(x) − π(x)|dμ(x).

In this paper we will instead assume the strong Doeblin condition and obtain
geometric convergence.

THEOREM 2. Assume the adaptive independent Metropolis–Hastings algo-
rithm satisfies (1). Then

‖pi − π‖TV ≤ 2
∫
�i

p̃i(ỹ
i)

i∏
j=1

(
1 − aj (ỹ

j−1)
)
dμ(ỹi−1)(2)

= 2E

(
i∏

j=1

(
1 − aj (ỹ

j−1)
))

.(3)

If aj (ỹ
j−1) ≥ aj for all j and ỹj−1 ∈ �j−1, then

‖pi − π‖TV ≤ 2
i∏

j=1

(1 − aj ).(4)

The algorithm converges if this product goes to zero when i → ∞. If aj > a > 0
infinitely often, the algorithm samples from the target distribution within a finite
number of samples with a probability arbitrarily close to 1.

The proofs are given in the Appendix. Theorem 2 says that convergence is geo-
metric as long as a strong Doeblin condition is satisfied for all possible histories
with aj (ỹ

j−1) ≥ a > 0 for all j and ỹj−1 ∈ �j−1. In each iteration the chain
jumps to the limiting density π with probability aj (ỹ

j−1). Then the chain remains
in this density according to Theorem 1 since π is invariant for the adaptive in-
dependent Metropolis–Hastings algorithm. The probability for not sampling from
the limiting density after j iterations is E(

∏i
j=1(1 − aj (ỹ

j−1))).

If the adaption succeeds in generating better proposal distributions, ai(ỹ
i−1)

will increase as i increases, and the convergence will be accelerating. This also
means that the number of iterations needed to generate a set of independent sam-
ples decreases.
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4. Examples. This section gives four examples. All examples are schematic
examples where we compare different Metropolis–Hastings algorithms: indepen-
dent sampler, random-walk proposing small jumps and adaptive independent sam-
pler where the proposal function is higher close to the modes that are identified so
far. The first example is a quantitative comparison showing that the adaptive in-
dependent sampler converges faster, identifies modes better and jumps more often
between different modes than the other algorithms. In Examples 2 and 3 the same
adaptive independent algorithm is used showing how flexibly the algorithm may
be used in different cases. The three first examples are in one or two dimensions.
We do not believe that the dimension is critical. What is important, though, is how
sharp the modes are and the number of modes. But in high dimension one may pre-
fer to change only a few variables in each iteration if this reduces the number of
calculations per iteration and not because this is an efficient Metropolis–Hastings
algorithm per iteration. The final example illustrates how to combine the proposed
algorithm with an external simulation model that is assumed to be very demanding
to evaluate. This is a typical problem in a large number of applications.

EXAMPLE 1. Let π be the function

π(x) = 4c min
{(

x + 2
3

)α
,
(4

3 − x
)α} + c min

{(
x + 1

3

)α
,
(5

3 − x
)α}

for constants c and α and for 0 < x < 1. See Figure 1. We will compare three
different proposal functions defined in 0 < x < 1. Let the independence sampler
have proposal function q1(x) = 1. The random-walk sampler is given the proposal
function q2

i (x) = 1/L for xi−1 −L/2 < x < xi−1 +L/2, and q2
i (x) = 0 otherwise,

where xi−1 is the present position of the chain and L is the maximum step length.
In the case xi−1 is close to 0 or 1, it is necessary to reduce L in this iteration in order

FIG. 1. The function π(x) in Example 1 with α = 30.
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for the proposal function to be a proper density. This is very unlikely to happen
except in the first few iterations. Before we can describe the proposal function for
the adaptive independent sampler we need to define the two variables z

j
i ∈ ỹi−1

such that f (z1
i ) ≥ f (z) for all z ∈ ỹi−1 and z1

i , z < 0.5 and that f (z2
i ) ≥ f (z) for

all z ∈ ỹi−1 and z2
i , z > 0.5. Hence, the z

j
i ’s are our best guess on the two modes

after i iterations of the Markov chain. The adaptive independent sampler is then
given the proposal function

q3(x)i =
{

1 − 2p + p/L, if z
j
i − L/2 < x < z

j
i + L/2 for j = 1,2,

1 − 2p, otherwise,

for two constants p and L. 2p is the probability for a proposing a local jump and L

is the maximum length of a local jump. Also for this sampler it may be necessary
to reduce L in some iteration in order for the proposal function to be a proper
density.

In the numerical calculations we set α = 2000; see Figure 1. Then the modes
are so sharp that 0.996 of the probability mass of π(x) is located in two small
intervals close to the modes with total length 0.01. Even though this example is
schematic we believe it is quite representative for many MCMC problems. The
typical MCMC is a random walk making small steps in each iteration. Often it
is not critical whether this is made in one dimension at a time or there is only
one dimension. We set the maximum local step length L = 0.02 in order to get an
acceptance rate of about 0.25. If the step length is larger, the algorithm finds the
mode faster but the acceptance rate decreases. The random-walk algorithm is very
slow to move between the modes. This is illustrated in the lower left part of Fig-
ure 2 showing the minimum of the iteration number and the number of iterations
since the chain was closer to the other mode. For random walk this is almost the
same as the iteration number. Then the algorithm uses a very long time to find out
that the probability mass close to the mode at x = 1/3 is larger. This slows down
the convergence after about 100 iterations. The adaptive chain finds the modes
faster than random walk. This is seen both in the convergence and in the ratio
π(1/3)/pi(1/3) in the lower right part of the figure. Another important property
is that the adaptive chain jumps easily between the modes. If we increase L, then
the adaptive chain finds the mode faster, but does not jump as easily between the
modes. We set p = 0.4 in order to jump often between the possible modes. The
independence sampler uses many iterations to find the modes and the acceptance
rate is very small. If we increase α making the modes sharper, then the difference
between the different algorithms becomes even larger.

EXAMPLE 2. The adaptive chain is tested on a multimode example from
Tjelmeland and Hegstad (2001). Let � = Rn and f (x) = ∑k

j=1 ωjϕμj ,	j
(x)

where ϕμj ,	j
is the normal density in R2 with expectation μj and correlation
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FIG. 2. The figure compares the three Metropolis–Hastings algorithms: independence sampler
(line), random walk (dotted) and adaptive independent sampler (dashed). We see that the adaptive
chain converges faster, jumps faster between the modes and obtains the correct density in the mode
faster than the two other algorithms. Random walk has a higher acceptance rate, but with small steps
each time. The simulation is based on 10,000 samples.

matrix 	j . The constants ωj > 0 satisfy
∑

j ωj = 1. A natural proposal function
to use in an adaptive Metropolis–Hastings algorithm, both here and generally, is a
mixture of normal distributions:

q3
i (z|x, ỹi−1) ∝ τ0ϕν0,�0(z) +

mi∑
j=1

τi,jϕνi,j ,�j
(z).(5)

The expectation ν0 is positioned central in the distribution. The corresponding
variance �0 is large. The other expectations νi,j for j > 0 are estimates of where
the undersampling of π is largest. The weights τi,j determine how often each
distribution in the mixture is used for the proposal.

During the simulation we update a list of possible modes {νi,j }ni

j=1 ⊂ ỹi−1. The
list is empty when we start and is updated by the algorithm below based on the
function R(y) = f (y)/ϕν0,�0(y) with invariant R(ν1) ≥ R(ν2) ≥ · · · . There is a
maximum length of the list, that is, ni ≤ M . The most recent state in the history y

is considered included in the list by the algorithm:
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1. If R(y) > R(νM) or ni < M then:
(a) For j = 1, . . . ,min{ni,M}

i. If R(y) > R(νj )

A. <Include y in list before νj >

B. For k = j + 1, j + 2, . . . ,min{ni,M}
If ‖y − νk‖ < ε1/2 then

<Remove νk from list and exit loop>

ii. Else if ‖y − νj‖ < ε1 exit loop.

The index i is omitted in the algorithm and ‖ · ‖ denotes the Euclidean norm. Only
mi ≤ M of the νj are used in the proposal function. More states are kept in the list
since a new mode may remove several old ones. Let mi = min{M0, ni} and τ0 =
0.5. The weights τi,j for j = 1,2, . . . ,mi are defined as τi,j = 1/(5M0)+ cf (νi,j )

where c is defined such that
∑

j τi,j = 1.
In addition, it makes sense to actively decrease the proposal probability in areas

where previous proposals have shown that f is small. This is especially attractive
when evaluation of f is expensive. A list of states ξi,j are found, similarly as
νi,j are found, maximizing S(y) = ϕ

p
ν0,�0

(y)/f (y) for an exponent p > 1. The
constants N , N0 and ε2 are defined as M , M0 and ε1, respectively. We can now
actively reduce the sampling likelihood for the first term in (5) by introducing a
new factor ρi(z, ỹ

i−1), giving the proposal

q4
i (z|x, ỹi−1) ∝ τ0ρi(z, ỹ

i−1)ϕν0,�0(z) +
mi∑

j=1

τi,jϕνi,j ,�j
(z).(6)

The function ρi(z, ỹ
i−1) is equal to a constant ci > 1 except if the function

S(y) has been evaluated for y close to z and had a small value. In the latter
case ρi(z, ỹ

i−1) is small. Define the criteria Ai,t so that ‖z − ξi,t‖ < ε2 and
‖z − ξi,k‖ ≥ ε2 for all k < t ≤ N0. The following definition for ρ is used:

ρi(z, ỹ
i−1) =

{
max{δ, f (ξi,t )/ϕν0,�0(ξi,t )}, Ai,t satisfied,
ci, Ai,t not satisfied for any t .

The constant ci is adjusted during the simulation in order to ensure that ap-
proximately 50% of the proposals come from the first term of the proposal func-
tion (6). Careful considerations on the smoothness of f should be made when
choosing ε2, since decreasing the proposal probability in an area also may worsen
inf{qi(z|x, ỹi−1)/π(z)}, and hence worsen convergence.

The test example is the same as in Tjelmeland and Hegstad (2001) with k = 13
and modes μj located as shown in Figure 3. Each mode i has the same weight
ωi = 1/13 and covariance 	i = diag(0.012,0.012). The variance is so small
that a random walk between the outer modes is very unlikely, whereas random
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FIG. 3. Location of modes in the mixed normal distribution used as target distribution.

walks between the five center nodes are plausible. The constants in the adap-
tive chain are M0 = 20, M = 25, and ε1 = 0.05. The variances are set equal to
�0 = diag(1,1) and �j = diag((0.03)2, (0.03)2) for j > 0. Two adaptive chains
are evaluated: one with ρ ≡ 1 (q3) and another (q4) where ρ depends on the
ξ.,. list using N0 = N = 1000, ε2 = 0.05, δ = 0.1 and p = 1.3. In addition two
Metropolis–Hastings algorithms are implemented as a comparison with an inde-
pendent proposer q1(y) = ϕν0,�0(y) and a random-walk proposer q2(y|xi−1) =
ϕxi−1,(0.3)2�0

(y), respectively.
Figure 4 shows the results from the experiments. The two adaptive chains

are quite similar with acceptance rates equal to 0.07 and 0.09, respectively. The
Markov chains have acceptance rates 0.001 and 0.004, respectively. The random
walk jumps more often, but less often between modes. The adaptive chains resam-
ple often in modes that are identified earlier in the chain. The first time a mode
is sampled, the chain leaves this mode with a small probability. Note also that the
independent Markov chain does not sample as close to the mode value as the adap-
tive chain. This is the main reason for the difference in convergence, and is due to
more sampling in the modes by the adaptive chain. The convergence is evaluated
by calculating

∑
j |rj − 1/52| where rj is the ratio of chains within 52 regions

which have the same probability in the target distribution f . There are four re-
gions around each mode and each of these regions is described by the distance to
the mode. The convergence measure using 20,000 chains will not be below 0.05
due to noise. The adaptive chain converges faster than the independent sampler.
More important is the difference in mixing. In order to get 1000 samples with
low correlation, the adaptive chain needs approximately 20,000 iterations (burn
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FIG. 4. The chains: independent sampler (q1, upper left), random walk (q2, upper right), adaptive
chain (q3, lower left) jump between the 13 modes. The distance between a line and a dot indicates
the distance between the sample and the mode. The modes closest to origin have smallest y value.
The adaptive chain using the ξ.,. list converges fastest (lower right), closely followed by the other
adaptive chain, then the independent sampler and finally the random-walk sampler. The last one is
very slow since the probability of sampling far from origin is very small.

in 3000 and then sample every 10 iterations) and the independent Markov chain
needs in the order of 1,000,000 (sample every 1000 iterations). There are several
possibilities for further improvement. The variances �j and the constants εk and δ

may be adapted based on ỹi−1. It is possible to run a local optimizer starting with
some of the states in the ν.,. list and include the endpoints of these optimizations
into the list. The states in the ξ.,. list could be sorted into regions in order to avoid
checking the complete list. Which variant of the algorithm is the best depends on
the properties of f , in particular the cost of evaluating the function, in addition
to the CPU resources available. The increased CPU resources required by chang-
ing from a traditional Metropolis–Hastings algorithm to an adaptive independent
Metropolis–Hastings algorithm with q3, are not large, but involves some program-
ming. To use the proposal function q4 increases the CPU resources considerably,
and should only be used if the evaluation of f is very expensive.

Note that even though the target distribution here was on the same form as
the proposal, this method of adapting a proposal distribution is of general value.
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It can be viewed as a nonparametric approximation of the target distribution, bear-
ing some resemblance to kernel methods.

EXAMPLE 3. Let f be the Cauchy distribution, f (x) = 1/(1 + x2)π. This
distribution has heavier tails than the normal distribution and is known to give
problems in the simulation; see Roberts and Stramer (2002). The same simulation
algorithm as in Example 2 is used in this example. Only the adaptive chain q3

and the independent Metropolis–Hastings algorithm q1(y) = ϕ0,1(y) are tested.
The constants in the adaptive chain are M0 = 70, M = 80 and ε1 = 0.05. The
variances are set equal to �0 = 1 and �j = (0.5)2 for j > 0. The modes νi,j in
the proposal function will be in the tails of the distribution of f with distance ap-
proximately ε1 between neighboring modes. Figure 5 shows one chain for the two
methods. Figure 6 shows the convergence estimated by dividing the state space
into 20 equally likely regions for |x| and uses the same norm as in the previous
example. Ten thousand chains give a Monte Carlo noise level of approximately
0.07. The acceptance rates are 0.7 and 0.8, respectively, slightly higher for the
adaptive chain. The adaptive chain reduces the problem with heavy tails by posi-
tioning modes in this area. This shows that the adaptive chain may be useful also
when there are large differences between the limiting function and the proposal
function. Both the adaptive and the independent chain converge even though the
Doeblin condition is not satisfied. The independent sampler converges very slowly
since the probability for sampling a state far from origin is too small. When such
a state is sampled, the probability for leaving the state is very small.

EXAMPLE 4. In many applications in, for example, climate or petroleum,
there are large simulation models. If each simulation takes several hours of CPU,
it is necessary to carefully use all available information including previous runs
before we start new simulations. There is often uncertainty in some input para-
meters and we want to find distributions for the input parameters that satisfy data
that is output from the simulation model. It is outside the scope of this paper to

FIG. 5. The Markov chain (q1, left) samples the tails too seldom. The adaptive chain (q3, right)
increases the sampling of the tails as the modes ν.,. identify these areas.
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FIG. 6. The adaptive chain converges much faster than the Markov chain. The adaptive chain
reaches the Monte Carlo noise level for the convergence measure.

describe such a large simulation model and we will illustrate this problem with a
more schematic example.

We illustrate the simulation model with the function

f (x) = 3 sin(x1π) − x1/2 +
5∑

i=2

sin(xiπ/2)

assuming 0 < xi < 1 for i = 1,2,3,4,5. We use a Bayesian approach with a non-
informative prior and the likelihood

l(x|d) = exp
(−(

f (x) − d
)2

/σ 2)
.

Then we want to simulate x proportional to l(x|d), but evaluate the function f (x)

as few times as possible. The function f (x) may be approximated by the linear
regression

f̂ (x) = a0 +
5∑

i=1

aixi + bx2
1

where the constants ai for i = 0,1,2,3,4,5 and b are evaluated from the evalua-
tions of the function f (x). Notice that most evaluations will be in the area where
the likelihood is highest, that is, the linear regression will be best in the area of
largest interest. In the adaptive independent sampler the proposal functions consist
of two steps. We first propose uniformly x ∈ (0,1)5 and then accept the proposal
proportional to the function

l̂(x|d) = exp
(−(

f̂ (x) − d
)2

/(5σ 2)
)
.
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Notice that we have included the factor 5 in the exponent in order to propose from
a slightly larger area than the likelihood. This algorithm is compared with the
independent sampler proposing uniformly from x ∈ (0,1)5 and the random-walk
sampler where each component of x is proposed changed uniformly in an interval
with length L = 0.1 relative to the current state of the chain. The length of the
interval is reduced close to the boundary of the domain.

We set d = 2.5 and σ 2 = 0.005. Then the likelihood is largest at two four-
dimensional planes intersecting the domain close to two of the corners of the do-
main of f . The lower right figure in Figure 7 shows the likelihood along a line
intersecting these two planes. The simulation shows that the adaptive sampler con-
verges fastest and jumps easily between the two modes. The independent sampler
jumps seldom and the random-walk sampler is not able to move between the modes
and hence converge.

The traditional statistical approach for this problem would be to first perform
some simulations of the large model estimating the linear regression parame-
ters and then use the linear regression in the proposal function in a Metropolis–

FIG. 7. The figure compares the three Metropolis–Hastings algorithms: independence sampler
(line), random walk (dotted) and adaptive independent sampler (dashed). We see that the adaptive
chain converges faster and jumps faster between the modes. Random walk has a higher acceptance
rate, but with small steps each time. The simulation is based on 50,000 samples. The lower right
figure shows the likelihood l(x1,0.1,0.1,0.1,0.1,0.1|d) and the proposal function based on 10 and
50 evaluations of the simulation model along a line crossing the two planes with the modes.
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Hastings sampler. This implies to use no information in the data collection step
and not the new information gained during the Metropolis–Hastings sampling. The
adaptive sampler always uses all the information and all the time focuses on the
most interesting area based on the available information. In a practical problem we
will often not know the number of modes and whether we have found all the modes
or not. The industrial practice in many such problems is often to neglect the un-
certainty in the parameters and estimate the parameters using a standard gradient
search optimization algorithm.

5. Concluding remarks. The algorithm presented here allows fairly general
adaption, based only on the assumption that a proposal distribution satisfying a
strong Doeblin condition can be found. Convergence is geometric, with a rate that
increases as the proposal distribution gets closer to the target distribution. The
chain is also invariant for the limiting distribution in contrast to the more gen-
eral adaptive chain. All previously proposed states, except the current state, can
be used to generate the new proposal, allowing almost all previously gained in-
formation about the target distribution to be used. The algorithm is tested in four
schematic examples, three with several modes and one with a heavy tail distrib-
ution, situations that are generally difficult for MCMC methods. Three examples
are nonparametric and one is parametric. In all cases, the adaptive algorithm per-
formed better than the standard MCMC alternatives we used for comparison.

The adaptive independent Metropolis–Hastings algorithm is a special case of
the adaptive chain described in Holden (1998a), where convergence of the adaptive
chain was proved by assuming that the detailed balance condition was satisfied for
each possible history. This did in general not give invariance, which is a property of
the adaptive independent Metropolis–Hastings. Convergence is here proved with-
out assuming the detailed balance condition. Instead, we use rejection sampling
and a restricted history which assures stationarity when the target distribution is
reached.

The proposed algorithm may be considered as a generalization of the commonly
used Metropolis–Hastings algorithm. If the proposal function in an iteration does
not depend on the present state, then the present or the proposed state may be used
for improving later proposal functions. Which state that may be used depends on
whether the proposed state is accepted or not. This simple property contributes
to the understanding of the commonly used Metropolis–Hastings algorithm. The
paper also shows the close relationship between rejection sampling, MCMC and
adaptive chains.

APPENDIX: PROOFS

PROOF OF THEOREM 1. If the proposal function qi+1 depends on the present
state xi , then the history is not extended and the theorem follows from standard
Metropolis–Hastings theory. We will therefore focus on the case where qi+1 is
independent of the present state xi , and we will use the notation qi+1(zi+1|ỹi).
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Assume p̂i(xi |ỹi) = π(xi). Let w be the state added to the history in step i + 1,
that is, ỹi+1 = (ỹi ,w). Then w ∈ � is either xi or zi+1 depending on whether the
proposal zi+1 is accepted or rejected in the (i+1)th iteration. The joint distribution
of (ỹi+1, xi+1) is

p̂i+1(xi+1|ỹi+1)p̃i+1(ỹ
i+1)

= p̃i(ỹ
i)

(
π(w)qi+1(xi+1|ỹi)αi+1(xi+1,w, ỹi)

+ π(xi+1)qi+1(w|ỹi)
(
1 − αi+1(w,xi+1, ỹ

i)
))

= p̃i(ỹ
i)

(
π(xi+1)qi+1(w|ỹi )

+ π(w)qi+1(xi+1|ỹi)αi+1(xi+1,w, ỹi)

− π(xi+1)qi+1(w|ỹi)αi+1(w,xi+1, ỹ
i)

)
= π(xi+1)p̃i(ỹ

i)qi+1(w|ỹi ).

This shows that the chain never leaves the stationary distribution once it is reached
and we have p̂i+1(xi+1|ỹi+1) = π(xi+1).

Except for minor changes in the notation, the calculation above may also be
used to prove the theorem when qi+1 depends on the present state xi . Then we must
integrate over w to get p̂i+1(xi+1|ỹi) = π(xi+1). This is why the history cannot be
extended in these iterations, and we set ỹi+1 = ỹi . The critical point in the entire
paper is the above calculation. Notice that it is essential that the proposal function
does not depend on the present state, but may depend on the entire history ỹi . �

PROOF OF THEOREM 2. Given that the limiting density is invariant for the
algorithm conditioned on the history, the next step is to prove that a chain can
reach the stationary distribution. This is done by observing that each iteration with
an independent proposal also can be viewed as an iteration of a rejection sampler.
Let ui be distributed uniformly between 0 and 1, and the proposal zi be accepted
if ui < αi . Let Ai be the condition that uiqi(zi |ỹi−1)/π(zi) ≤ ai(ỹ

i−1). Then the
distribution of zi given by ỹi−1, xi−1 and Ai is proportional to

Prob(Ai |ỹi−1, xi−1, zi)qi(zi |xi−1, ỹ
i−1)

= Prob
(
ui ≤ ai(ỹ

i−1)
π(zi)

qi(zi |xi−1, ỹi−1)

)
qi(zi |xi−1, ỹ

i−1)

= ai(ỹ
i−1)π(zi).

This means that if Ai is satisfied, zi is a sample from π . Furthermore, if Ai is
satisfied, ui ≤ αi , and hence zi is always accepted. If qi does not depend on xi−1,

then xi−1 is appended to the history, and we conclude that p̂i(x|ỹi ,Ai) = π(x). If
qi depends on xi−1, we must integrate over the distribution of xi−1 given ỹi ,Ai to
obtain the same conclusion. Finally, Ai is satisfied with probability ai(ỹ

i−1). This
implies that the probability for jumping to the limiting distribution in iteration i is
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ai(ỹ
i−1) independent of the distribution of xi . From Theorem 1 we see that when

we reach the limiting density we remain in the limiting density. Hence, this is an
absorbing state with a probability larger than a > 0 to jump to this in each iteration.
Then the probability to be in the limiting density within a finite number of samples
may be made arbitrarily close to 1.

Let

bi(ỹ
i−1) =

i∏
j=1

(
1 − aj (ỹ

j−1)
)
.

The probability for xi being from the limiting distribution is then described by the
following chain: Let I0 = 0 and for i ≥ 0

Ii+1 =
{

0, with probability 1 − ai+1(ỹ
i) if Ii = 0,

1, otherwise.
Clearly

Prob(Ii = 0|ỹi−1) =
i∏

j=1

(
1 − aj (ỹ

j−1)
) = bi(ỹ

i−1).

This implies that

p̂i(xi |ỹi) = π(xi)
(
1 − bi(ỹ

i−1)
) + vi(xi |ỹi)bi(ỹ

i)(7)

where vi is a distribution. This gives the following bound on the error:

‖pi − π‖TV =
∫
�

∣∣∣∣
∫
�i

p̂i(xi |ỹi)p̃i(ỹ
i) dμ(ỹi) − π(xi)

∣∣∣∣dμ(xi)

=
∫
�

∣∣∣∣
∫
�i

(
π(xi)

(
1 − bi(ỹ

i−1)
) + vi(xi |ỹi)bi

(
ỹi−1) − π(xi)

)

× p̃i(ỹ
i) dμ(ỹi)

∣∣∣∣dμ(xi)

=
∫
�

∣∣∣∣
∫
�i

(
vi(xi |ỹi) − π(xi)

)
p̃i(ỹ

i)bi(ỹ
i−1) dμ(ỹi)

∣∣∣∣dμ(xi)

≤
∫
�i

∫
�

|vi(xi |ỹi) − π(xi)|dμ(xi) p̃i(ỹ
i)bi(ỹ

i−1) dμ(ỹi)

≤ 2
∫
�i

p̃i(ỹ
i)bi(ỹ

i−1) dμ(ỹi),

proving (3).
If aj+1(ỹ

j ) ≥ aj+1 for all j and ỹj ∈ �j, then (4) follows trivially. Note that
the probability for jumping to the limiting distribution in iteration i is ai(ỹ

i−1)

independent of the distribution of xi . �
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