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Any decision making process that relies on a probabilistic forecast of future events necessarily5

requires a calibrated forecast. This paper proposes new methods for empirically assessing6
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dimension through a pre-rank function and the calibration is subsequently assessed visually9

through a histogram of the ranks of the observation’s pre-ranks. Average ranking assigns a10

pre-rank based on the average univariate rank while band depth ranking employs the concept11

of functional band depth where the centrality of the observation within the forecast ensemble12

is assessed. Several simulation examples and a case study of temperature forecast trajectories13

at Berlin Tegel Airport in Germany demonstrate that both multivariate ranking methods can14

successfully detect various sources of miscalibration and scale efficiently to high dimensional15

settings. Supplemental material in form of computer code is available online.16
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1 Introduction19

Calibration, the statistical compatibility between a probabilistic forecast and the realized obser-20

vation, is a fundamental property of any skillful forecast. Formally, we say that the forecast is21

calibrated if, over the long run, events assigned a given probability are realized with the same22

empirical frequency. Calibration is thus a critical requirement for optimal decision making and23

any decision aiding technique that relies on the forecast (Lichtenstein et al., 1977; Gneiting et al.,24

2007).25

In the case of a univariate probabilistic forecast given by a continuous predictive distribution,26

Dawid (1984) proposes the use of the probability integral transform (PIT) for calibration assess-27

ment. That is, if F is the cumulative distribution function (CDF) of a calibrated probabilistic28

forecast for the observation y, it holds that F (y) ∼ U([0, 1]). A randomized version of the PIT that29

applies to partly, or fully, discrete distributions is discussed in Czado et al. (2009). For an ensemble30

of deterministic forecasts that approximate the predictive distribution, an equivalent tool is the rank31

of the observation y in the forecast ensemble x1, . . . , xm−1 (Anderson, 1996; Hamill and Colucci,32

1997). The calibration of a large number of forecast cases may then be assessed empirically by33

plotting the histogram of the resulting PIT values or verification ranks (Gneiting et al., 2007). If34

the forecasts lack calibration, the shape of the PIT or the verification rank histogram may reveal35

the nature of the misspecification and thus provide a useful guidance to the improvement of the36

forecasting method. For instance, a ∪-shaped histogram is an indication of underdispersion while37

a ∩-shape suggests overdispersion.38

To assess the calibration of multivariate ensemble forecasts, Gneiting et al. (2008) propose39

a general two-step framework. In the first step, the observation and the ensemble members are40

assigned univariate pre-ranks. The rank of the observation is then given by the rank of its pre-41

rank. A multivariate calibration technique based on minimum spanning trees proposed by Smith42

and Hansen (2004) and Wilks (2004) seamlessly falls within this framework. Alternatively, Gneit-43

ing et al. (2008) propose a multivariate rank structure equal to that of the empirical copula. A44

recent extension that applies to full distributions is given in Ziegel and Gneiting (2013). While45
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the multivariate rank histogram has been shown to work well for low-dimensional forecasts, see46

e.g. Schuhen et al. (2012) and Möller et al. (2013), the multivariate ordering in the first step47

seems to lack power in higher dimensions (Pinson and Girard, 2012). Alternative methods for48

high-dimensional calibration assessment have thus been called for (Pinson, 2013; Schefzik et al.,49

2013).50

We propose two pre-ranking methods that complement the techniques of Gneiting et al. (2008),51

Smith and Hansen (2004) and Wilks (2004). The new methods are based on the concept of52

band depth for functional data introduced by López-Pintado and Romo (2009) which relates to53

the graphical representation of the functional data curves. That is, continuous or discrete curves54

are given a center-outward ordering according to the centrality of a curve within the collection55

of sample curves. Sun and Genton (2011, 2012) apply this concept to develop a box plot for the56

visualization and outlier-detection of functional data. Viewing a discrete curve of length d as a57

point in d-dimensional space, we define a pre-ranking method based on the band depth concept of58

López-Pintado and Romo (2009). In the discrete case, the band depth essentially corresponds to59

the average centrality of the d points. As a second alternative, we thus also consider a pre-rank60

given by the average of the univariate ranks.61

The remainder of the paper is organized as follows. In Section 2, we review the concept62

of band depth for discrete data and define the two multivariate ranking methods. Section 3 and63

4 provide the results of simulation studies where we investigate the influence of dimensionality64

and correlation, respectively, on the band depth ranks, the average ranks and the two previously65

proposed techniques. A further comparison of the four techniques is provided in Section 4, where66

we assess the calibration of temporal trajectories of temperature forecasts over Germany. The67

paper then ends with a discussion in Section 5.68
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2 Ranking multivariate data69

Let S = {x1, . . .xm} denote a set of points in Rd or a d-dimensional subset thereof, with xi =70

(xi1, . . . , xid). Here, we can think of S as comprising an ensemble forecast with m − 1 ensemble71

members and the corresponding observation y = xm. Following the general set-up of Gneiting72

et al. (2008), the rank of the observation in S is calculated in two steps,73

(i) apply a pre-rank function ρS : Rd → R+ to calculate the pre-rank, ρS(x), of every x ∈ S;74

(ii) set the rank of the observation xm equal to the rank of ρS(xm) in {ρS(x1), . . . , ρS(xm)} with75

ties resolved at random.76

Under minimum spanning tree ranking, the pre-rank function ρmst
S (x) is given by the length of the77

minimum spanning tree of the set S \ x (Smith and Hansen, 2004; Wilks, 2004). Here, a spanning78

tree of the set S \ x is a collection of m − 2 edges such that all points in S \ x are used. The79

spanning tree with the smallest length is then the minimum spanning tree (Kruskal, 1956); it may80

e.g. be calculated using the R package vegan (R Core Team, 2013). The multivariate ranking of81

Gneiting et al. (2008), on the other hand, is defined using the pre-rank function82

ρm
S (x) =

m∑
i=1

1{xi � x}, (1)

where 1 denotes the indicator function and xi � x if and only if xik ≤ xk for all k = 1, . . . , d.83

Gneiting et al. (2008) further consider an optional initial step in the ranking procedure in which84

the data is normalized in each component before the ranking. As the pre-rank functions proposed85

below are invariant to such pre-processing, we omit this step here.86

2.1 Band depth rank87

López-Pintado and Romo (2009) introduce a center-outward ordering of curves which they call88

band depth. In the discrete case, it is defined as the proportion of coordinates of x ∈ S inside89
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bands defined by subsets of n points from S,90

bdn
S(x) =

(
m

n

)−1
1

d

d∑
k=1

∑
1≤i1<...<in≤m

1
{

min{xi1k, . . . , xink} ≤ xk
}

(2)

× 1
{
xk ≤ max{xi1k, . . . , xink}

}
.

Note that López-Pintado and Romo (2009) refer to this version of the definition as modified91

band depth, in reference to the corresponding definition for continuous curves. It holds that92

0 ≤ bdn
S(x) ≤ 1 for all x ∈ S and it gets closer to 1 the deeper, or more central, the point x93

is in the set S. Previous studies note that the resulting ordering of the elements in S is robust to94

changes in the value of n and we thus only consider the case n = 2 which is equal to the simplical95

depth of Liu (1990) and computationally very efficient (López-Pintado and Romo, 2009; Sun et al.,96

2013).97

From (2), we obtain the band depth pre-rank function98

ρbd
S (x) =

1

d

d∑
k=1

∑
1≤i1<i2≤m

1
{

min{xi1k, xi2k} ≤ xk ≤ max{xi1k, xi2k}
}

=
1

d

d∑
k=1

[
rankS(xk)

[
m− rankS(xk)

]
+
[
rankS(xk)− 1

] m∑
i=1

1{xik = xk}
]
, (3)

where rankS(xk) =
∑m

i=1 1{xik ≤ xk} denotes the rank of the kth coordinate of x in S. If99

xik 6= xjk with probability 1 for all i, j ∈ {1, . . .m} with i 6= j and k = 1, . . . , d, the band depth100

pre-rank function in (3) further simplifies to101

ρbd
S (x) =

1

d

d∑
k=1

[
m− rankS(xk)

][
rankS(xk)− 1

]
+ (m− 1), (4)

see also Sun et al. (2013).102

It is straightforward to see that the band depth rank of an observation y = xm is uniformly103

distributed if x1, . . . ,xm are independent and identically distributed, which implies a calibrated104

ensemble forecast. However, the interpretation of the resulting rank histogram is somewhat differ-105
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(a) Band depth ranking
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(b) Average ranking

●

●

●

●

●

N
or

m
al

iz
ed

 P
re

−
ra

nk

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.6

0

0.3

0.5

1

1

3

2

5

4

R
an

k

●

● ●

●

●

4

4 3

2

2

Figure 1: Illustration of (a) band depth, and (b) average pre-ranking for a multivariate temporal trajectory
with d = 5 time points. The normalized pre-ranks of each curve are given on the left and the resulting ranks
on the right. The four ensemble forecast curves are indicated in gray and the observation curve in black.
The numbers next to each point of the observation curve indicate the univariate pre-ranks.

ent than that of the classical univariate verification rank histogram. As the example in Figure 1(a)106

shows, the band depth pre-rank assesses the centrality of the elements in S, with the most cen-107

tral element(s) attaining the highest rank(s) and the most outlying element(s) attaining the lowest108

rank(s). A skew histogram with too many high ranks is thus an indication of an overdispersive109

ensemble while too many low ranks can result from either an underdispersive or biased ensemble.110

As demonstrated in the simulation study in Section 4, a lack of correlation in the ensemble will111

result in a ∪-shaped histogram while an ensemble with too high correlations produces a ∩-shaped112

histogram.113

2.2 Average rank114

The average rank is simply given by the average over the univariate ranks,115

ρa
S(x) =

1

d

d∑
k=1

rankS(xk). (5)

An illustration of the average pre-ranking is given in Figure 1. It follows directly from (5) that116

the resulting rank of the observation xm in S is uniform on {1, . . . ,m} if the elements of S are117

independent and identically distributed. The average rank furthermore reduces to the classical118
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univariate rank when d = 1.119

The interpretation of the resulting histogram is similar to that of the univariate verification rank120

histogram. That is, if the forecasts are underdispersive the average rank histogram for the observa-121

tion is ∪-shaped, an overdispersive ensemble results in a ∩-shaped histogram while a constant bias122

results in a triangular shaped histogram. As discussed in Section 4 under- and overestimation of the123

correlation structure can furthermore result in over- and underdispersive histograms, respectively.124

3 Histogram shape and the effect of dimensionality125

m
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n 
=
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sd = 0.5

m
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sd = 1 sd = 2

Figure 2: Band depth rank histograms for observations in d = 3 dimensions that follow independent stan-
dard Gaussian distributions while the 19 ensemble members follow independent Gaussian distributions with
parameters as indicated. The results are based on 10000 repetitions.

To demonstrate the shape of the histograms subject to over- and underdispersion as well as126

bias, we consider a simple simulation experiment where the observations follow an independent127

standard Gaussian distribution in each dimension. Figure 2 shows band depth rank histograms128

under this model in a low dimensional setting with d = 3 and m = 20. The ensemble forecasts129

are also assumed to follow independent Gaussian distributions with mean µ ∈ {0, 1} and stan-130

dard deviation σ ∈ {0.5, 1, 2}. When the forecasts are underdispersive or have a constant bias,131

the observation curve is often among the most outlying curves resulting in too many low ranks.132

Similarly, if the forecasts are overdispersive, the observation curves are too central on average,133

resulting in too many high ranks. Figure 3 shows the average rank histograms for the same setting.134

Here, the interpretation of the average ranks is equivalent to that of the standard univariate rank135
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histogram. The histogram shape clearly indicates overdispersion in the forecast through a ∩-shape,136

underdispersion through a ∪-shape and bias via a skew, triangular shaped histogram.137
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Figure 3: Average rank histograms for observations in d = 3 dimensions that follow independent stan-
dard Gaussian distributions while the 19 ensemble members follow independent Gaussian distributions with
parameters as indicated. The results are based on 10000 repetitions.

Figure 4 and 5 demonstrate the effect of increasing dimensionality on the four multivariate138

ranking methods discussed in Section 2 subject to under- and overdispersion, respectively. While139

we still assume the ensemble consists of 19 members, the dimensionality of the data is here in-140

creased to 5 and 15 dimensions. This setting may seen somewhat extreme in that we attempt to141

represent the multivariate correlation structure in 15 dimensions with only 19 trajectories. How-142

ever, this is common e.g. in atmospheric sciences, where due to computational limitations ensem-143

bles of similar magnitude are used to represent very high dimensional multivariate distributions.144

The average rank histograms for both examples appear unchanged compared to the low dimen-145

sional example in Figure 3 while for the band depth rank, the evidence of miscalibration seem to get146

stronger with higher dimensions. The minimum spanning tree ranking provides a center-outward147

ordering of the curves similar to statistical depth functions (Gneiting et al., 2008; Zuo and Ser-148

fling, 2000) and for the examples here, the shape of the minimum spanning tree rank histograms149

is nearly identical to that of the band depth rank histograms. As reported in Pinson and Girard150

(2012), we observe identifiability issues with the multivariate ranking of Gneiting et al. (2008) in151

higher dimensions. In 5 dimensions, only the upper half of the ranks indicates miscalibration and152

the multivariate rank histograms appear close to uniform when d = 15 even though the forecasts153

are severely miscalibrated. The reason for this can be seen by considering the example in Fig-154
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d 
=

 5

Multivariate Rank

d 
=

 1
5

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Figure 4: Multivariate ranking of observations in dimension d = 5 (top row) and d = 15 (bottom row) that
follow independent standard Gaussian distributions when the 19 ensemble member forecasts are underdis-
persed following independent zero-mean Gaussian distributions with standard deviation of 0.5.

d 
=

 5

Multivariate Rank

d 
=

 1
5

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Figure 5: Multivariate ranking of observations in dimension d = 5 (top row) and d = 15 (bottom row) that
follow independent standard Gaussian distributions when the 19 ensemble member forecasts are overdis-
persed following independent zero-mean Gaussian distributions with standard deviation of 2.

ure 1, where, due to crossing of the curves, four out of the five curves would obtain a multivariate155

pre-rank of 1.156

Additional simulation studies show that miscalibration is generally easier to detect in larger en-157

sembles than in small ensembles (results not shown). While these results holds across the different158

pre-ranking techniques, it appears that the curse of dimensionality observed for the multivariate159

ranking in Figures 4 and 5 cannot be avoided by increasing the size of the forecast ensemble.160

Computer code to recreate Figures 2-5 using R (R Core Team, 2013) is available in the online161

supplementary material.162
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4 Assessing deviations in the correlation structure163

An appropriate modeling of the correlation between the different components is an important as-164

pect of multivariate predictions. It is not entirely obvious from their definition why the band depth165

and the average rankings are sensitive to misspecification of the correlation structure. This can be166

demonstrated by comparing the variances of the pre-ranks under different dependence strengths.167

First, consider the extreme case where the observations are fully dependent (i.e. identical) and the168

forecasts are independent across the different components. Assuming, as before, that the different169

curves are pairwise independent, the rank of the ith random curve Xi is uniformly distributed on170

{1, . . . ,m} for each component k = 1, . . . , d. Under the pre-rank functions in (4) and (5) it follows171

that172

E
(
ρa
S(Xi)

)
=
m+ 1

2
, E

(
ρbd
S (Xi)

)
=
m2 + 3m− 4

6
, i = 1, . . . ,m. (6)

For simplicity, we assume that the number m − 1 of forecast curves is high enough, so that

we can neglect the different dependence structure of the observation curve when calculating the

variance of the pre-rank function for the forecast curves. For the average ranking we obtain

Var
(
ρa
S(Xi)

)
≈ m2 − 1

12d
, i = 1, . . . ,m− 1, (7)

Var
(
ρa
S(Xi)

)
=
m2 − 1

12d
+

(m− 1)2(d− 1)

12d
, i = m, (8)

while the band depth ranking results in

Var
(
ρbd
S (Xi)

)
≈ (m+ 1)(m− 1)(7m2 + 8m+ 12)

60d
, i = 1, . . . ,m− 1, (9)

Var
(
ρbd
S (Xi)

)
=

(m+ 1)(m− 1)(7m2 + 8m+ 12)

60d

+
(m4 − 6m3 + 13m2 − 12m+ 4)(d− 1)

180d
, i = m. (10)

Details of the derivations are given in the appendix.173

That is, the variance of the pre-rank for the observation curve (which was assumed constant174
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over all components) is much larger than that of the forecasts curves (which were assumed inde-175

pendent across all components) for both pre-rank functions. It is thus more likely that we observe a176

very low or a very high pre-rank for the observation than for each ensemble member forecast which177

again leads to proportionally larger number of low and high ranks for the observation resulting in178

a ∪-shaped histogram.179

4.1 Gaussian autoregressive processes180

We now consider an example where y ∈ Rd is a temporal trajectory of a real valued variable181

observed at d equidistant time points t = 1, . . . , d. That is, the observation is a realization of a182

zero-mean Gaussian AR(1) (autoregressive) process Y with183

Cov(Yi, Yj) = exp(−|i− j|/τ), τ > 0. (11)

The process Y thus has standard Gaussian marginal distributions while the parameter τ controls184

how fast correlations decay with time lag. We set τ = 3 for Y and consider ensemble forecasts185

of the same type but with a different parameter value τ . It follows from this construction that a186

univariate calibration test at a fixed time point would not detect any miscalibration in the forecasts.187

τ 
=

 2

Multivariate Rank

τ 
=

 4

Average Rank Band Depth Rank Minimum Spanning Tree Rank

Figure 6: Simulation study to compare the sensitivity of the multivariate rank histogram, the band depth rank
histogram and the average rank histogram to misspecification of the dependence structure. The observations
follow an AR(1) process at time t = 1, . . . , 5 with the dependence structure given in (11) for τ = 3 while
the ensemble forecasts follow the same model with τ = 2 (top row) and τ = 4 (bottom row). The results
are based on 10000 repetitions with 19 ensemble members in each iteration.
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Rank histograms for d = 5 and m = 20 where the forecast model has either τ = 2 or τ = 4188

are shown in Figure 6. While all four calibration assessment methods are able to detect the mis-189

calibration, the multivariate rank histogram suffers from identifiability issues with many low and190

identical pre-ranks resulting in a flattening out of the left side of the histograms. The band depth191

and the average rankings, on the other hand, seem quite sensitive to the model misspecification192

resulting in ∪-shape histograms when the correlations decay too fast in the forecasts and ∩-shaped193

histograms in the opposite situation. Here, the minimum spanning tree histogram gives the clearest194

indication of miscalibration.195

Tables 1 and 2 demonstrate the effect of dimensionality and ensemble size on the average and196

band depth rank histograms in Figure 6. That is, we report the mean rank and the rank variance for197

both the observation and a randomly selected ensemble member under the two ranking methods198

when the observation follows the model in (11) with τ = 3 while τ = 2 for the forecasts. This199

example is similar to the example at the beginning of this section which can be considered the200

extreme case with τ =∞ for the observation and τ = 0 for the forecast.201

In the current example, dimensionality has only a minimal effect on the results while the size of202

the ensemble substantially affects the resulting values due to the varying number of possible ranks.203

As the serial dependence of the forecasts is too weak, the forecast ranks concentrate more strongly204

around the mean than the obseration ranks resulting in ∪-shaped histograms as those displayed in205

the top row of Figure 6. This difference in the rank variance appears to be somewhat stronger for206

the average ranking than for the band depth ranking. For the band depth ranking, we moreover207

observe a slight shift of the mean rank. This follows from the fact that the distribution of the band208

depth rank, a quadratic function of the univariate ranks, is slightly skewed such that difference in209

the variance of the pre-ranks may cause differences in the mean rank.210

When the forecast model has the parameter value τ = 4 as displayed in the bottom row of211

Figure 6, we observe similar effects of dimensionality and ensemble size as those reported in212

Tables 1 and 2. However, as this example has too strong serial dependence in the forecasts, the213

rank variance of the observations is here lower than that of the forecasts (results not shown).214
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Table 1: Mean ranks over 30000 repetitions for average ranking and band depth ranking under a zero-mean
Gaussian AR(1) model with the exponential covariance function in (11) with τ = 3 for the observation and
τ = 2 for the forecasts.

Average Band depth

m = 20 m = 100 m = 200 m = 500 m = 20 m = 100 m = 200 m = 500

Observation

d = 5 10.5 50.4 100.0 251.5 10.7 51.7 102.2 256.8
d = 100 10.6 50.4 101.0 250.8 10.6 50.8 101.7 253.2
d = 200 10.5 50.4 100.2 251.2 10.5 50.9 101.8 251.5
d = 500 10.5 50.7 100.3 249.7 10.5 50.9 100.9 251.4

Randomly selected ensemble member

d = 5 10.5 50.7 100.4 249.5 10.5 50.6 100.6 248.6
d = 100 10.5 50.7 101.3 250.7 10.5 50.2 100.5 251.1
d = 200 10.5 50.3 100.4 250.7 10.5 50.3 100.5 252.3
d = 500 10.5 50.3 100.4 250.6 10.5 50.5 100.4 251.2

Table 2: Rank variance over 30000 repetitions for average ranking and band depth ranking under a zero-
mean Gaussian AR(1) model with the exponential covariance function in (11) with τ = 3 for the observation
and τ = 2 for the forecasts.

Average Band depth

m = 20 m = 100 m = 200 m = 500 m = 20 m = 100 m = 200 m = 500

Observation

d = 5 37 940 3773 23428 37 946 3749 23690
d = 100 40 1004 4042 25431 38 989 3982 24604
d = 200 39 1006 4002 25524 38 984 3949 24747
d = 500 39 1014 4052 25629 38 992 3965 24891

Randomly selected ensemble member

d = 5 33 830 3319 20849 33 835 3341 20891
d = 100 33 837 3323 20663 33 825 3331 20715
d = 200 33 828 3316 21008 33 833 3315 20920
d = 500 33 833 3320 20763 33 835 3336 20825

13
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Figure 7: Simulation study to compare the sensitivity of the four multivariate ranking methods to miscali-
bration in the dependence structure. The observations follow the correlation models a), b), or c) (from top
to bottom) at time t = 1, . . . , 15 while the forecasts follow an AR(1) process with scale parameter τ = 3.
The results are based on 10000 repetitions with an ensemble of size 19.

4.2 Autoregressive vs. more complex correlation functions215

Here, we consider Gaussian processes on t = 1, . . . , d where the observation follows the model in216

(11) with τ = 3 while the components of the observation curve have a more complex correlation217

structure. That is, we consider the correlation models218

a) Cov(Yi, Yj) = exp(−|i− j|/4.5)
(
0.75 + 0.25 cos(π|i− j|/2)

)
219

b) Cov(Yi, Yj) =
(
1 + |i− j|/2.5

)−1
220

c) Cov(Yi, Yj) = 1
{
|i− j| ≤ 5

}(
1− |i− j|/5

)
221

Correlation function a) is a damped cosine that oscillates around the exponential model (11) with222

τ = 3. The correlation functions b) and c) differ from this exponential model in that they have223

much stronger correlations at larger time lags, or zero correlations for larger time lags, respectively.224

Figure 7 shows the resulting histograms for d = 15 and m = 20. When the observations225

follow correlation model a), the univariate ranks cancel out by averaging which results in a flat226

average rank histogram, while the minimum spanning tree histogram detects the false correlation227
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structure very well and the band depth rank histogram also indicates miscalibration. For the long228

range dependence model the opposite situation occurs in that the average rank histogram gives the229

clearest indication of miscalibration while the minimum spanning tree histogram is almost flat.230

The last model c) with zero correlations beyond lag 5 finally presents a situation where the231

average rank and band depth rank histograms behave in the opposite way, the former being slightly232

∩-shaped and the latter being slightly ∪-shaped. This suggests that the average rank histogram is233

more strongly affected by correlations at larger lags (which are overpredicted here) while the band234

depth rank histogram and the minimum spanning tree histogram are more sensitive to misspecifi-235

cations of correlations at short lags (which are underpredicted here).236

R code to recreate all the examples in this and the previous section is available in the online237

supplementary material.238

5 Calibration of temperature forecast trajectories239

We illustrate the use of the multivariate verification tools discussed above in the setting of prob-240

abilistic weather forecasting, where ensembles of weather predictions for the same location, time241

and weather variable are generated in order to represent forecast uncertainty (Palmer, 2002; Gneit-242

ing and Raftery, 2005; Schefzik et al., 2013). Specifically, we consider ensemble temperature243

forecasts at Berlin Tegel issued by the ensemble prediction system (EPS) of the European center244

for medium-range weather forecasts (ECMWF) with lead times of 6h, 12h, ..., 72h (Molteni et al.,245

1996; Leutbecher and Palmer, 2008). The EPS is initialized at 0000 UTC, consists of 50 ensemble246

members, and will be evaluated during the period from October 10, 2010 to December 31, 2012247

using observational data from the local meteorological station as the truth.248

The ECMWF forecasts used here are freely available from the TIGGE repository at http://249

apps.ecmwf.int/datasets/data/tigge/. The temperature observation data for Berlin250

Tegel and the R code needed to perform the analysis discussed below is provided in the online251

supplementary material.252
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The univariate rank histograms (not shown here) suggest that these raw ensemble forecasts253

have a systematic under forecasting bias at Berlin Tegel and are underdispersive at all considered254

lead times. We use a simple post-processing method to remove bias and adjust the ensemble spread255

for each lead time separately. Denoting by x̄ the mean of the 50 ensemble members (this is a vector256

with 12 components, one for each lead time) we obtain a bias-corrected mean µ by fitting a linear257

regression model µi = ai + bix̄i, separately for each component, to the corresponding observations258

yi. For each forecast day the preceding 50 days are taken as training data so that we always have259

50 forecast-observation pairs to fit the regression model. This is a compromise between flexible260

adaptation to seasonal changes on the one hand and gathering sufficient data to permit stable model261

fitting on the other hand, see e.g. Gneiting et al. (2005) and Raftery et al. (2005).262

To adjust the ensemble spread, we use the “error dressing” approach of Roulston and Smith263

(2003), building a new ensemble by sampling from the errors εij = yij − µij of the bias-corrected264

forecasts on the respective training days j = 1, . . . , 50 for lead time i = 1, . . . , 12. To create265

an ensemble that appropriately represents the prediction uncertainty we additionally inflate εij266

to adjust for the uncertainty in the bias correction (Faraway, 2004, Section 3.5). The ensemble267

obtained in this way is unbiased and nearly calibrated for individual lead times, see Figure 8.268

We then consider three different strategies to model dependencies of forecast errors at different269

lead times,270

(i) ignore multivariate dependencies and perform the error dressing separately for each lead271

time;272

(ii) perform the error dressing separately for each lead time but use empirical copula coupling273

(ECC, Schefzik et al., 2013) in a second step to transfer the dependence structure from the274

raw ECMWF ensemble to the error dressing ensemble;275

(iii) draw the errors from a zero-mean multivariate normal distribution with the empirical co-276

variance matrix of the forecast errors over all lead times, where the variance is inflated as277

suggested above.278
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Lead Time = 6h Lead Time = 12h Lead Time = 18h Lead Time = 24h

Lead Time = 30h Lead Time = 36h Lead Time = 42h Lead Time = 48h

Lead Time = 54h Lead Time = 60h Lead Time = 66h Lead Time = 72h

Figure 8: Univariate rank histogram of the bias-corrected error dressing forecasts for lead times 6h, 12h, ...,
72h at Berlin Tegel, each of them based on 823 verification days.

While all three strategies result in similar marginal distributions, the multivariate calibration279

assessment in Figure 9 reveals substantial differences. When the statistical postprocessing is per-280

formed independently for each lead time, the average rank histogram exhibit a ∪-shape indicating281

a lack of correlation between lead times in the forecasts. The band depth rank histogram is skew282

towards the lowest ranks indicating that the forecasts are too outlying on average and both the283

minimum spanning tree and the multivariate rank histograms are skewed towards the higher ranks.284

However, as the average rank histogram is symmetric, we would expect the outlying observation285

curves to have both too low ranks as well as too high ranks on average. We thus observe here286

a flattening out of the lower ranks in the multivariate rank histogram due to degeneracy in the287

pre-ranking; on any given day, at least half the curves are assigned a multivariate pre-rank of 1.288

The ECC multivariate postprocessing of Schefzik et al. (2013) significantly improves the cal-289

ibration of the independent postprocessing, though the observation curves are still somewhat too290

outlying. For the multivariate normal error sampling, the histograms appear quite close to uniform291

with a minor divergence towards a ∪-shape in both the minimum spanning tree rank histogram292

and the average rank histogram. An alternative forth multivariate postprocessing option is to apply293

univariate normal error models followed by ECC. This option leads to calibration results nearly294
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Figure 9: Multivariate rank histograms (left), band depth rank histograms (middle) and average rank his-
tograms (right) of the bias-corrected error dressing forecasts with independent error sampling (top), under
ECC (middle) and with multivariate normal error sampling (bottom). The results are based on forecasts for
12 lead times on 823 verification days at Berlin Tegel.

identical to the current results for ECC.295

6 Discussion296

In this paper, we propose two new methods for assessing the calibration of multivariate forecasts297

where the predictive distribution is represented by a forecast ensemble. Band depth ranking is298

based on the concept of band depth for functional data, originally proposed by López-Pintado and299

Romo (2009) and previously employed to create box plots for functional data (Sun and Genton,300

2011, 2012; Sun et al., 2013). The somewhat simpler alternative, average ranking, employs the av-301

erage over the univariate ranks. As demonstrated in several simulated and real data examples, both302

methods seem to correctly identify various sources of miscalibration in the forecast. Furthermore,303

they escape the curse of dimensionality affecting the multivariate ranking of Gneiting et al. (2008)304

as e.g. discussed by Pinson and Girard (2012). The minimum spanning tree ranking of Smith and305

Hansen (2004) and Wilks (2004) can be more sensitive to misspecifications than the new methods306
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proposed here. However, the resulting histograms seem to provide less information on the type of307

misspecification.308

The band depth concept of López-Pintado and Romo (2009) is but one of a multitude of statis-309

tical depth functions for multivariate data that provide a center-outward ordering of the data (Zuo310

and Serfling, 2000). While we have here chosen the band depth due to its computational efficiency311

and interpretability of the resulting histograms, other depth functions might be equally appropriate312

for this purpose. As the band depth ranking assesses the centrality of the observation within the313

forecast ensemble, the sign of a potential bias cannot be learned from the shape of the histogram.314

Average ranking, on the other hand, distinguishes between positive and negative bias and effects315

where the forecasts exhibit a positive bias in a subset of the dimensions and a negative bias in a316

different subset might cancel out. Such effects can, however, easily be detected through univariate317

calibration assessment in each dimension.318

Our examples, in particular the examples in Section 4.2, suggest that there is no single best319

pre-ranking method as all the methods may fail in detecting miscalibration. These methods project320

the multivariate quantity on a different univariate aspect and, in the process, lose information on321

other aspects. Our overall recommendation is thus to study histograms of different type before322

drawing conclusions. Furthermore, multivariate techniques should first and foremost complement323

univariate methods by effectively detecting features of miscalibration that cannot be found by324

studying the marginal distributions only. Conversely, ensuring marginal calibration in a first step325

can rule out the possibility of some compensating effects e.g. of marginal variances and correlations326

between different components.327

Multivariate ranks relate to the multi-dimensional Smirnov two sample test proposed by Bickel328

(1969). Formal tests of uniformity can also be applied to the resulting ranks and this has been329

studied by several authors for univariate PIT or rank histograms, see e.g. Gneiting et al. (2007) and330

references therein. However, as dicussed by both Hamill (2001) and Gneiting et al. (2007), the use331

of formal tests is often complicated by the intricate dependence structures between the individual332

forecast cases. This holds, in particular, for partially overlapping forecast trajectories as discussed333
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in Section 5 or spatially aggregated forecasts.334

Although calibration is an essential feature of a skillful forecast, a general forecast verification335

framework should consider a number of different aspects. Gneiting et al. (2007) state that the336

goal of probabilistic forecasting is to “maximize the sharpness with respect to calibration”. That337

is, given a group of forecasts that all appear close to calibrated, we should choose the forecast338

with the highest information content. For predictive distributions or forecast ensembles, this can339

be attained by choosing the forecast with the smallest spread. More generally, proper scoring340

rules offer a verification framework under which various aspects of the forecast can be assessed,341

including calibration and sharpness. A comprehensive review of proper scoring rules is given in342

Gneiting and Raftery (2007).343
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Möller, A., A. Lenkoski, and T. L. Thorarinsdottir (2013). Multivariate probabilistic forecasting393

using ensemble Bayesian model averaging and copulas. Quarterly Journal of the Royal Meteo-394

rological Society 139, 982–991.395

Molteni, R., R. Buizza, T. N. Palmer, and T. Petroliagis (1996). The new ECMWF ensemble396

prediction system: Methodology and validation. Quarterly Journal of the Royal Meteorological397

Society 122, 73–119.398

Palmer, T. N. (2002). The economic value of ensemble forecasts as a tool for risk assessment:399

From days to decades. Quarterly Journal of the Royal Meteorological Society 128, 747–774.400

22



Pinson, P. (2013). Wind energy: Forecasting challenges for its operational management. Statistical401

Science 28(4), 564–585.402

Pinson, P. and R. Girard (2012). Evaluating the quality of scenarios of short-term wind power403

generation. Applied Energy 96, 12–20.404

R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria:405

R Foundation for Statistical Computing.406

Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski (2005). Using Bayesian model407

averaging to calibrate forecast ensembles. Monthly Weather Review 133, 1155–1174.408

Roulston, M. S. and L. A. Smith (2003). Combining dynamical and statistical ensembles. Tellus409

A 55, 16–30.410

Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013). Uncertainty quantification in complex411

simulation models using ensemble copula coupling. Statistical Science 28(4), 616–660.412

Schuhen, N., T. L. Thorarinsdottir, and T. Gneiting (2012). Ensemble modlel output statistics for413

wind vectors. Monthly Weather Review 140, 3204–3219.414

Smith, L. A. and J. A. Hansen (2004). Extending the limits of ensemble forecast verification with415

the minimum spanning tree. Monthly Weather Review 132, 1522–1528.416

Sun, Y. and M. Genton (2012). Adjusted functional boxplots for spatio-temporal data visualization417

and outlier detection. Environmetrics 23, 54–64.418

Sun, Y. and M. G. Genton (2011). Functional boxplots. Journal of Computational and Graphical419

Statistics 20, 313–334.420

Sun, Y., M. G. Genton, and D. W. Nychka (2013). Exact fast computation of band depth for large421

functional dataset: How quickly can one million curves be ranked? Stat 1, 68–74.422

23



Wilks, D. S. (2004). The minimum spanning tree histogram as verification tool for multidimen-423

sional ensemble forecasts. Montly Weather Review 132, 1329–1340.424

Ziegel, J. F. and T. Gneiting (2013). Copula calibration. arXiv:1307.7650.425

Zuo, Y. and R. Serfling (2000). General notion of statistical depth function. The Annals of Statis-426

tics 28(2), 461–482.427

Appendix428

We consider here the special case where the components of the forecast curves are independent429

while the components of the observation curves are fully dependent (i.e. identical). As usual, we430

also assume that all curves are independent. Let Xik be the random variable corresponding to the431

kth component of curve i, f its density and F its cumulative distribution function for k = 1, . . . , d432

and i = 1, . . . ,m.The ranks rank(Xmk) are then also random quantities and can be written as433

rank(Xmk) =
m∑
i=1

1{Xik ≤ Xmk}.

Under the above assumptions, these quantities are uniformly distributed on {1, . . . ,m}, and hence434

have mean m+1
2

and variance m2−1
12

for every k ∈ {1, . . . , d}. The relations in (6) then easily follow.435

To establish the expressions for Var(ρbd
S (Xi)) and Var(ρa

S(Xi)) for the pre-rank functions in436

(4) and (5), respectively, we proceed as follows. For i = 1, . . . ,m− 1, we assume that437

Var
(
ρbd
S (Xi)

)
≈ 1

d2

d∑
k=1

Var
(
(m+ 1)rank(Xik)− rank(Xik)2

)
,

and similar for Var(ρa
S(Xi)). An application of Faulhaber’s formula,438

m∑
i=1

i3 =
m2(m+ 1)2

4
,

m∑
i=1

i4 =
m(m+ 1)(2m+ 1)(3m2 + 3m− 1)

30
,
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then leads to the results in (7) and (9).439

Since Xmk takes the same value (almost surely) for all k, we can write Xmk = Xm∗. By using440

the independence assumptions (between curves on the one hand and components of the forecast441

vectors on the other hand) we obtain for k 6= k′442

E
(
rank(Xmk)rank(Xmk′)

)
=

m∑
i=1

m∑
i′=1

P
(
Xik ≤ Xmk, Xi′k′ ≤ Xmk′

)
= 1 +

2(m− 1)

2
+

m−1∑
i=1

m−1∑
i′=2

P
(
Xik ≤ Xm∗, Xi′k′ ≤ Xm∗

)
= m+

(m− 1)2

3
.

The last equality uses the independence of Xik, Xi′k′ , and Xm∗ which permits the calculation of443

the joint probability via Fubini,444

P
(
Xik ≤ Xm∗, Xi′k′ ≤ Xm∗

)
=

∫ ∞
−∞

(
F (y)

)2
f(y)dy =

∫ 1

0

y2dy =
1

3
.

This finally yields445

Cov
(
rank(Xmk), rank(Xmk′)

)
= m+

(m− 1)2

3
− (m+ 1)2

4
=

(m− 1)2

12
, k 6= k′,

from which we obtain equation (8).446

The results for the band depth ranking in (10) addtionally require the calculation of

E
(
rank(Xmk)rank(Xmk′)

2
)

=
3m3 + 4m2 + 3m+ 2

12
,

E
(
rank(Xmk)2rank(Xmk′)

2
)

=
6m4 + 9m3 + 8m2 + 3m+ 4

30

which are obtained in a similar manner (but with many more cases).447
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