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ABSTRACT

Identification of three-dimensional (3D) interactions
between regulatory elements across the genome is
crucial to unravel the complex regulatory machinery
that orchestrates proliferation and differentiation of
cells. ChIA-PET is a novel method to identify such in-
teractions, where physical contacts between regions
bound by a specific protein are quantified using next-
generation sequencing. However, determining the
significance of the observed interaction frequencies
in such datasets is challenging, and few methods
have been proposed. Despite the fact that regions
that are close in linear genomic distance have a much
higher tendency to interact by chance, no methods
to date are capable of taking such dependency into
account. Here, we propose a statistical model taking
into account the genomic distance relationship, as
well as the general propensity of anchors to be in-
volved in contacts overall. Using both real and sim-
ulated data, we show that the previously proposed
statistical test, based on Fisher’s exact test, leads to
invalid results when data are dependent on genomic
distance. We also evaluate our method on previously
validated cell-line specific and constitutive 3D inter-
actions, and show that relevant interactions are sig-
nificant, while avoiding over-estimating the signifi-
cance of short nearby interactions.

INTRODUCTION

Physical three-dimensional (3D) interactions between ge-
nomic elements are vital for the functioning of the regu-
latory machinery in living cells (1). For example, interac-
tions between distal regulatory elements and their targets
are known to be responsible for regulating a range of genes
with cell-type specific functions (2–7). With large consortia
such as ENCODE (8) and Roadmap epigenomics (9), reg-

ulatory elements in a range of different cell types and tis-
sues are being mapped. Linking these elements together by
identification of their 3D interactions is vital for obtaining
a deeper understanding of the regulatory mechanisms un-
derlying the different cell types.

Identification of genome-wide 3D interactions has re-
cently become feasible, due to the coupling of chromatin
conformation capture (3C) techniques to next-generation
sequencing (10). One such technique, called chromatin in-
teraction analysis with paired-end tag sequencing (ChIA-
PET), is especially suited for identifying high-resolution
interactions between regulatory elements, since it allows
for identification of genome-wide interactions between
elements bound by a protein of choice (5). In ChIA-
PET, chromatin interactions are captured by cross-linking
with formaldehyde prior to ChIP-enrichment. Proximity-
ligation is then used to connect interacting DNA frag-
ments, and paired-end sequencing is used for quantifica-
tion (11,12). The method gives rise to both self-ligation
and inter-ligation events. The self-ligation events, which are
caused by non-specific interactions within the same frag-
ment, can be used to identify the regions that are involved in
the interactions (called ‘anchors’). The inter-ligation events
are subsequently used to quantify the interaction frequen-
cies between the anchors (13,14).

Since such analyses are based on detection of 3D inter-
actions in a population of cells, and due to the probabilistic
nature of the quantification using paired-end sequencing,
detecting the significant interactions between the anchors
in a given ChIA-PET dataset can be challenging, and few
models have been proposed. In a recent article, Li et al. (13)
proposed to use Fisher’s exact test to identify interactions.
This test is based on a model where interactions are assumed
to follow a hypergeometric distribution. More precisely, the
following model is assumed for the interactions:

P(ni j |n, ni , n j ) =
( ni

ni j

)(2n−ni
n j −ni j

)

(2n
n j

) . (1)
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Here, nij refers to the number of interactions between an-
chors i and j, and ni = ∑

j nij is the number of interactions
involved for anchor i (and similar for nj). With this formu-
lation, the number of interactions are conditioned on the
marginal sums (ni and nj) and the total number of inter-
actions (n). This conditioning is used in order to take into
account the fact that highly interacting anchors (with high
marginal sums) have a higher probability of obtaining in-
teractions. Note the 2n factor which is introduced because
the n contacts have a total of 2n end-points. The underlying
assumption is therefore that contacts can be defined by any
pair of end-points, including the same end-point selected
twice. Note that the latter assumption is typically not valid
for ChIA-PET data, since interactions within anchors are
only used to define anchors, and not for identification of in-
teractions themselves. This, however, will not be crucial if ni
and nj � n, which will be the case in most real datasets.

Another fundamentally different approach to interaction
identification has also been proposed, representing inter-
ligations in a 2D space (genome × genome), and using clus-
tering detection to find interactions (15). In that paper, the
authors used a density-based clustering algorithm, called
DBSCAN (Density-based spatial clustering of applications
with noise), to infer true interactions above the noise level.
This method is non-statistical in nature, as it does not as-
sume a model for the interaction frequencies.

Anchors that are closer in the linear genomic sequence
have a much higher probability of forming interactions (10).
This fundamental property is not incorporated into any of
the proposed methods, even though it has been shown to be
important to do so for other 3C-based technologies (16,17).
For example, in Hi-C (18), a technique related to ChIA-
PET, where interactions are mapped between restriction
fragments covering the entire genome, a slightly different
strategy for inference of significant interactions is taken. In
Hi-C analysis, the number of interactions between restric-
tion fragments is modeled based on the binomial distribu-
tion, and the genomic distance dependency is incorporated
by using a binning approach where tests for significance are
performed separately for different bins of genomic distance
(19). Such a model does not incorporate the propensity of
the fragments to be involved in contacts overall. However,
it has recently been noted that technical biases in the Hi-
C method can cause a varying degree of ‘visibility’ for the
involved restriction fragments (20,21). In a recent study by
Ay et al. (22), the authors therefore suggested to incorporate
such biases into the binomial model, in addition to genomic
distance. To do so, they replaced the binning approach by
using a smoothing spline of contact probabilities, and in-
corporated the biases for the involved regions into a joint
model of contact probability. This was then used to perform
a binomial test, similar to the previous methods.

Here, we propose a new statistical model for ChIA-PET
interaction frequency data, taking into account genomic
distance-dependent relationships, as well as the marginal
sums. Our model is based on the non-central hypergeomet-
ric (NCHG) distribution, and can be seen as a generaliza-
tion of the model proposed in Li et al. (13), but where the
genomic distances between anchors are included.

MATERIALS AND METHODS

Statistical model

We start off with the same model as presented in Li et al.
(13), and consider the number of ChIA-PET interactions
nij between anchor regions i and j. Each interaction is be-
tween two end-points, where ni = ∑

j nij is the number of
interaction end-points in anchor region i. The total number
of interaction end-points is 2n = ∑

i ni, where n = ∑
i < j nij

is the number of interactions. The aim of the model is to
determine the probability of having nij interactions between
anchor regions i and j given the number of interaction end-
points, ni and nj, in each anchor, and the total number of
interactions.

When interactions are equally likely between any pair of
end-points from two different anchor regions, Li et al. (13)
argues that Fisher’s exact test, which uses the hypergeomet-
ric distribution, gives a good statistical model for the num-
ber of interactions nij. However, when some anchor regions
are more likely to form interactions than others, the model
by Li et al. (13) must be modified. If interactions between
interaction end-points in anchor regions i and j are more
likely by a factor ωij to interact with each other than to form
interactions with other anchor regions, the hypergeometric
distribution is replaced by the NCHG distribution:

P(ni j |n, ni , n j , ωi j ) =
( ni

ni j

)(2n−ni
n j −ni j

)
ω
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i j
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i j
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i j

)
ω

n′
i j

i j
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The probabilities for each outcome nij gets multiplied by
ω

ni j

i j , and the normalization constant in the denominator is
changed accordingly.

Taking genomic distance into account. We know that re-
gions close together along the genomic sequence have a
higher chance of forming random contacts (10,18), there-
fore it is necessary to incorporate the expected interac-
tion frequency of various sequence-based distances into the
model as well. We let λij be the expected interaction fre-
quency between anchor regions i and j, which we estimate
based on the genomic distance between i and j.

We did this by dividing genomic distances between all
pairs of anchors (also those with no interactions) into 1000
quantiles and computed the mean interaction frequency in
each quantile. We then smoothed the resulting distribution
using a cubic smoothing spline. This function was then used
to compute the expected number of interactions, λij, for all
pairs of anchors.

When λij is the expected number of interactions between i
and j, the expected number of interaction end-points in an-
chor region i becomes λi = ∑

j λij, while the expected num-
ber of interactions is λ = ∑

i < j λij. The non-centering co-
efficients, ωij, can then be estimated using the odds ratio of
the expectations (23):

ωi j = λi j (2λ − λi − λ j + λi j )
(λi − λi j )(λ j − λi j )

. (3)

Note that the final NCHG distribution will still be con-
ditional on the number of interactions, n, as well as on the
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marginal sums ni and nj, and so it is only this odds ratio be-
tween these expected values that influence the distribution,
not the size of the individual values.

Hypothesis testing. In order to test if the number nij of
contacts between anchor regions i and j were higher than
expected by chance, we assumed it would follow a NCHG
distribution P(nij|n, ni, nj, ωij) with ωij as given by Equation
(3) if genomic distance is taken into account, or Fisher’s ex-
act test using ωij = 1 if we assume interaction frequencies
are independent of genomic distance. One-sided P-values
were then computed as

Pi j = P[Ni j ≥ ni j ] =
∑

x≥ni j

P(x|n, ni , n j , ωi j ) =
∑

x≥ni j

(ni
x

)(2n−ni
n j −x

)
ωx

i j
∑

x

(ni
x

)(2n−ni
n j −x

)
ωx

i j

. (4)

Since the pairs of anchors used to estimate the expected
number of interactions (λij) consist of a subset of interac-
tions that is not part of the null-model, estimation of signif-
icance based on λij would be too conservative. Similar to the
method proposed by Ay et al. (22), we performed an initial
round of hypothesis testing on all interactions using a strict
selection criterion at 1% false discovery rate (FDR) and re-
quiring at least three observed interactions. We then masked
out all the significant interactions, and performed a second
round of estimation of λij, leaving the masked values out.
This ‘refined’ model of the genomic distance relationship
was then subsequently used for all downstream analyses.

We then calculated the final P-values for all pairs of an-
chors, and considered significant interactions selected at 5%
FDR with at least three observed interactions, as in Li et al.
(12).

We estimated the FDR using the discrete FDR procedure
(24). In this, for each threshold α, we computed the expected
number of false positives under the null models, i.e. the ex-
pected number of pairs of anchors with at least three inter-
actions and P ≤ α. This was then divided by the actual num-
ber of positive findings under the same criterion to provide
an estimate of the FDR.

Simulation analysis and validity

In order to explore the validity of our model, and compare
it to Fisher’s exact test, we simulated datasets consisting
of randomly sampled interaction frequencies between 200
‘anchors’, according to a Poisson model. More precisely,
we simulate nij ∼ Pois(λij) with expectation λij = a/(1 + δ),
where δ = |i − j|, for various choices of a, between all pairs
of the 200 ‘anchors’. This gave 19 900 interaction frequen-
cies (excluding the diagonal) with strong dependency on the
genomic distance, approximately proportional to 1/δ as is
expected from chromatin interaction data (18).

Similarly, we sampled data with other types of genomic
distance relationships, including data proportional to δ−3/2,
linearly proportional, and data sampled with a relationship
as observed in the K562 cell line. For comparison purposes,
we additionally generated data without dependency of ge-
nomic distance, by sampling with expectation fixed at λij =
50. Note, however, that the exact shape of the expression for

λij is not important for the analysis presented here, only the
strength of the dependency on genomic distance.

In order to evaluate both methods, we computed P-values
using both Fisher’s exact test and the NCHG test, and ex-
amined the distribution of P-values for the 19 900 sam-
ples. For presentation purposes, to avoid clustering of P-
values caused by the discrete number of possible values
for nij (see Supplementary Figure S1), and ensure P-values
that are uniform on [0, 1] under the null-hypothesis, we
selected random Pi j ∼ Unif(P[Ni j > ni j ], P[Ni j ≥ ni j ]) (in
Figure 1) (25). The resulting 19 900 P-values were then plot-
ted in a histogram.

Practical implementation

We obtained ChIA-PET data for the K562 and Mcf7
cell lines from Li et al. (12) (GEO accession number:
GSE33664). We considered self-ligations as all pairs of
mapped loci with genomic distance <8 kb, as suggested
in Zhang et al. (26). Based on the self-ligations, we iden-
tified anchors using MACS (27). To avoid small anchors
with very short distance between them, all pairs of anchors
closer than 1 kb were combined, and individual anchors
with a size <1 kb were expanded 1 kb in each direction.
We then counted and aggregated all inter-ligation paired-
end tags between all anchors within the same chromosome.
The implemented method is available at http://folk.uio.no/
jonaspau/chiasig/.

RESULTS

Results on simulated data

We simulated data both from a Poisson model dependent
on the genomic distance, and from a model with no such
dependency. In order to evaluate the validity of both the
NCHG test and Fisher’s exact test, we plotted the P-values
against the genomic distance, and computed a histogram of
the P-values (see Figure 1). For valid hypothesis tests, a uni-
form distribution of P-values is expected regardless of the
dependency on the genomic distance, as long as the data are
sampled from the null-distribution. As Figure 1 shows, both
Fisher’s exact test and the NCHG test produce uniformly
distributed P-values when interactions do not depend on
genomic distance. However, when interactions are sampled
such that they are dependent on genomic distance, only the
NCHG test produces uniformly distributed P-values which
are independent of the genomic distance. The Fisher’s exact
test on the other hand shows a skewed distribution, with ex-
tremal P-values. As the figure shows, the skewness is caused
by the points with low and high genomic distances, which is
easily understood by considering the fact that the data with
low and high genomic distances will have unexpectedly high
(and low respectively) counts. It is therefore not sufficient
to condition on only the marginal sums when the data are
dependent on the genomic distance, as is the case for chro-
matin capture-data, such as ChIA-PET. It is also interesting
to compare the individual P-values from the two models.
As Figure 1C shows, the two models give very different P-
values for the case where data are dependent on genomic
distance. In the non-dependent case, however, the P-values
are identical, except for the uniformly added smoothing to

http://folk.uio.no/jonaspau/chiasig/
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Figure 1. Comparison of Fisher’s exact test and the NCHG test using simulated data. P-values are plotted against the genomic distance (δij), defined as the
number of anchors between i and j. Blue histograms indicate the distribution of P-values, calculated as explained in the ‘Materials and Methods’ section.
(A) P-values obtained using the NCHG test on data sampled with strong dependency on genomic distance. (B) P-values obtained using Fisher’s exact test
with strong dependency on genomic distance. (C) Comparison between P-values from the NCHG test and Fisher’s exact test, for data sampled with strong
dependency on genomic distance (Pearson’s r ∼ 0.49). (D) P-values obtained using the NCHG test on data sampled without any dependency on genomic
distance. (E) P-values obtained using Fisher’s exact test on data sampled without any dependency on genomic distance. (F) Comparison between P-values
from the NCHG test and Fisher’s exact test, for data sampled without any dependency on genomic distance (Pearson’s r ∼ 0.99). Red dashed lines indicate
the expected fraction for a uniform distribution of P-values.

avoid P-value clustering (see the ‘Materials and Methods’
section).

We also wanted to investigate whether the choice of the
genomic distance relationship could affect the results as
shown in Figure 1. We therefore sampled data from distribu-
tions with several different genomic distance dependencies,
and investigated the distribution of P-values. Again, the re-
sults show that the NCHG test gives uniformly distributed
P-values, while Fisher’s exact test shows a skewed distri-
bution with an enrichment of low and high P-values (see
Supplementary Figure S2). In Supplementary Figure S3, we
show examples of sampled data for the different choices of
genomic distance dependencies.

Results on publicly available data

Next, we evaluated the method on ChIA-PET data from
two cell lines, K562 and Mcf7 from Li et al. (12) (GEO ac-
cession number: GSE33664). We started by estimating the

expected interaction frequencies given the genomic distance
(λij) and observed the strong negative relationship which is
expected from having a higher occurrence of random inter-
actions between anchors at shorter lengths (see Figure 2).
As the figure shows, the negative relationship remains also
after refinement of the data by masking out interacting an-
chor pairs that are not part of the null-model. To investi-
gate the effect of the refinement, we plotted the relative fre-
quency of significant interactions for various groups of ge-
nomic distances, before and after refinement. As is shown
in Supplementary Figure S4, refinement increases the num-
ber of significant interactions for short genomic distances
(typically below ∼100 kb), and decreases the number of sig-
nificant interactions for long genomic distances. This is ex-
pected, since many of the highly significant (non-null) inter-
actions that are masked out during refinement, are of short
genomic distance.
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Figure 2. Dependency on genomic distance for the initial (gray) and the
refined (red) interactions. Genomic distance (δij), defined as the distance
between pairs of anchors, plotted against the observed average number of
interactions. The gray line shows the result after cubic spline smoothing on
the original, non-refined dataset. The red line shows the smoothed depen-
dency for the refined dataset, which gives the expected interaction frequen-
cies (λij), as explained in the ‘Materials and Methods’ section. Results for
K562 (left) and Mcf7 (right) are shown.

Figure 3. Venn-diagram comparisons of significant interactions from the
NCHG test and Fisher’s exact test. Blue circles indicate the significant in-
teractions using the NCHG test, while red circles indicate significant in-
teractions using Fisher’s exact test. Numbers indicate the number of sig-
nificant interactions within each subset. Results for K562 (left) and Mcf7
(right) are shown.

We also investigated the effect of using a different num-
ber of quantiles during the estimation of the λij parameter,
and found that the smoothed estimate is very robust to this
choice (see Supplementary Figures S5 and S6).

We next compared the significant interactions for Fisher’s
exact test and the NCHG test. As Figure 3 shows, a large
fraction of the significant interactions found using Fisher’s
exact test are not significant when using the NCHG test.
Specifically, as many as 20 248 and 23 459 significant in-
teractions are unique for Fisher’s exact test, for K562 and
Mcf7, respectively. As Figure 3 also shows, a large fraction
of the significant interactions found using the NCHG test is
also found using Fisher’s exact test, but the total number of
significant interactions is much lower for the NCHG test.
This shows that the model based on the NCHG distribu-
tion, that also takes into account the genomic distance, is
much more conservative than Fisher’s exact test.

In order to gain further insight into what causes the large
difference in significant interactions between Fisher’s exact
test and the NCHG test, we plotted the relative frequencies
of the genomic distances for the significant interactions re-

sulting from both models (see Figure 4). As the figure shows,
a larger proportion of significant interactions are found for
the lowest genomic distances for Fisher’s exact test, com-
pared to the NCHG test. This is as expected when consid-
ering the results from Figure 1B, where the shortest genomic
distances have too low P-values. The reason for this is most
likely the much higher expected interaction frequencies for
contacts of these genomic distances, as seen in Figure 2.
In addition, for the largest genomic distances (≥800 kb),
Fisher’s exact test has a lower fraction of significant inter-
actions compared to the NCHG test. Again, the reason for
this is most likely that the expected low number of interac-
tions for the larger genomic distances are not taken into ac-
count for Fisher’s exact test. For both methods, a large frac-
tion of the significant interactions are found for the shortest
genomic distances (<200 kb). This is expected, considering
that most regulatory and functional interactions are found
within this range (28).

We investigated the interactions that are found to be sig-
nificant using the NCHG test, but not significant using
Fisher’s exact test (102 for K562 and 249 for Mcf7, as shown
in Figure 3). As is expected, these interactions are typically
occurring at very long genomic distances, with median ge-
nomic distance ∼9 and ∼10 Mb, for K562 and Mcf7, re-
spectively.

We also plotted the fraction of significant interactions
compared to all possible interactions, as a function of the
number of observed interactions (Figure 4). As the figure
shows, Fisher’s exact test assigns statistical significance to
almost all interactions above the cutoff of at least three in-
teractions. Consequently, for Fisher’s exact test, this cutoff
seems to be the major factor for determining significance
of interactions. This can be explained by considering that
it is much more likely that pairs of anchors with three or
more interactions are of short genomic distance. Therefore,
Fisher’s exact test is expected to not be conservative enough,
since genomic distance is not taken into account. This ex-
plains why so many significant interactions are unique for
Fisher’s exact test (as seen in Figure 3). The NCHG test,
on the other hand, shows a fraction of significant interac-
tions which gradually increases for increasing number of in-
teractions, as is expected, since a higher number of interac-
tions typically gives more significant results. Again, since a
large fraction of the anchor pairs with three or more inter-
actions will have a short genomic distance, we expect that
the NCHG test will be more conservative.

We were interested in investigating the effect of not using
a cutoff on the number of interactions, typically selected at
nij ≥ 3. We therefore applied both Fisher’s exact test and
the NCHG test without using this cutoff, and re-estimated
the FDR under this criterion. As shown in Supplementary
Figure S7, this resulted in an increased number of signifi-
cant interactions for Fisher’s exact test, while the NCHG
test got fewer significant interactions. The reason for the re-
duced number of significant interactions for the NCHG test
is the fact that the large number of interactions with long ge-
nomic distances and small nij cause the FDR method to be
very conservative. To investigate this, we repeated the cal-
culations on interactions with genomic distances ≤1 Mb,
a more realistic size-range where interactions are expected
to be more functionally relevant. In this analysis, we found
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Figure 4. Left: bar-plots showing the relative frequencies of genomic distances (δij) for the significant interactions using Fisher’s exact test (red bars) and
the NCHG test (blue bars), divided into 10 groups of genomic distances. Right: fraction of significant interactions, relative to all possible interactions,
plotted against the number of observed interactions nij. Red circles indicate results using Fisher’s exact test, while blue circles indicate results using the
NCHG test. Results for K562 (top panels) and Mcf7 (bottom panels) are shown.

that the NCHG test identified a similar number of signif-
icant interactions as found using the original cutoff of nij
≥ 3. Fisher’s exact test, on the other hand, identifies more
than 60 000 significant interactions, in both cell lines, when
a cutoff is not used (see Supplementary Figure S8).

As Supplementary Table S1 shows, few of the signifi-
cant interactions are actually found to have nij < 3. For
the NCHG test, we also find that the significant interac-
tions with low number of observed interactions (nij < 3)
have high genomic distances. In other words, a low num-
ber of observed interactions is only significant (using the
NCHG test) if the interactions have very high genomic dis-
tances, since such interactions are less likely to occur by
chance. Naturally, no such trend is seen when using Fisher’s
exact test. However, for the tests focusing on interactions ≤1
Mb, the trend is different. Here, Fisher’s exact test actually
identifies a large fraction of interactions as significant, even
for nij < 3. The NCHG test, on the other hand, identifies
few significant interactions with nij < 3, and as Supplemen-
tary Table S2 shows, these interactions tend to have long
genomic distance.

Comparison with ENCODE 5C data. We also compared
the significant interactions from the NCHG test and
Fisher’s exact test with 3C-Carbon Copy (5C) data mapped
as part of the ENCODE project across 1% of the genome
(16). We focused on region ENm008 on the p13.3 arm of
chromosome 16, containing the �-globin genes, known to
be highly expressed in K562 and which serves as a model
system for regulatory interactions in this cell line. Interest-
ingly, the cell-type specific expression of the �-globin genes
in this region has been shown to be regulated by physical
interactions with distal DNase I-hypersensitive sites (HSs)
found inside the NPRL3 gene upstream of the �-globin lo-
cus (29). In particular, the HS40 site is widely recognized as
a major regulatory element in the regulation of �-globin ex-
pression (30), and binds many erythroid transcription fac-
tors. As shown in Figure 5, this site is indeed found to be
interacting with the �-globin gene locus, and is clearly sig-
nificant using the NCHG test (P-value: 9.03E−5). Interest-
ingly, an interaction with an even more upstream site called
HS55 is also found (P-value: 1.0E−3), which is reported in
the ENCODE dataset also, but has not been specifically dis-
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Figure 5. Significant interactions involving the �-globin cluster for the K562 cell line. Chromosomal position is indicated on the top, with annotated genes
shown in orange. Significant interactions from the NCHG test and Fisher’s exact test are shown as connected segments. Significant interactions colored
blue and red, for the NCHG test and Fisher’s exact test, respectively, are verified using 5C data from Sanyal et al. (16). Gray segments indicate interactions
that were not found in the 5C dataset. The position of three hypersensitivity sites (HS55, HS46 and HS40) found inside the NPRL3 gene are indicated
using green shading.

cussed before. This site is a constitutive DNase I-HS, which
also binds CTCF (31) which is often involved in long-range
interactions (32).

While Fisher’s exact test also finds the HS interac-
tions validated by the 5C method in this region (P-values:
9.94E−14 and 1.71E−10, for HS40 and HS55, respectively),
a large number of other interactions are also found (see
Figure 5). As the figure shows, a total of 36 interactions
are found in this region using Fisher’s exact test, only 8 of
which (∼22%) are validated by the 5C data. As the figure
also shows, several of these non-confirmed interactions are
short-range, as expected when genomic distance is not taken

into account. The NCHG test on the other hand, finds
seven significant interactions, three of which (∼43%) are
confirmed by the 5C data. This again indicates that Fisher’s
exact test is not conservative enough, since it will report
many short-range genomic interactions as significant only
due to their close genomic proximity.

In addition, an interaction between the LUC7L and
AXIN1 genes is identified as significant, both for Fisher’s
exact test (P-value: 3.64E−8) and the NCHG test (P-value:
5.1E−4). This interaction has also been previously identified
(29). As expected, �-globin is not found to form interactions
with the HSs in the Mcf7 cell line.
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Figure 6. Significant interactions involving the GREB1 gene for the Mcf7 cell line. Significant interactions are shown as connected segments. Segments
colored dark red and dark blue are verified (using 3C) in Li et al. (12). Interactions between pink segments indicate interactions found using Fisher’s exact
test that have not been verified previously.

The same results are found when the analysis is per-
formed without a cutoff of at least three observed interac-
tions. However, in this analysis, Fisher’s exact test actually
identifies an even larger number of non-confirmed signifi-
cant interactions (see Supplementary Figure S9).

We observed that two of the 5C-confirmed interactions
involving the promoter region of the AXIN1 gene, that are
found to be significant using Fisher’s exact test, also have
low P-values using the NCHG test (8.36E−3 and 8.16E−3).
However, after multiple testing correction at 5% FDR these
are no longer significant. Allowing for an FDR of 10%,
however, these two interactions become significant. Using
an FDR of 10% for Fisher’s exact test on the other hand,

still only identifies the eight confirmed interactions previ-
ously discussed (see Supplementary Figure S10).

Interactions involving the �-globin region on the p15.4
region of chromosome 11 have also been studied extensively
(33). In this region, several HS regions upstream of the
HBE1 gene make up a locus control region (LCR), where
the different HS regions control different developmental
stages of the expression of the globin genes (34). Using the
NCHG test, we find in total seven interactions in this re-
gion, one of which has been previously reported in the EN-
CODE dataset (16) (P-values: 3.57E−6 and 3.04E−21, for
NCHG and Fisher’s exact test, respectively). For Fisher’s
exact test, we find 11 interactions, with 2 previously re-
ported interactions in the same dataset (see Supplemen-
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tary Figure S11). The identified interactions are with the � -
globin genes, which are known to be expressed in the K562
cell line.

Comparison with 3C data. In Li et al. (12), where the
ChIA-PET data for the K562 and Mcf7 cell lines are de-
rived from, interactions for several regions have been vali-
dated using 3C. In this section, we use some of these vali-
dated regions to compare Fisher’s exact test and the NCHG
test.

The GREB1 gene has been shown to be highly expressed
in Mcf7 cells, and is regulated by estrogen levels (35). This
regulation is controlled by a large upstream enhancer ele-
ment where estrogen receptor alpha binds and makes phys-
ical interactions with the GREB1 promoter (36). Interest-
ingly, we also observe the presence of a significant interac-
tion between this upstream enhancer and the GREB1-gene,
using the NCHG test (P-value: 6.93E−30) and Fisher’s ex-
act test (P-value: <1.0E-50), as shown in Figure 6. However,
Fisher’s exact test identifies 20 other interactions involving
this region, none of which has previously been reported and
verified. As can be seen from the plot, the identified inter-
actions all have a genomic distance in the range (∼10–160
kb), which is within the size range where Fisher’s exact test
seems to be not conservative enough.

Interactions between the SYNCRIP gene and an up-
stream snoRNA locus, active in multiple cell lines, have also
previously been noted (12). We again identified a single in-
teraction between these two regions in both K562 and Mcf7
using the NCHG test (P-values: 1.39E−34 and 4.59E−17, re-
spectively). While this interaction is also identified using
Fisher’s exact test (P-value: <1.0E-50 in both cell lines), a
range of other unconfirmed nearby interactions are identi-
fied as well (see Supplementary Figures S12 and S13).

Regulation of RUNX1 via cell-type specific looping. We
were interested in exploring the significance of interactions
around the RUNX1 gene, known to be of major importance
for regulation of hematopoiesis (37). RUNX1 is known to
be tightly regulated via looping interactions of nearby en-
hancer elements (38). For example, looping interactions in-
volving two promoter and two enhancer sites have been
characterized in K562 using 3C (39). We inspected the sig-
nificant interactions in this region, and found several of the
interactions reported in Markova et al. (39) (see Supplemen-
tary Figure S14). The NCHG test identifies 6 interactions,
2 of which were reported in that paper, while Fisher’s ex-
act test identifies 21 interactions, 3 of which were reported
in the paper. Interestingly, by inspecting the same region
in the Mcf7 cell line, we observed a very different interac-
tion pattern. Particularly, instead of interactions between
the promoter regions and downstream enhancers as seen in
K562, interactions seem to form at upstream enhancer el-
ements (see Supplementary Figure S15). Interestingly, one
of these enhancer elements are found inside the LINC00160
long non-coding RNA (lncRNA) (P-value: 8.1E−4). Simi-
larly, the Fisher’s exact test also identifies this interaction
(P-value: 3.68E−13). By inspecting chromatin states within
this lncRNA mapped in Ernst et al. (40), cell-type specific
enhancer activity is found for the cell lines HMEC, HSMM
and NHEK (see Supplementary Figure S16). The chro-

matin state activity of the HMEC cell line is likely to closely
resemble the Mcf7 cell line, as both are derived from mam-
mary epithelium. Cell-type specific activity of lncRNA en-
hancer elements have been speculated to mediate their func-
tion via long-range looping (41). Our findings for the cell-
type specific regulation of RUNX1 indeed provide evidence
for this model.

DISCUSSION

We have developed a statistical test for detection of signifi-
cant interactions between genomic elements in ChIA-PET
datasets, applying the NCHG distribution. Unlike previous
methods, our statistical model incorporates genomic dis-
tance in addition to marginal sums, in order to avoid over-
estimating the significance of short interactions. Using data
simulated from Poisson models that depend on genomic dis-
tance, we show that the Fisher’s exact test commonly used
for these types of analyses gives drastically skewed P-value
distributions, indicating that not taking genomic distance
into account can lead to invalid results. Using two publicly
available ChIA-PET datasets, we show that the NCHG test
assigns statistical significance to interactions that have been
independently validated using 3C and 5C, without over-
estimating the significance of other, nearby interactions.
Fisher’s exact test on the other hand is found to assign sta-
tistical significance to a large number of interactions, espe-
cially with short genomic distances. This is explained by the
fact that Fisher’s exact test does not incorporate genomic
distance into the model.

The need for taking genomic distance into account is
clearly demonstrated in Figure 2. The strongest dependency
of genomic distance on interaction frequency is seen below
1 Mb, which is within the size range where most regulatory
interactions are formed (28). Consequentially, the interac-
tions with low genomic distances almost always come out as
significant, using Fisher’s exact test. Additionally, the fact
that genomic distance is always considered when analyzing
5C and Hi-C data (16,17), indicates the strong necessity to
do so for ChIA-PET data as well.

In this paper, we used a cutoff of at least three observed
interactions between anchor pairs in addition to a FDR
≤5%. These settings were selected based on the settings in
previous papers using Fisher’s exact test (13,12), to be able
to compare the two methods appropriately. We have shown
here that the cutoff of at least three interactions is the ma-
jor factor determining significance when using Fisher’s ex-
act test (see Figure 4). Because most interactions above this
threshold will be interactions between anchors separated
by short genomic distances, Fisher’s exact test is expected
to over-estimate the confidence of such interactions. Using
the NCHG test on the other hand, genomic distance is han-
dled appropriately. For this reason, the cutoff on the num-
ber of interactions can possibly be removed when using the
NCHG test, since very few interactions with nij < 3 actually
become significant. However, it is important to note that
considering both the number of observed interactions and
the statistical significance can be important for determining
biologically relevant interactions.

We also note that while we focused on intrachromosomal
interactions in this study, the method can also be used for
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interchromosomal interactions. In that case, the �ij param-
eter needs to be estimated for interchromosomal contacts
separately.

Due to the lack of large datasets with validated regula-
tory 3D interactions, evaluating and comparing statistical
models of such data, is challenging. It is also important to
note that many of the validated interactions, such as the
ENCODE 5C interactions, have themselves been identified
using statistical methods. Also, the fundamental nature of
3C-based methods is the identification of interacting restric-
tion fragments, while ChIA-PET detects interactions be-
tween DNA binding sites. It is therefore not always expected
that comparing these two datasets is reasonable.

In addition to the ever-increasing mapping of regulatory
elements across tissues and cell lines, inference of 3D inter-
actions between regulatory regions in the genome is neces-
sary to shed light on the mechanisms underlying cell-type
specific gene regulation. The statistical model of ChIA-PET
data presented here, based on the NCHG distribution,
provides a solid framework for such analyses by taking
into account important properties underlying the data.
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36. Deschênes,J., Bourdeau,V., White,J.H. and Mader,S. (2007)
Regulation of GREB1 transcription by estrogen receptor � through a
multipartite enhancer spread over 20 kb of upstream flanking
sequences. J. Biol. Chem., 282, 17335–17339.
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