
© Copyright:  
Norsk Regnesentral

N
ot

e
Validation of point
process forecasts

Note no SAMBA/20/19
Authors Claudio Heinrich

Max Schneider
Peter Guttorp
Thordis Thorarinsdottir

Date 31st July 2019

Claudio Heinrich Max Schneider Peter Guttorp Thordis Thorarinsdottir



The authors
Claudio Heinrich is Research Scientist, Peter Guttorp is Professor II and Thordis L. Thor-
arinsdottir is Chief Research Scientist at the Norwegian Computing Center. Max Schneider
is Ph.D. Student at the University of Washington, Seattle, U.S.A.

Norwegian Computing Center
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-
profit foundation established in 1952. NR carries out contract research and development
projects in information and communication technology and applied statistical-mathe-
matical modelling. The clients include a broad range of industrial, commercial and public
service organisations in the national as well as the international market. Our scientific and
technical capabilities are further developed in co-operation with The Research Council of
Norway and key customers. The results of our projects may take the form of reports,
software, prototypes, and short courses. A proof of the confidence and appreciation our
clients have in us is given by the fact that most of our new contracts are signed with
previous customers.



Title Validation of point process forecasts

Authors Claudio Heinrich , Max Schneider , Peter Guttorp ,
Thordis Thorarinsdottir

Date 31st July 2019

Publication number SAMBA/20/19

Abstract
We introduce a class of proper scoring rules for evaluating spatial point process forecasts
based on summary statistics. These scoring rules rely on Monte-Carlo approximation of
an expectation and can therefore easily be evaluated for any point process model that
can be simulated. In this regard they are more flexible than the commonly used logar-
ithmic score which cannot be evaluated for many point process models, as their density
is only known up to an untractable constant. In simulation studies we demonstrate the
usefulness of our scores. Furthermore we consider a scoring rule, the quantile score, that
is commonly used to validate earthquake rate predictions, and show that it lacks propri-
ety. As a consequence, several tests that are commonly applied in this context are biased
and systematically favour predictive distributions that are too uniform. We suggest to
remedy this issue by replacing the commonly used one-sided by two-sided tests.

Keywords Point processes; Forecast verification; Proper scoring rules

Target group Scientists

Availability Open

Project PointProcess

Project number 220708

Research field Statistics

Number of pages 28

© Copyright Norwegian Computing Center

3



1 Introduction

Motivated by the lack of a unified theory for validation of meteorological forecasts, Gneit-
ing et al. (2007) attempted to formulate fundamental principles of probabilistic forecast-
ing and to provide a mathematical framework for validating to what degree a forecaster
satisfies these principles. They introduced the paradigm that the main goal of a probab-
ilistic forecast is

‘maximizing the sharpness of the predictive distributions subject to calibration.’

The term calibration means that the relative frequencies of an event manifesting in the
observations should match the probability of this event happening under the predictive
distribution. Intuitively, this means that the observation should look like a random draw
from the predictive distribution. For a more detailed introduction of calibration we refer
to the original article by Gneiting et al. (2007). Sharpness refers to the spread in the pre-
dictive distribution. Maximizing the sharpness therefore refers to issuing predictions that
are as precise as possible. The most common way of assessing calibration and sharpness
is by using scoring rules, which comprise the information contained in a predictive dis-
tribution F and the target observation y into a single number, the score S(y, F ). Scoring
rules ought to be proper in order to be useful in practice, meaning that the expected score
gets optimal when the true distribution of the observation is predicted, see Gneiting and
Raftery (2007). Proper scoring rules are valuable tools for decision making, since they
allow to easily compare different forecast models based on a single number, and have
therefore become widely successful in forecast validation throughout various sciences.

In the context of point process forecasts, the use of scoring rules has so far mostly been
limited to the logarithmic score, i.e. the negative log-likelihood of the observation un-
der the predictive model, see Daley and Vere-Jones (2004). The main reason for this is
presumably the complexity of the observation space which makes it challenging to con-
struct proper scoring rules for point processes that are useful in practice. Motivated by
this lack of scoring rules in the literature, we introduce a new class of proper scoring
rules by combining well-known summary statistics for point process with the continu-
ous ranked probability score (CRPS). Unlike the logarithmic score, these scores can be
approximated by Monte-Carlo methods, and do not require knowledge of the density
of the process. This is a tremendous advantage in the context of spatial point processes,
as for many common point process models, such as Markov processes and many Cox
processes, densities are only known up to untractable normalizing constants.

Our scores rely on summary statistics such as the intensity function or Ripley’sK-function
that are well-known to practicioners in the field, making the scores easily interpretable.
Different summary statistics can be used in order to target different properties of the
point process, such as homogeneity or clustering. We demonstrate the favourable per-
formance of these scoring rules in a simulation study. The construction of the scores is
based on a very simple proposition stating essentially that proper scores remain proper
under measurable mappings. We believe this proposition to be useful beyond point pro-
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cesses, as it can generally be used to construct proper scoring rules when the observation
space is involved, simply by mapping the observation space into a simpler space, where
proper scores exist.

One of the most prominent example of point-process valued forecasts are earthquake
predictions. We consider a scoring rule, sometimes called the quantile-score, that is often
used in this context and show that it is improper. We demonstrate both theoretically and
in simulation studies that a forecaster evaluated by the quantile score achieves a better
expected score by issuing predictions that are too uniformly distributed.

The quantile score is used as test-statistic for three tests that are commonly applied in
earthquake rate prediction and are typically referred to as the L-, M -, and S-test. We
demonstrate that, by impropriety of the quantile score, these tests are biased towards too
uniform distributions. Our findings explain several questions raised in the corresponding
literature: Schorlemmer et al. (2007) remarked that it is difficult to explain too high val-
ues of the scoring rule used in the L-test, a gap that is filled by our results. Gerstenberger
et al. (2009) note that models significantly underestimating the occurance of earthquakes
in regions of high activity can pass the L-test. Indeed, such models issue predictive distri-
butions that are too uniform and are preferred by the test. We propose a simple alteration
to these tests that resolves this issue.

This article is organized as follows. Section 2 contains the theoretical background, in-
cluding a brief summary proper scoring rules and spatial point processes. In Section 3
we derive proper scoring rules for point processes based on summary statistics. Section
4 provides simulation studies analyzing the performance of the introduced scores. In
Section 5 we apply the summary statistic scores to an example data set. In Section 6 we
introduce the quantile score and show that it is improper. Section 7 relates this result to
the corresponding tests used in the literature and provides a simulation study demon-
strating the bias of the tests. Section 8 concludes.

2 Proper scoring rules and point processes

Scoring rules assess the accuracy of probabilistic forecasts by assigning a numerical pen-
alty to each forecast-observation pair. Given a measurable observation space O and a set
P of probability measures on O, a scoring rule is a mapping

S : O ×P → R := R ∪ {∞}, (2.1)

such that the mapping y 7→ S(y, F ) is integrable with respect to the measure G for every
F,G ∈ P . We generally assume scoring rules to be negatively oriented, interpreting the
score as a penalty such that smaller scores indicate better predictions. A scoring rule is
proper relative to P if

EGS(Y,G) ≤ EGS(Y, F ) for all F,G ∈ P , (2.2)
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that is, if the expected score for a random observation Y with distribution G is optimized
if the true distribution is issued as the forecast. The scoring rule is strictly proper relative
to the class P if (2.2) holds, with equality only if F = G. Evaluating a forecaster based
on proper scoring rules encourages honesty and prevents hedging. That is, the preceived
performance cannot be improved by a willful divergence of the forecast from the true
distribution; see e.g. the discussion in Section 1 of Gneiting (2011).

Competing forecasting methods can be compared by evaluating their mean scores over
an out-of-sample test set, and the method with the smallest mean score is preferred. For
a small set of forecast-observation pairs, the mean score is commonly associated with a
large uncertainty, see (ref. to T. and Schuhen, 2019). Formal tests of the null hypothesis
of equal predictive performance can also be employed, such as the Diebold-Mariano test
(Diebold and Mariano, 1995) or permutation tests (Good, 2013).

We consider scoring rules for spatial point processes on Rd with d = 2, 3, ..., with a
bounded observation window W ⊂ Rd. The observation space O is then the space of
countable subsets of W , which we will denote by W∪. A spatial point process, usually de-
noted X or Y, is a random variable taking values inW∪ with almost surely finitely many
points. We use F,G, ... to denote distributions of point processes and use the notation
EF [f(X)] for the expectation of f(X) for some function f , when X is distributed accord-
ing to F . For a overviews on the topic we refer to Møller and Waagepetersen (2003) and
Daley and Vere-Jones (2007).

Summary statistics are powerful tools for exploratory data analysis and model selection
for point processes. We introduce two important examples that are useful to bear in mind.
Example 2.1 (Intensity function). The intensity function λ : W → R of a point process model
F is defined by the property ∫

B
λ(w) dw = EF [n(X ∩B)],

for all measurable sets B ⊂ W . Here, n(X ∩ B) denotes the number of points of X that fall into
the set B.

The intensity measures the spatial distribution of points in the sense that a high intensity
highlights areas where many points are expected. Whereas Poisson point processes are
fully defined by their intensity, the intensity contains no information about interaction
of points, i.e. whether the points repell each other or tend to cluster. This interaction
behaviour is analyzed by Ripley’s K-function, see Baddeley et al. (2000).
Example 2.2 (Ripley’sK-function). For a point process F with intensity λ Ripley’sK-function
is defined as

K(r) =
1

|W |
EF

[ ∑
x1,x2∈X,
x1 6=x2

1{‖x1 − x2‖ < r}
λ(x1)λ(x2)

]
,

for r > 0.

Roughly speaking, K(r) indicates clustering at distances up to r. The K-function of a
Poisson process is K(r) = 2πd/2

Γ(d/2)dr
d. If for a point process model K(r) is larger than this
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value for small r, the model has more expected point pairs with distance less than r than
a Poisson model and the process clusters. Other examples of popular summary statistics
include the F -, G-, and J-function as well as the second order intensity. For more details
we refer to Møller and Waagepetersen (2003, Chapter 4). Bearing these examples in mind,
we make the following definition suitable for our purposes. Note that in both examples
the summary statistic is function-valued, taking values from a space R. For the intensity
function we haveR =W , for the K-function we haveR = (0,∞).

Definition 2.1. Consider a class of predictive distributions P on W∪ and a measurable space
R. A summary statistic is a mapping T : P × R → R. We sometimes denote TF (r) instead of
T (F, r). A summary statistic estimator is a mapping T̂ :W∪ ×R → R.

In particular we assume estimators for a summary statistic to be based on a single point
pattern, which is the case for all standard estimators for the summary statistics mentioned
above. Let us remark that not all summary statistics are well-defined for all point process
models. For example is the K-function only well-defined for second order reweighted
stationary processes, see Baddeley et al. (2000). In view of Definition 2.1 let us remark
that throughout this paper we assume all mappings between measurable spaces to be
measurable. Products of measurable spaces are equipped with the product σ-algebra.
For mappings φ : P × M → M′, where M,M′ are measurable and P is the space of
predictive distributions, we assume that φ(F, ·) :M→M′ is measurable for all F ∈ P.

3 Proper scoring rules based on summary statistics

When dealing with forecasts taking values in a complex observation space O it is quite
natural not to attempt validating the full predictive distribution, but rather focus on a
certain property of interest. This approach is not new, examples in the context of mul-
tivariate forecasts being the Dawid-Sebastiani score (Dawid and Sebastiani, 1999) that
focusses on mean and covariance of a multivariate forecast, and the variogram score
(Scheuerer and Hamill, 2015) that focusses on the variogram of a spatial prediction. We
adapt this principle and show how it can be applied to validate point process forecasts.
Examples for properties of interest in the context of point process forecasts are number
and spatial distribution of points or clustering behavior of the process. We demonstrate
in the following how proper scoring rules can be obtained that are sensitive with re-
spect to these properties. The key idea is to utilize well-known summary statistics that
target said property. Then, scoring rules can be constructed by comparing estimators of
these summary statistics to the corresponding summary statistic of the predictive distri-
bution. This approach has several advantages. It is easily applicable and does not impose
any conditions on the predictive distribution. Thus it can be used to directly compare
predictive performance of any collection of point process models. Secondly, the derived
scoring rules are always proper, and therefore allow for easy comparison of predictive
perfomance following decision-theoretic principles.

We now provide several results that can be used to construct proper scoring rules from
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summary statistics. These tools do not impose any restrictions on the classP of predictive
distributions considered. We therefore denote in the following by P an arbitrary but fixed
class of predictive distributions, and speak of propriety rather than propriety relative to
P.
Proposition 3.1. Let r ∈ R be fixed. Assume that T̂ is an unbiased estimator for T in the sense
that EF [T̂ (Y, r)] = T (F, r) for all F ∈ P . Then the scoring rule

ST (y, F, r) := (T̂ (y, r)− T (F, r))2

is proper.

Proof. This follows directly from the fact that for any random variable Y the function
c 7→ E[(Y − c)2] gets minimal in c = E[Y ]

The score ST is usually not strictly proper as we may have T (F, r) = T (G, r) for distribu-
tions F 6= G, see for example Baddeley and Silverman (1984).

In this proposition, both T̂ and T get evaluated at a specific r ∈ R, whereas in practice
we will be more interested in an overall fit. To this end we can use the following result,
which is an immediate consequence of Tonelli’s theorem.
Proposition 3.2. Let A ⊂ R be measurable. If S(y, F, r) is a non-negative proper scoring rule
for all r ∈ A, then

SA(y, F ) :=

∫
A
S(y, F, r)dr (3.1)

is a proper scoring rule.

Note that non-negativity is not required, as long as the integral in (3.1) exists (possibly
taking the value +∞) for all y, F. These two proposition readily allow the construction
of proper scoring rules based on summary statistics in some cases.
Example 3.1. F-function: The F- or empty-space-function is defined for stationary point pro-
cesses as the distribution function of the distance from the origin to the nearest point in X. It has
the unbiased estimator

F̂(y, r) :=
∑
x∈Ir

1{d(x,y) ≤ r}
#Ir

,

where I is any finite regular grid of points, Ir := I ∩W◦r, and W◦r = {w ∈W : b(w, r) ⊂W},
see Møller and Waagepetersen (2003, section 4.3). We obtain a scoring rule based on the empty-
space-function by

SF (y, F ) :=

∫ R

0
(F̂(y, r)−FF (r))2 dr,

where R is an upper limit that should be chosen to be small relative to the diameter of W . By
Propositions 3.1 and 3.2 this scoring rule is proper with respect to the class P of all stationary
point process models.

Proposition 3.1 is quite intuitive, as it compares the estimator T̂ to the true value TF
under the predictive distribution. It comes with two serious restrictions, though. The
first is that for many summary statistics, such as for example the K-function and the
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intensity function, there are no unbiased estimators. Secondly, even if there are unbiased
estimators, closed form expressions for TF are usually only available for selected point
process models.

A bit surprisingly, both of this weaknesses can be overcome by replacing TF by T̂ (F ), the
pushforward probability measure of F under the estimator T̂ .
Proposition 3.3. Let r ∈ R be fixed. Denote by T̂ (F, r) the pushforward distribution of F
under T̂ (·, r). Consider a non-negative scoring rule S on R that is proper relative to T̂ (P) :=

{T̂ (F, r) , F ∈ P, r ∈ R}. Then, the scoring rule

S
T̂
(y, F, r) := S(T̂ (y, r), T̂ (F, r))

is proper.

Proof. This is a direct consequence of the change-of-variables formula.

Note that S
T̂

is usually not strictly proper, even if S is, since we might have T̂ (F, r) =

T̂ (G, r) for distributions F 6= G. The key for making this result useful is the choice of the
proper scoring rule S on the real line. Note that we recover Proposition 3.1 if we choose S
to be the mean square error, S(y, F ) = (y −EF [X])2. However, a preferable choice is the
continuous ranked probability score (CRPS) as it is strictly proper with respect to all dis-
tributions with finite first moment. Moreover, choosing the CRPS allows to approximate
S
T̂

without requiring detailed knowledge of the pushforward measure T̂ (F ). The CRPS
is defined by the formula

CRPS(y, F ) := EF [|y −X|]−
1

2
EF [|X ′ −X|],

where in the second summand X and X ′ are independent random variables distributed
according to F . When applying Proposition 3.3 with the CRPS, we obtain by the change-
of-variables formula, supressing r for brevity,

S
T̂
(y, F ) = E

T̂ (F )
[|T̂ (y)−X|]− 1

2
E
T̂ (F )

[|X ′ −X|]

= EF [|T̂ (y)− T̂ (X)|]− 1

2
EF [|T̂ (X′)− T̂ (X)|],

where in the last line X′ and X are independent point processes with distribution F .
This expression can easily be approximated by Monte-Carlo sampling from the point
process distribution F . Therefore, we obtain a scoring rule that is proper and can be
easily computed for any point process distribution by sampling.

Another, somewhat surprising, advantage of this approach is that by using T̂ (F ) rather
than TF , the score often can discriminate better between distributions. The reason is that
for different predictive models F1 and F2 we may have TF1 = TF2 , but nevertheless T̂ (X1)

and T̂ (X2) usually have different distributions for X1 ∼ F1,X2 ∼ F2. In this case, since
the CRPS is strictly proper, the true distribution will be preferred. This effect can be ob-
served in our simulation study in the next section, where we apply the scoring rule based
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on theK-function estimator to different Poisson models. These models have identical the-
oretical K-functions, but, nevertheless, the score gets minimized when the correct model
is predicted, since K̂ follows different distributions under the different models.

Let us sum up the main result of this sections in the following corollary of Propositions
3.2 and 3.3.
Corollary 3.1 (summary statistic score). Consider an estimator for a summary statistic T̂ that
is integrable with respect to F ⊗ dr for all F in P . The scoring rule defined by

S
T̂
(y, F ) := EF

[ ∫
R
|T̂ (y, r)− T̂ (X, r)| dr

]
− 1

2
EF

[ ∫
R
|T̂ (X′, r)− T̂ (X, r)| dr

]
is proper.

An advantage of this score are the weak assumptions that are required, the only condi-
tion being integrability of T̂ which is satisfied for most point process models and sum-
mary statistic estimates. Note that T̂ can be any real valued mapping satisfying these
conditions, and no connection to an underlying summary statistic T is required. As a
consequence, the constructed proper scoring rule can be considered even for predictive
distributions for which the underlying summary statistic T does not exist. An example
is the scoring rule S

K̂
considered in Example 3.3 below, which may be computed (and

remains proper) even for point processes that are not second order intensity reweighted
stationary, which is a necessary condition for the K-function to exist. In such a scenario,
by construction of K̂, the score will still be sensitive to a misspecification of the clustering
behaviour in the predictive model.

We conclude this section by discussing two important examples that will be used in our
simulation studies.
Example 3.2 (Kernel estimator score). The intensity function λ of a point process is typically
estimated by kernel estimators. These estimators are generally biased, making it impossible to
apply Proposition 3.1. For a kernel k (i.e. a density on W ) and a bandwidth b > 0, the kernel
intensity estimator is based on the rescaled kernel kb(w) := b−2k(w/b). It is defined as

λ̂(y, w) =
∑
y∈y

kb(w − y)/cW,b(y),

where cW,b are edge correction factors defined as cW,b(y) =
∫
W kb(w − y) dw. Therefore, by Co-

rollary 3.1, the kernel estimator score defined as

S
λ̂
(y, F ) :=EF

[ ∫
W
|λ̂(y, w)− λ̂(X, w)| dw

]
− 1

2
EF

[ ∫
W
|λ̂(X′, w)− λ̂(X, w)|dw

]
constitutes a proper scoring rule.

Since this score targets the intensity function, it assesses, roughly speaking, whether the
predictive distribution has the correct spatial distribution and number of points, but neg-
lects point interactions. Let us stress that, unlike the logarithmic score, this scoring rule
can be computed for any point process model, in particular also for models defined by a
density with an untractable normalizing constant. On the other hand, if we are more in-
terested whether a predictive model reflects point interaction correctly, we can construct
a score using the K-function estimator.
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Example 3.3. [Ripley’s K-function] The standard estimator for Ripley’s K-function is defined
as

K̂(y, r) :=
∑

y1 6=y2∈y

1{|y1 − y2| < r}
λ̂(y1)λ̂(y2)|W ∩Wy1−y2 |

,

where Wy1−y2 denotes the shifted set W + y1 − y2, and λ̂ is a kernel estimator for the intensity.
Thus, we obtain the proper K-function score

S
K̂
(y, F ) :=

∫ R

0
EF [|K̂(y, r)− K̂(X, r)|] dr − 1

2

∫ R

0
EF [|K̂(X′, r)− K̂(X, r)|]dr,

where R is an upper limit that should be chosen small relative to the diameter of W .

As K̂ is sensitive to point interaction, this scoring rule specifically targets correct rep-
resentation of point interaction in the predictive model. On the other hand it will be
relatively unsensitive to misspecification of the intensity function, and for example be
inadequate for differentiating between different Poisson processes, which have the same
K-function.

Finally, let us emphasize that the scoring rules derived in Proposition 3.3 and Corollary
3.1 are proper but not strictly proper, even though they utilize the strictly proper CRPS.
Distributions F and G satisfying T̂ (F ) = T̂ (G) obtain the same expected score.

4 Simulation study

In order to demonstrate the usefulness of our scores, we present a simulation study where
we consider 5 different point process models. Their characteristics are summarized in Fig-
ure 1 where we also show an example plot from each model. We consider the spatial win-
dow W = [0, 10]× [0, 10]. The first two models are homogeneous Poisson processes with
50 and 60 expected points in the considered area, respectively. Model 3 is an inhomo-
geneous Poisson process with 50 expected points, and with an intensity that increases
linearly in the distance from the lower left corner of the window. Model 4 is a homogen-
eous Strauss process, i.e. the points repell each other and the typical point pattern is more
regular than for the homogeneous Poisson process. The Strauss process is defined by its
density

f(x) = cβn(x)γsR(x),

where c is a normalizing constant, β > 0, R > 0, and γ ∈ (0, 1) are parameters, n(x)
denotes the number of points in x and sR(x) is the number of pairs of points in the pattern
x with distance less than R. The value R is the range of interaction between points, and
γ determines the strength of the interaction, with smaller γ leading to stronger inhibition
between close points. We choose γ = 0.5 and R = 1. By letting β = 1.15 we obtain an
expected number of points of approximately 50, the same as for models 1 and 3.

As fifth model we consider an inhomogeneous Thomas process, which is constructed by
generating an (invisible) Poisson process of parent points, and then letting each parent
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model intensity Point interaction E[n(X)]

hP homogeneous Poisson ∼ c none 50
hP+ homogeneous Poisson ∼ 6

5c none 60
ihP inhomogeneous Poisson ∼

√
x2 + y2 none 50

Str homogeneous Strauss ∼ c inhibition ≈ 50

ihT inhomogeneous Thomas ∼
√
x2 + y2 clustering ≈ 50

Figure 1. Example plots and characteristics of the considered models. The considered spatial win-
dow is [0, 10]× [0, 10], i.e. for the inhomogeneous processes the intensity increases with distance
from the lower left corner.

generating a random number of offsprings that are spatially distributed according to
a Gaussian kernel centered at the parent point. We choose an inhomogeneous parent
process, with the same intensity as model 3, divided by 2. The number of offsprings per
parent is Poisson distributed with mean 2 and the standard deviation for the Gaussian
kernel is set to 0.5. By these choices, the Thomas process has an intensity similar to model
3, and the number of expected points in the observation window is again approximately
50.

We consider each of the models both as true distribution G and as predictive distribution
F , for a total of 25 combinations. For each combination we compute EG[ST̂ (Y, F )] by
simulating 100 i.i.d. copies of Y ∼ G and averaging S

T̂
(Y, F ). For the computation of

S
T̂
(Y, F ) the expectations are approximated by simulating 100 i.i.d. copies of X ∼ F . We

do these computations for T̂ = λ̂ and T̂ = K̂. The computations are carried out using the
R-package spatstat (Baddeley et al., 2015), and all parameters for the estimators are set
to their spatstat default values. In particular, we use a Gaussian kernel in the intensity
estimator. The results are presented in Figure 2.

For both scoring rules the expected score is minimized under all distributions when the
true model is predicted. Not surprisingly, the scores are sensitive to the underlying sum-
mary statistic. For example does the score S

λ̂
has difficulties to differentiate between the

homogeneous Poisson model hP and the Strauss model which have the same intens-
ity, but can clearly differentiate between homogeneous and inhomogeneous models. The
score S

K̂
, on the other hand, is capable of detecting mismatches in the point interaction

between predictive and true distribution. In particular, it can differentiate between the
Strauss and the homogeneous Poisson model. It is therefore important to be aware of
which property of the process is targeted by the scoring rule, and, in practice, to use
multiple scoring rules to assess predictive skill. Figure 3 shows the results of permuta-
tion tests assessing the significance of the difference of the mean scores. The differences
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Figure 2. The mean scores EG[Sλ̂(Y, F )] (left hand side) and EG[SK̂(Y, F )] (right hand side) for
each combination of the 5 considered models. The x-axis shows the true distribution G of the
data. The score for each of the five predictive distributions is shown. The correct model is marked
by a circle.

between the K-function scores for the different Poisson models is not significant at a 5%
level. However, given that these models have the same theoretical K-function, it is re-
markable that the score S

K̂
is able to differentiate between them at all, if also less reliably

than between the other models. This is due to the fact that the distribution of K̂ still var-
ies between these models, which is detected by the CRPS. Finally, let us note that the
logarithmic score could only be computed for the first three models, as the densities for
the Strauss and the Thomas process have intractable normalizing constants.

Nevertheless, the logarithmic score is commonly applied when different Poisson models
are compared. We therefore next address the question how the kernel intensity estim-
ator score compares to the logarithmic score, when assessing the skill of different Poisson
models. We consider a homogeneous Poisson process with 50 expected points in the win-
dow [0, 10] × [0, 10] as the true distribution of the data, and compare the performance of
four different predictive Poisson models, assessed by both scoring rules. The first pre-
dictive model is the true model of the data, model 2 and 3 are homogeneous Poisson
processes with 40 and 60 expected points, respectively. Model 4 is an inhomogeneous
Poisson process with 50 expected points and intensity function λ(x, y) = x

20 + 0.25, i.e.
the intensity increases linearly in x from 0.25 to 0.75.

Figure 4 shows boxplots for Slog and S
λ̂
, as well as boxplots of bootstrap resamples of the

expected score based on 50 and 500 observations, respectively. The results show that the
kernel estimator score is more sensitive than the logarithmic score and can more reliably
identifies the true distribution. This is again likely to be a consequence of applying the
strictly proper CRPS, which fully assesses the distribution of λ̂(Y) which is in a sense
more sensitive to the full distribution of Y than the log-likelihood. If, for example, the
predictive distribution F is a homogeneous Poisson process, then Slog(Y, F ) depends
on Y only via n(Y) and is therefore not sensitive to other parameters such as spatial
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S
λ̂
(Y, F )

hP hP+ ihP Str ihNS

G

hP - <0.1% <0.1% 8.0% <0.1%
hP+ <0.1% - <0.1% <0.1% <0.1%
ihP <0.1% <0.1% - <0.1% 8.4%
Str 15.1% <0.1% <0.1% - <0.1%

ihNS <0.1% <0.1% 4.4% <0.1% -

S
K̂
(Y, F )

hP hP+ ihP Str ihNS

G

hP - 38.3% 17.6% <0.1% <0.1%
hP+ 38.9% - 16.7% <0.1% <0.1%
ihP 8.2% 6.2% - <0.1% 0.5%
Str <0.1% <0.1% <0.1% - <0.1%

ihNS <0.1% <0.1% 0.7% <0.1% -

Figure 3. p-values of a permutation test assessing the significance of the difference between the
score of predictive distribution F and the score of the true distribution G. Values above 5% (in
bold) indicate nonsignificance, and the corresponding score cannot reliably distinguish between
F and G.

distribution of points or size and shape of the observation window. Let us remark that,
for Poisson point processes, evaluating the logarithmic score is less computationally in-
volved than evaluating the kernel estimator score, which relies on Monte-Carlo approx-
imation of a (multiple) integral. However, in typical spatial point process applications
there are often only few observations available, either because generating/collecting ob-
servations is involved (e.g. in ecology or epidemiology) or because new observations
take several years to materialize (e.g. in earthquake rate prediction and ecology). In these
cases there is a huge benefit from applying a more robust score, even if it comes at addi-
tional computational costs. Let us finally remark that the values of the y-axis in Figure 4
bear no inherent meaning. Values of the score itself cannot be interpreted unless scores
for different predictive models are compared.
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Figure 4. The first row shows boxplots for Slog(y, F ) and Sλ̂(y, F ) for the four different predict-
ive Poisson models described in the text. Model 1 is the true distribution of the data. Rows
two and three show boxplots for bootstrap resamples of the expected scores EG[Slog(y, F )] and
EG[Sλ̂(y, F )] computed from 50 and 500 observations, respectively.
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5 Application to Abies amabilis forests

Here, we study location data of Abies amabilis (Pacific silver fir) at eight disjoint 6 by 6

meter plots at Findley Lake Reserve in Washington State, U.S.A., see Grier et al. (1981)
for a description of the site conditions. Figure 5 shows the location of trees at four of
the plots for three different time points over 31 years. The area was clear-cut in 1957;
the trees in our data set were apparently present as seedlings before the clear-cut and
there appears to have been no reproduction in the stand since then. The first observation
was made in 1978, 21 years after the area was clear-cut. On average, roughly 80% of the
original trees were still present in the second observation in 1990 and approximately 25%

of them were present in the third observation in 2009. The data was previously studied by
Sorrensen-Cothern et al. (1993) who investigate the development of tree crown structure
under competition for light.

We analyze the observations from each year independently such that in each analysis,
we have eight independent realizations of the underlying process. We consider three dif-
ferent predictive models: A Poisson model, a log-Gaussian Cox process and a Matérn
cluster process. Each model is fitted to the tree sample in one plot, and then this pre-
dictive model is validated against the other 7 plots by using the kernel estimator score
and the K-function score. Overall we therefore obtain 56 score values for each model (8
model fits, and 7 validations for each fit), and we can use the mean score as a measure for
assessing calibration of the predictive model. We again use bootstrapping to assess the
uncertainty associated with the mean scores. The results are presented in Figure 6.

6 The quantile score

In this section we consider the quantile score, a scoring rule that lies at the foundation
for several numeric tests typically performed in the validation of earthquake rate predic-
tions. Denote by lF the log-likelihood function of a predictive distribution F . The quantile
score is then defined as

γ(y, F ) = PF [lF (y) > lF (X)]. (6.1)

This quantity is then used for testing the hypothesis y ∼ F by rejecting the hypothesis
if γ(y, F ) < α for some fixed threshold α. The underlying intuition is that, in order for
the predictive model to be consistent with the observation, the observation should be
as likely under the predictive model as a typical realization of the model. Such tests are
popular in the context of earthquake rate predictions and we will discuss some details
about these tests in the next section. The typical setting in this context considers a bin-
ning {b1, ..., bn} of the observed spatial window and earthquake magnitudes, each bin
resembling a multidimensional interval. Every earthquake is then recorded as an event
in one of these bins, depending on its location and magnitude. A rate prediction is then
a predictive distribution for how many earthquakes are expected in which bin, over a
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Figure 5. Abies amabilis (Pacific silver fir) at four disjoint 6 by 6 meter plots at Findley Lake Reserve
in Washington State (rows). The area was clear-cut in 1957; the first column shows trees present
in 1978, 21 years after the clear-cut; the second column shows the trees still present in 1990, 33
years after the clear-cut; the third column shows the remaining trees in 2009, 52 years after the
clear-cut.
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Figure 6. Bootstrap estimates of mean scores for three different models used for predicting the
spatial distribution of trees in the described data set.
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previously defined timespan, for example 5 years. Accordingly, in this context the obser-
vation space O = Nn

0 contains integer vectors, resembling the amount of earthquakes in
each bin. As Nn

0 and N0 are isomorphic, we may assume for this section that O = N0.
In its usual definition (6.1) the quantile score is positively oriented in the sense that lar-
ger scores indicate better performance. In order to align with our previous sections we
therefore consider the equivalent negatively oriented score

γ̃(y, F ) := PF [lF (y) ≤ lF (X)] = 1− γ(y, F ).

Our results show that this score is improper and lower (better) expected scores are ob-
tained by choosing ‘more uniform’ distributions. The concept of a distribution being
more uniform than another is quite intuitive: For example for two Poisson distributions
Pλ1 , Pλ2 with λ1 < λ2, we would say that Pλ2 is more uniform than Pλ1 , since it spreads
the probability weight more evenly on all natural numbers. However, formalizing this
concept requires a bit of work, since we cannot define it in terms of distance to the uni-
form distribution, as the observation space N0 does not support a uniform distribution.
We therefore introduce the following somewhat technical definition.
Definition 6.1. For two distributions P := (p0, p1, ...) and Q := (q0, q1, ...) on N0 we denote
P � Q if the following is satisfied. After reordering the sequences of probabilities (p0, p1, ...) and
(q0, q1, ...) into nonincreasing sequences q̃0 ≥ q̃1 ≥ ... and p̃0 ≥ p̃1 ≥ ..., it holds that

n∑
i=0

q̃i ≥
n∑
i=0

p̃i, for all n ∈ N0. (6.2)

If, additionally, the inequality is strict for at least one n, we denote P � Q and say that P is
more uniform thanQ.

This defines a partial order on the set of all probability distributions on N0. We show in
the appendix that for finitely supported distributions, P � Q implies that D(P,U) ≤
D(Q,U), where D denotes the total variation distance of probabilities, and U denotes the
uniform distribution on the joint support ofP andQ. Note that

∑n
i=0 q̃i is the probability

under Q of the n + 1 most likely events. In order for P to satisfy (6.2) it needs to assigns
less mass to its n + 1 most likely events, and therefore more weight to less probable
numbers, making it indeed more uniform.

Moreover, we need the following definition. For distributions P1 = (p1
0, p

1
1, ...) and P2 =

(p2
0, p

2
1, ...) onN0 we say that P1 and P2 have the same probability ranks, if they satisfy

p1
i < p1

j ⇔ p2
i < p2

j and p1
i = p1

j ⇔ p2
i = p2

j for all i, j ∈ N0.

The main result of this section is the following theorem.
Theorem 6.1. Consider distributions P1,P2,Q onN0, all with the same probability ranks, and
let P1 � P2. It holds that

EQ[γ̃(Y,P1)] ≤ EQ[γ̃(Y,P2)]. (6.3)

Moreover, if P1 � Q, then we obtain the strict inequality

EQ[γ̃(Y,P1)] < EQ[γ̃(Y,Q)]. (6.4)
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The proof is given at the end of this section. Inequality (6.4) implies that γ̃ is improper.
Inequality (6.3) shows moreover, that, for distributions with the same probability ranks,
more uniform distributions always get a lower expected score, regardless of whether they
are a better approximation of the true distribution Q. In this sense, the theorem shows
much more than just impropriety of γ̃ which would already follow from finding one
particular pair of distributions P1,Q satisfying (6.4). It shows that hedging is possible
for any true distribution Q, and that more uniform distributions always lead to better
expected scores. The technical restriction of having the same probability ranks is used in
our proof, but did not seem to be of major importance in our numerical experiments. In
particular, the distributions in our simulation study in the next section do not have the
same probability ranks.

Some authors consider a slight modification of the quantile score defined as

γ2(y, F ) = PF [lF (y) ≥ lF (X)],

i.e. treating the case lF (y) = lF (X) differently. Replacing γ by γ2 does not change any of
our conclusions and requires only minor changes in the proof of Theorem 6.1.

Proof of Theorem 6.1. Let P1 = (p1
0, p

1
1, ...),P2 = (p2

0, p
2
1, ...), and Q = (q0, q1, ...) have the

same probability ranks, in particular it holds for any i, j that 1{p1
j ≤ p1

i } = 1{p2
j ≤ p2

i } =
1{qj ≤ qi}. It follows that

EQ[γ̃(Y,P1)− γ̃(Y,P2)] =

∞∑
i=0

∞∑
j=0

p1
i qj1{p1

j ≤ p1
i } −

∞∑
i=0

∞∑
j=0

p2
i qj1{p2

j ≤ p2
i }

=
∞∑
j=0

qj

∞∑
i=0

(p1
i − p2

i )1{qj ≤ qi}

=
∞∑
j=0

q̃j

k(j)∑
i=0

(p̃1
i − p̃2

i ), (6.5)

where in the last line p̃ and q̃ denote the probabilities in decreasing order, and k(j) de-
notes the last index i such that q̃i ≥ q̃j . In the last equality we used that P1,P2 and Q
can be ordered by applying the same permutation to the indices since they have the same
probability ranks. By the assumption P1 � P2 we have

k(j)∑
i=0

(p̃1
i − p̃2

i ) ≤ 0, for all j, (6.6)

implying (6.3). For (6.4) we assume that P1 � Q, and denote by j0 the first index such
that

∑j0
i=0 q̃i >

∑j0
i=0 p̃

1
i . It holds that q̃j0 > p̃1

j0
≥ 0, as well as q̃j0 = · · · = q̃k(j0) and

p̃1
j0
≥ · · · ≥ p̃1

k(j0), implying
∑k(j0)

i=j0+1 q̃i ≥
∑k(j0)

i=j0+1 p̃
1
i . Consequently, it holds that

q̃j0

k(j0)∑
i=0

(p̃1
i − q̃i) < 0,

which together with (6.5) and (6.6) implies (6.4).
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7 Implications for likelihood testing

There are several tests based on the quantile score that are frequently applied in the con-
text of earthquake rate predictions. The first of these tests is theL- or data-consistency test
that has been introduced in Kagan and Jackson (1995). It is a test for the hypothesis y ∼ F
that rejects if γ(y, F ) < α for some fixed threshold α. The authors of Zechar et al. (2010)
developped two tests based on this test, which yield more detailed insight into miscal-
ibrations of predictive models. The key idea is to consider the marginal spatial (S-test)
and magnitudial (M -test) distributions separately. They make the underlying assump-
tion that the predictive model is Poissonian, and therefore the marginal distributions are
easily obtained by summing the expectations of the corresponding bins. Moreover, they
condition the predictive distribution on having the same number of earthquakes as the
observation, since the distribution of the number of earthquakes is typically assessed in
a separate test, for more details we refer to Zechar et al. (2010). These tests are today
still frequently applied to validate earthquake predictions (e.g. Pandey et al., 2019; Taroni
et al., 2018).

Our results from the last section indicate that it is problematic to apply these one-sided
tests, since a higher expected quantile score not necessarily indicates that the predictive
model is close to the true distribution, but that more uniform distributions achieve higher
expected quantile scores. In particular, while the true model is accepted in these tests
with probability 1−α, higher acceptance probabilities can be achieved by reporting a too
uniform model.

The following simulation study emphasizes that indeed more uniform distributions lead
to higher acceptance probabilities in the one-sided tests. We consider bins b1, ..., b100 and
assume that the number of occurrences in each bin is Poisson distributed and inde-
pendent along bins. The predictive distribution is therefore fully specified by a vector
(λ1, ..., λn) containing the expected number of events per bin. For a range of parameters
µ > 0 and a > 0 we investigate the performance of a Poisson model with λ1 = µ− a and
λn = µ + a, and linearly interpolated in between, i.e. λi :=

2(i−1)a
n−1 + (µ − a). This model

gets more uniform when a approaches 0 (where all bins get assigned the same rate) and
when µ increases (since a higher expected value yields a Poisson distribution that spreads
probability mass more uniformly acrossN0). We consider four different models F1, ..., F4

specified by different choices of µ and a, see Figure 7. The parameters are chosen such
that from F1 to F4 the distributions are decreasing in uniformity.

We consider each model both as true and as predictive distribution, for a total of 16
combinations, and compute for predictive distribution Fpr the expected quantile score
EFtr [γ(Y, Fpr)] under true distributionFtr. As done in applications, we approximate γ(y, Fpr)

by

γm(y, F ) :=
1

m

m∑
i=1

1{lF (Xi) < lF (y)} (7.1)

where X1, ...,Xm are i.i.d. samples of Fpr. We choose m = 1000, and approximate the
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Figure 7. Example plots of the models F1, ..., F4. The spatial bins are sorted row-wise, with b1

being in the lower left corner, b10 in the lower right, and b100 in the upper right corner.
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Figure 8. The left plot shows the mean quantile score EFtr [γm(Y, Fpr)] for predictive distribution
F1, ..., F4 and true distribution F1, ..., F4. The value when the correct distribution is predicted is
encircled. The right plot shows the rejection probability for the one-sided test at level 5% (dashed
line), approximated by 1000 repetitions of the test.

expectated score by simulating N = 1000 observations, i.e. by

EFtr [γm(Y, Fpr)] ≈
1

N

N∑
k=1

γm(Yk, Fpr), (7.2)

where Yk ∼ Ftr are independent. Figure 8 shows the expected quantile score of the dif-
ferent predictive models and the rejection probabilities of the one-sided L-test at a level
α = 0.05. The figure shows that, no matter which model is the true distribution, the
mean quantile score decreases and the rejection probability increases with decreasing
uniformity of the predictive distribution. It therefore indicates that, regardless of the true
distribution, predicting more uniform distributions leads to better results in the L-test.

In the M - and S-test the simulation of γm is typically carried out conditional on the
samples having the same number of earthquakes as the observation, i.e. in (7.1) X1, ...,Xm

are sampled from Fpr conditional on n(Xi) = n(y). In order to demonstrate that also in
this case too uniform distributions are preferred, we consider a second simulation study.
In this study we moreover don’t apply a binning to the observation window, and work
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Figure 9. The left plot shows the mean quantile score EGtr [γm(Y, Gpr)] for predictive distribution
G1, ..., G4 and true distribution G1, ..., G4. The value when the correct distribution is predicted is
encircled. The right plot shows the rejection probability for the one-sided test at level 5% (dashed
line), approximated by 500 repetitions of the test. For more uniform models the expected quantile
score is larger and the rejection probability smaller.

with point processes directly, i.e.O =W∪. Note that the proof given for Theorem 6.1 does
not extend to this more general setting. We consider 4 Poisson processes G1, ..., G4 on
W = [0, 10]× [0, 10], with intensity linearly increasing in x. The intensity for Gi increases
from 1−ai to 1+ai, i.e. λi(x, y) = ai(

x
5 −1)+1, with (a1, a2, a3, a4) = (0.1, 0.2, 0.3, 0.4). In

particular,Gi decreases in uniformity for increasing i (intuitively, Definition 6.1 cannot be
applied in this setting). We compute expected quantile scores as in (7.2), except that we
setN = m = 500 and that in the evaluation of γm we simulate X1, ...,Xm as i.i.d. samples
from the predictive distribution, conditional on n(Xi) = n(y). Moreover, we compute
the likelihood to fail a one-sided test at level 5%. The results are shown in Figure 9, and
indicate that our results carry seamlessly over to this more involved framework.

Under the null hypothesis Y ∼ F , the quantile score γ(Y, F ) is clearly uniformly distrib-
uted on [0, 1] and therefore a suitable test statistic for testing consistency of the predictive
distribution with the observation. The problem we pointed out for the L-, M -, and S-test
originates from the false belief that higher values of γ indicate better agreement between
Y and F . Consequently, these tests reject only if the value of γ is unusually low. Our
findings show that also unusually high values of γ also indicate inconsistency between
Y and F . A natural solution is therefore to replace the classical one-sided tests by two-
sided tests that reject if γm(y, F ) 6∈ [α/2, 1 − α/2]. A two-sided test punishes both too
volatile and too uniform predictions and therefore seems more appropriate for consist-
ency assessment. High values of γ do occur in practice, see for example Werner et al.
(2011). Therefore, using two-sided tests would have major impact on which earthquake
rate prediction models are rejected and which pass the data-consistency tests. Figure 10
shows the rejection probabilities for the two simulation studies in this section when two-
sided tests are considered. The rejection probability of the two-sided test is minimized in
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Figure 10. Rejection probabilities for both experiments presented in this section, when two-sided
tests are considered. The left plot shows the rejection probabilities for predictive distributions
F1, ..., F4, the right plot for G1, ..., G4. The true distributions are encirceled. For both tests and
all distributions the rejection probability is minimized when the true distribution is predicted. The
dashed line highlights the chosen threshold α = 5%.

all cases when the true distribution is predicted.

8 Discussion

We introduced a new class of proper scoring rules by combining estimators for sum-
mary statistics with the continuous ranked probability score. Our scoring rules can be
computed from simulations of the predictive model. Therefore they can be applied to a
wider range of predictive distributions than the commonly used logarithmic score which
requires the density of the predictive model to be known. They constitute, to the best
of our knowledge, the first non-trivial proper scoring rules for spatial point processes
that can be applied to a wide range of predictive distributions. Even when comparing
different Poisson models, where the logarithmic score is available, the kernel estimator
score performed better in a simulation study, in the sense that its mean score is more ro-
bust against outliers. The R package spatstat Baddeley et al. (2015) provides manifold
tools for simulating various point process models and provides implementations of all
common summary statistic estimators. It provides therefore a platform that makes the
introduced scoring rules easily applicable, and was used in all our simulation studies.

Our approach is based on the very intuitive principle that, when the observation space is
complex, the observations and predictions can be mapped into a simpler space for valid-
ation. This approach, that we simply call the mapping principle, is not restricted to point
processes, and opens a fruitful new perspective on validation of involved forecasts in
general. Indeed, when the observation space is involved, finding proper scoring rules in
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itself can be difficult, even more so when they should be sensitive to certain high level
properties of the observation-generating process. The mapping principle shifts this to the
typically much easier task of finding real-valued functions sensitive to these properties.
Possible other applications of this principle include high-dimensional forecasts and fore-
casts issued as spatial fields, as well as function-valued forecasts of any kind.

We argue that estimator of summary statistics are natural candidates for mappings sens-
itive to high-level properties of point processes. The resulting score then assesses whether
the corresponding summary statistic is in good agreement between the predictive model
and the observed data. This comes with the additional advantage that practicioners in
the field of point processes are familiar with these summary statistics, making the output
of the constructed scores easier to interpret.

We moreover showed that the quantile score constitutes an improper scoring rule. This
scoring rule lies at the heart of several tests commonly applied in point process fore-
cast validation, especially for earthquake predictions. We demonstrated that, as a con-
sequence, these tests are systematically biased towards too uniform predictive distribu-
tions. Zechar et al. (2010) write about these tests:

"We are interested in the question: does [the observed likelihood] fall into the
lower tail of the distribution of [simulated likelihoods from the predictive
model]? If it does, this indicates that the observation is not consistent with the
forecast..."

Our results complement this intuition by showing that also falling into the upper tail
indicates inconsistency with the forecast. Our simulation studies indicate that this sys-
tematic bias can easily be avoided by replacing the L-, S-, and M -test by two-sided tests
based on the same test statistics.
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A Appendix

We show the claim made after Definition 6.1.
Proposition A.1. Let Q and P be distributions on {0, ..., n} with P � Q. Denote by U the
uniform distribution on {0, ..., n}. It holds that

D(P,U) ≤ D(Q,U),

where D denotes the total variation distance of probability measures, defined as

D(P,Q) :=
1

2

n∑
i=0

|pi − qi|.

Proof. Denote by p̃0, p̃1, ..., q̃0, q̃1, ... the ordered probabilities as in Definition 6.1. Further
denote by kp and kq the smallest indices such that p̃kp ≤ 1/(n + 1) and q̃kq ≤ 1/(n + 1),
respectively. It holds that

D(P,U) =
1

2

kp∑
i=0

(
p̃i −

1

n+ 1

)
− 1

2

n∑
i=kp+1

(
p̃i −

1

n+ 1

)

=

kp∑
i=0

(
p̃i −

1

n+ 1

)
,

where we used that
∑n

i=0

(
p̃i − 1

n+1

)
= 0. It holds now that

D(Q,U) =
kq∑
i=0

(
q̃i −

1

n+ 1

)
≥

kp∑
i=0

(
q̃i −

1

n+ 1

)
≥

kp∑
i=0

(
p̃i −

1

n+ 1

)
= D(P,U),

where we used in the first inequality that kq is the index maximizing the sum, and in the
second that P � Q.

The inverse statement is not true. An example where D(P,U) < D(Q,U) but P 6� Q
is, for n = 2, (p̃0, p̃1, p̃2) = ( 7

12 ,
1
3 ,

1
12) and (q̃0, q̃1, q̃2) = (1

2 ,
1
2 , 0). Indeed, it holds that

p̃0 > q̃0, and therefore P 6� Q. On the other hand we have D(P,U) = 1
4 + 0 + 1

4 = 1
2 ,

whereas D(Q,U) = 1
6 + 1

6 + 1
3 = 2

3 . Moreover, P � Q does not imply the strict inequality
D(P,U) < D(Q,U). A counterexample satisfying the former but not the latter is n = 3,
(p̃0, p̃1, p̃2, p̃3) = (3

8 ,
3
8 ,

1
8 ,

1
8), and (q̃0, q̃1, q̃2, q̃3) = (1

2 ,
1
4 ,

1
4 , 0).
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