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Abstract

In this paper, we present a new method for fusion of
satellite tmages and GIS ground cover data for land-
use classification. The method is suited for classifica-
tion of tmages captured at different dates, by incorpo-
rating knowledge about the class-dependent probabili-
ties of changes with respect to the pattern classes. The
method s tested by fusing Landsat TM images, ERS-1
SAR images, and GIS ground cover data for land-use
classification. The test results show that significant
improvements in the classification accuracy are possi-
ble by fusing GIS data with speciral imagery.

1 Introduction

The availability of remotely sensed data of the same
scene from different sensors is increasing. In addition
to spaceborne spectral data, aerial photographs, forest
maps, ground cover maps, and topographic informa-
tion such as elevation and slope might be available to
the analyst. The two main sources of information are
(i) multispectral images from different satellite sen-
sors, and (ii) spatial data from Geographic Informa-
tion Systems (GIS). It is desirable to use most of these
data in the image analysis to maximize the amount of
useful information extracted. For an image segmenta-
tion or classification task, fusion of data from differ-
ent sensors can be utilized to reduce the classification
error obtained by single-source classification. Con-
ventional multivariate classification methods require
that the multisource data be described by a common
spectral model. Such a model cannot be easily estab-
lished for combining different data types, e.g., spectral
data and categoric data from a GIS system. Another
problem with the conventional multivariate approach
is that the different sources might not be equally reli-
able. The development of an appropriate model for the

classification of data from multiple sources is, thereby,
an important problem for the processing of remotely
sensed data.

Among the different approaches to data fusion in
the remote sensing literature are statistical methods
[1], and Demster-Shafer theory [6]. These previous
studies assume that no changes with respect to the
pattern classes have occurred between the acquisition
of the different images. A challenge for further re-
search is to include the concepts of time and class
changes in the fusion models. In [12], we presented
a model for fusion of multisensor satellite images in
which the temporal aspect was included by allowing
changes in the pattern classes and considering the
class-dependent probabilities of changes. In this pa-
per, we extend the model by incorporating GIS ground
cover data. The performance of the model is evaluated
by fusing Landsat TM images, ERS-1 SAR images,
and GIS ground cover data for land-use classification.
The fusion model gives significant improvementsin the
classification error rates compared to the conventional
single-source classification results, or to a fusion model
for combining spectral data only.

The remainder of this paper is organized as follows:
In section 2, the basic elements in the fusion model are
presented. Section 3 describes the interaction model
between different sources. Experimental results are
presented in section 4, and discussion and conclusions
are given in section 5.

2 The basic fusion model

We present a brief description of the fusion model
used in our study.



2.1 Bayesian data fusion

In the general multisource or sensor fusion case, we
have a set of measurements or data, from n sensors
Xs(4,5), s € {1,n} for each pixel (4,j). The goal
is to assign each pixel into one of the information
classes wq,...,wc. We might have some a priori in-
formation about the likelihood of the different classes,
represented as P(wy), ..., P(w¢), the apriori probabil-
ities of the classes w., ¢ € [1,C]. The relationship
between the measurements and the a priori informa-
tion is represented by

Plwe | X1(4, 5), s Xn(i,5)) =
P(Xl(i,j), .. (Z: ) | wc) ( ) (1)
PG D), Xnd)

where ¢ € {1,2,...,C}, P(w. | X1(4,7), ..., Xn(i, 7))
is the a posteriori probability that w. is the correct
class,
given the observed data X (%, j), ..., Xn(4,7). The im-
age formation model, P(X1(%,J),..., Xn(4,J) | we) is
the conditional probability that X1 (4, 7), ..., Xn(¢,7) is
the observed data , given that w, is the correct class.
Each pixel is assigned to the class ¢ which maximizes

Plwe | X104, 7), -y Xn(i, 7))

2.2 Elements of the fusion model

A schematic view of the fusion model is given in
Figure 1. The fusion model consists of the following
basic elements:

e Input data. The input images are assumed to
be geocoded and co-registered. GIS data are
assumed to be converted to raster format and
co-registered with the images.

e Image formation model. A sensor-specific im-
age formation model contains information about
the underlying noise characteristics of the sen-
sor. For remote sensing applications, the image
formation model typically describes the class-
conditional probability density function of the
image data.

We will model the Landsat TM images using the
multivariate normal distribution. The six origi-
nal non-thermal TM bands with a resolution of
30m x 30m are the input data. TM images are
not severely degraded by noise.

To specify an image formation model for SAR
images, we can either simply specify a probabil-
ity distribution function for the speckle noise, or

we can use a more complex model based on spe-
cific knowledge about the SAR signal process-
ing operations and the resulting speckle auto-
correlation function. Various probability distri-
bution functions and more complex models de-
rived from speckle statistics and autocorrelation
have been developed [3, 4, 7, 8, 10]. Previous
studies [11] have demonstrated that classifica-
tion based on textural features in addition to the
average backscatter can improve the classifica-
tion error rates significantly. Following Frankot
and Chellappa [4], we will model the SAR, im-
age using a multiplicative autoregressive random
field (MAR). The parameters of the model have

been used as texture descriptors [11].

Let the observed SAR image X(4,j) be rep-
resented by a white-noise-driven multiplicative
system. Define Y(i,7) = InX(4,5). Then we
assume that Y'(4, j) follows a Gaussian autore-

gressive (AR) model

)= > 0. (Y (itr, j+s)—py)+u(i, 5), (2)

reN

where NV is the neighborhood system, and p, is
the mean value of the stationary random pro-
cess Y. The noise process u(i,j) is uncorre-
lated white noise with variance o%[4]. We use
the least squares estimates for the parameters
0, 0%, and p, [4]. The parameter estimates are
computed in local windows of size 9x9 and with
N =A{(0,-1),(=1,-1),(—1,0)}. The estimated
parameters will be used as feature vectors in the
pixel classification.

Spatial contexrt. Contextual information from
neighboring pixels normally improves the clas-
sification results compared to a pixel-by-pixel
classification. In remote sensing applications,
contextual information is often modelled using
Markov Random Fields in a local spatial neigh-
borhood. The choice of contextual model will in-
fluence the complexity of the classification algo-
rithm. With computational aspects in mind, we
have y chosen a non-iterative contextual model:
Haslett’s model [5]. The classification rule is
based on a stochastic model for the behavior of
the classes in the scene and the behavior of the
feature vectors, given the underlying classes. For
the detailed model, see [5, 12].

A priori probabilities. In the Bayesian formula-
tion of the classification problem, a priori prob-
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Figure 1: A schematic view of the fusion model.



abilities for each class can be specified and used
in the classification process.

e Temporal information. Temporal information in
the form of probabilities of changes with respect
to the pattern classes between the acquisition
of the different sources is included in the fusion
model.

e The interaction model. The essential part of a
fusion model is the interaction between the mod-
ules for the different sources. We will discuss the
interaction model in the next section.

3 The interaction model

First, we will present a simple model for fusing
Landsat TM, ERS-1 SAR images and GIS ground
cover data. Then, we will extend this model to
incorporate the temporal aspect. Let the Land-
sat image consist of M N pixels or feature vectors
{Xc(1,1),..., X(M,N)} and let the corresponding
feature vectors in the ERS-1 SAR image be denoted as
{Xs(1,1),..., Xs(M,N)}. The classification of pixel
(4,7) in the SAR image is denoted cs;; and in the
Landsat image as cr ;;. Let Ps(Xs(4,7) | ¢si5 = ¢)
and Pr(Xr(i,j) | crsj = ¢) denote the image forma-
tion model for SAR and Landsat, respectively. The
probabilities Ps(Xs(i,j) | ¢s.45 = ¢) and Pr.(Xr(4,5) |
cr,ij = c) are computed using Haslett’s contextual rule
in the “cross” neighborhood of X,(i,j). For the GIS
data, each pixel is assigned to the land-use category
CG,ij -

Let us assume that the measurements from each
source are independent. We can then write down the
expression for the a posteriori probabilities for each
class at each pixel given the two spectral data sources:

P(CZ’]' =cC | Xs(i,j),XL(i,j)) =
Ps(esyj = ¢ | Xs(i,5))Prlcr; = ¢ | X0(i, 7)) (3)

The validity of the independence assumption be-
tween the measurements from each sensor is difficult
to establish. In the case of radar images (SAR) and
optical images (LANDSAT), the two sensors measure
quite different characteristics in different wavelengths.
If we do not assume independence, then we must spec-
ify the joint distributions of the measurements from
the different sources. This is a very difficult task. The
robustness of our fusion scheme will be determined
based on its performance even when this independence
assumption is not true.

The simplest fusion algorithm would consist of as-
signing each pixel to the class that maximizes Eq. (3).
Next, we introduce the GIS data and assign reliability
factors to each data source. The modified version of
Eq. (3) becomes in logarithmic form:

log P(cij = ¢ | Xs(i,7), Xo(4, 7)) =
aslog Ps(csij = ¢ | Xs(4,7))
+arlog Pr(cr; = ¢ | XL(i,]))
+agb(c, ca,ij), (4)

where «;, 0 < a; < 1,7 € {S,L,G} are the relia-
bility factors associated with the different sources. S,
L, and G represents the sources SAR, Landsat and
GIS, respectively. Let 8(k,l) = 1 if (k = [), and zero
otherwise. With this simple fusion model, consistency
between the sources is encouraged. We use the overall
classification accuracy as the value of the reliability
factors for Landsat TM and SAR (as and ap), re-
spectively. We will later refer to Eq. (4) as the simple
fusion model.

To incorporate possible changes with respect to the
pattern classes in the model, we need to consider pos-
sibly different classes for the different sources. This
requires constraints to control the behavior of the fu-
sion algorithm to create a consensus interpretation of
the scene. Assume that our classification modules for
SAR images and Landsat images assign a pixel (¢, ) to
classes ¢ and [, respectively, and that the GIS category
for the pixel is g. Let us introduce penalty terms in
the likelihood function whenever the different sources
do not agree on their choice of classes. Extending the
basic model in Eq. (3) to incorporate the constraints
the modified logarithmic likelihood function becomes:

P(c,l) = aslog Ps(csij = ¢ | Xs(4,4))
+ary, log PL(CLJJ' =1 | XL(ZJ))
—BV(¢cs,ij, CL,ij €G ij ) (5)

where V(cs,ij,crij, ¢a,ij) denotes the penalty asso-
ciated with individual pairs of sources and their classi-
fication results, and # is a constant. In the following,
we will refer to Eq. (5) as the extended fusion model.
Experiments have shown that § = 0.5 is a reasonable
choice. The parameters as and ay are set equal to
the overall classification accuracy based on SAR and
Landsat alone, respectively. The parameter ag must
be specified by the user. We consider the following
form for the penalty function:

Vies,ij,cr,ij; ca,ij) = vsn(1 —6(c, 1))



+ysa(l = 6(c,9)) +vea(1=6(1,9))  (6)

where

6(0,1):{ 1 ife=1

0 otherwise

(7)

No penalty is assigned when the sources assign a
pixel to the same class (¢ = [). If ¢ # [, then the size
of the penalty is determined by .. We relate the v
parameters to the a priori probability of an actual class
transition from class ¢ to class [. Let ¢(c, () denote the
a priori probability for an actual transition from class
[ to class ¢ during the time between the acquisition of
the two sources. Now, let

vsL = (1= o(c,1)(0s5 +0L,i;), (8)
vsa = (1 —¢(c,9))(0s,i; + ag),
vre = (1 —o6(1,9))(0Li; + ag),

where 0, ;; represents a local reliability factor for
pixel (7, j) in the image. The specification of the 6, ;;
parameters will be explained shortly. The effect of
this is that if the probability of an actual change from
class [ to class ¢ between the acquisition of two differ-
ent sources is high, then the associated penalty when
the source-specific classifiers choose the two different
classes ¢ and [ is low. If the likelihood is low, then the
penalty is higher.

Let the local reliability factors 6.;; indicate the
form of the probability function for the a posteriori
probabilities for class ¢ at pixel (¢, ) for source n. Let

Ocij = (Pe(maz) — Pe(cn 45)) 9)

where P.(maz) is the maximum a posteriori prob-
ability among the different classes. @, ;; is now a mea-
sure of the uncertainty or doubt associated with the a
posteriori probabilities.

4 Experimental results

The performance of the fusion model was investi-
gated on a data set consisting of one Landsat TM
image from Oct. 20, 1991, four ERS-1 SAR images
from Aug. 27, Oct. 17, Oct. 20, and Nov. 19, 1991,
and ground cover data from a topographic map in the
series M711 of Kjeller, Norway. A five-class classifica-
tion problem is considered, with the following classes:
water, urban areas, forests, and two classes of agricul-
tural areas: plowed and unplowed. Between the ac-
quisition of the different images, a large portion of the

agricultural fields was tilled, and ground control mea-
surements for specific fields are available for training
and testing the classifier’s ability to detect changes.

The ERS-1 images are 3-look images processed
at Tromsg Satellite Station. The SAR images have
been resampled to a pixel size of 30m x 30m and co-
registered with the Landsat image. GIS data corre-
sponding to the land-use categories water, urban ar-
eas, agricultural areas, and forests have been digitized
and co-registered with the other images. The GIS data
originated from two map revisions each covering only
part of the area. The original maps were revised in
1976 and 1988, respectively. This means that the GIS
data for part of the scene are inaccurate with respect
to changes in area use after 1976. During this period,
some areas have changed from forest/agricultural ar-
eas to urban areas.

As a reference for evaluating the performance of
the multisource classifier, we will use the single-source
classification error rates. These are given in Table 1.
The large variations in the SAR classification error
rates are due to the different weather conditions at
the time the images were acquired. The typical overall
classification accuracy is 95% for Landsat and 65-70%
for SAR.

Table 2 shows the error rate for the various ap-
proaches to fusion of the different sources. On an av-
erage, fusion of the Landsat TM image with the SAR
image reduced the error rate from 33% based on SAR
alone to 7%. Inclusion of GIS data in the model fur-
ther reduced the error rate by 3.1% on an average.
Using the simple fusion model, the average error rate
was 7.2%. By using the extended fusion model, this
error rate was reduced to 4.6%. To further illustrate
the effect of the extended model, we have used test
regions where the ground cover has changed from for-
est/agricultural to urban areas after the production of
the topographic map. The error rates for these regions
are shown in Table 3. By using the extended fusion
model, the error rate was reduced from 60.0% £ 3.2%
to 36.4% + 7.4%.

5 Discussion and conclusions

In this paper, we have presented a method for fusion
of Landsat TM, ERS-1 SAR images, and GIS ground
cover data for land-use classification. The method can
be used to fuse images captured at different dates, by
allowing changes in the pattern classes. By combin-
ing spectral imagery with GIS ground cover data, a
more accurate interpretation of the scene can be ob-
tained. The expected improvements in the classifica-



tion accuracy due to inclusion of data from additional
sources depend on the general discrimination ability
of the source. Even by fusing SAR images containing
a relatively low discrimination information, and using
partly inaccurate GIS ground cover data, the fusion re-
sulted in significant improvements in the classification
accuracy. Our results are in accordance with other ex-
periments of including GIS data in the classification
process [1, 9].

The method should be further evaluated on a larger
data set. Future work will include methods for esti-
mation of the model parameters.
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Landsat, Oct. 20

SAR, Aug. 27

SAR, Oct. 17

SAR, Oct. 20

SAR, Nov. 19

5.2%

33.4%

32.5%

35.2%

21.7%

Table 1: Classification error rates for the single-source classifiers.

Image fused Fusion method 1 | Fusion method 2
TM and SAR Oct.20 6.3+0.3% -

TM, SAR Oct.20, and GIS 2.9+ 0.2% -

TM and SAR Aug.27 11.4 + 0.5% 7.5 £+ 0.4%
TM, SAR Aug.27, and GIS 7.3+ 0.2% 5.1+ 0.3%
TM and SAR Oct.17 9.1 £ 0.5% 8.1+ 0.4%
TM, SAR Oct.17, and GIS 6.3 £ 0.4% 4.8 + 0.3%
TM and SAR Nov.19 11.5 + 0.3% 6.3 +£0.2%
TM, SAR Nov.19, and GIS 8.1+ 0.3% 3.9+ 0.2%

Table 2: Performance of fusion models.

Average classification error rates (in %) for fusion of the Landsat TM image from Oct. 20, 1991 with the SAR
images from Aug. 27, Oct. 17, Oct. 20, and Nov. 19, 1991, and the GIS data. The error rates are averages
over 10 experiments. The fusion methods are the following: Method 1 = Simple fusion with reliability factors,
Method 2 = Extended fusion model with reliability factors and transition probabilities. Transition probabilities
used are 0.4 from the class unplowed to the class plowed for the spectral data, and from forests/agricultural areas

to urban areas for the GIS data. Reliability factors are g = 0.7, ar = 0.95, and ag = 0.7.

Date Error rate for simple fusion | Error rate for extended fusion
Aug.27 61.0 % 29.7%
Oct.17 58.7% 30.6%
Oct.20 63.7% 40.2%
Nov.19 56.3% 44.9%

Table 3: Performance for detection of changes.

Classification error rates for the simple and the extended fusion model for test regions where the ground
cover has changed from forests/agricultural to urban areas. Transitions probabilities of 0.4 from the categories

forests/agricultural to urban areas are used.




