A system for collection and analysis
of forensic evidence

NRE—:"g Norsk Regnesentral — NOTAT/NOTE

8 ANVENDT DATAFORSKNING

Norwegian Computing Center/Applied Research and Devel opment

GEM/05/02

Jerker Danielsson
Knut Hakon T. Merch
Per Ree

11.02.2003

A

NR:‘: Norsk Rcgnescntral
"‘ ANVENDT DATAFORSKNING

Notat/Note
Tittel/Title Dato/Date: February
A system for collection and analyss of forensic evidence Ar/Year: 2003
Notat nr:
Note no: GEM/05/02

Forfatter/Author:
Jerker Danielsson, Knut Hékon Tolleshaug March, Per Rge

Sammendrag/Abstract:

Ontoday’s Internet, attackers are seldom made accountable for their actionsin a court of law. To make attackers
accountablefor their actionsisavital part of the struggle for defeating cyber crime. One of the reasons for the lack
of legal action against attackersisthat the collection and analysis of forensic evidenceis avery troublesome and
time-consuming activity.

The work presented in thisreport is based on the hypothesis that a module based distributed system where every
moduleis specialised at collecting forensic evidence in a specific environment will simplify the collection and
increase the quality of forensic evidence. The collection will be trigged, refined and coordinated based on the
intrusion detection information supplied by IDS technology. In alarge network it is not possible to continuously
collect all the data needed for forensic analysis due to performance and the enormous amount of data. The
approach we propose circumvent this problem by collecting fine-grained data only when needed and only at the
hosts and network devices affected by the attack.

Thisreport investigates this hypothesis and itsimplications. An analysis of which datato collect and the
requirements that has to be put on a system for collecting forensic evidenceis presented. Much of thisanalysisis
generally applicableto systemsfor collecting digital forensic evidence and not just the system presented in this
report. A design of a system implementing the hypothesis has been developed, this design and a prototype
implementation of the system are also presented. The report concludes with the presentation of a number of future
research directions, related to the work presented in this report.

Emneord/Keywords: IDS, Computer Forensics, Logging, Auditing
M algruppe/Target group: NR, research inditutions
Tilgjengdighet/Availaaility: Open

Prog ektnr./Project no.: 802022

Satsningsfelt/Research fidd: Computer Security

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, N-0314 Oslo, Norway
Telefon (+47) 22 85 25 00, telefax (+47) 22 69 76 60

Antall sider/No. of pages: 78

TABLE OF CONTENTS

Table of contents

R 1 0o 8o (o OSSP PR 3
00 N = (0] o i 0" (o [0 1 oo [P SPRRN 3
111 Collection Of FOrENSIC EVIAENCE........cceiieeireese st 3
112 Enforcement of SECUNLY PrOPEITIES.ccueeiiecieece ettt et 4

D2 S = 1=V = 0100 [0 [T 5
121 Intruson Detection SySEMS (IDS)ovivieiieiiiece et 5
1.2.2 COMPULES FOMENSICS. ...c.veeieeieeiteeieeee e e steseesreesesee e e e sseesseesseeseesseesesseesseeseeneensennses 6

R T 1Y/ 0701075 1 USRS 7
131 (00010 10c 0118 o= 7 1 o 1SS 7
132 o0 o TSRS 8
1.3.3 RESEACH ChallENGES.......oceeeece et 8

14 SHUCIUIE Of tNETEPONT ... ittt ettt e e e e s b e et e e sbeeenreesneeeareens 9

2 £ = = = 6 ALY QRSSO 10
I IS £ =SSP 12
TNt R = 1S Y 07 0 = (1Y S 12
G o | 1= 1[0 g 0 (= = Y SRS 12
IR I D= o = [0 < A oSSR 13
34 Oneattack ispossibly detected as many ataCks...........ccocceeveeiiiesiee s 13

4 Andyssof Which datato COIECE ..o e e 14
Y Y 0 |V 1SS 15
4.2 Daasuitable to be collected under the fine-grained hypothesis..........ccocvveeveeveccececcie e 15
4.3 ColleCtion CaNTITALES.........coieeieeeiieiee et s b e e e se e nbe e nae s 17
4.3.1 S = . 107 | S 18
4.3.2 File accesstimestamps and file CONtENtooovviiirii e 20

I o o 1= 107 11 S 22
N RS VS (= 0 g1 U o (0SSR 22
IV V. (= 101N 111 1 =S 22
521 SECUIMLY FEQUITEIMENTS ...ttt ettt ettt e e be e ae e e re e s reeenteesaeeenneenneas 22
522 Legal FEQUITEIMENTS.......ceivieie ettt e e e e nte e sreeneenaenneenes 26
5.2.3 (@ 107c (=0 (U= 107 01 TS 29

T - [TS 31
LS R @ V< - | o =S o o SRR 31
6.2 Implementation Of FEQUINEMENLS.........coiveieieereee st erte et e s e e ae e e enne e e sneenes 34
6.2.1 Component Monitoring and INEEOITYcccuviiee e 34
6.2.2 S &0 < YU TRRRIN 36
6.2.3 DENIE Of SEIVICE....ceeiieieiiee ettt r e 37
6.24 U o 1] o PSPPI 38
6.2.5 ChaiN Of CUSIOYveeieieiiiecie et e b e sre e neesres 38
6.2.6 Labdling and Integrity of collected data............cceoveeeeiiece i 39
6.2.7 BELRLSTSY 00 1110172 (1o PR 40

6.3 COMMUNICEIION......cuiietiiteriesieeieet ettt sttt b et e b sb e b e bt e se s e e e e e e naesbeneesbenreas 40
6.3.1 (07010010000 1Tor= 1[0l T o 010 o o FH OSSR 41
6.3.2 M ESSAGE TYPES ...ttt ettt ettt ettt st e et et e e e e s ane e nn e nnne e nanes 41
6.3.3 CommUNICatiON FEQUITEIMENES.......cciueeeieecte e cee e e steeesreesreeereesseeesreesseesnreesseesneesnes 44

B.4 COMPONENES. ... eeieiieeeieee ettt et e s e st e e e s te e e sare e e sabe e s sase e e asseesabseesbeeesneeesnneeesneeenas 45

6.4.1 CollECtioN COOMTINGLOTceoeeeeeee e e e e 45

6.4.2 (00 |1 ol [0 g 1= o< o SRRSO PRPR 51
6.4.3 (0o S = A RS 55
6.4.4 (070! 1= o (o 1 117011 (o (OSSR 57

A 10101 117 1= 1] o TS SRS 58
25 R o 1 014 210 g o= 1o TS 58
7.1.1 (070100109070 1Tor= ([0 T o 010 e o FH S 58
7.1.2 IMESSAOE FOMMIEES. ...ttt e e sn e b e e sne e 59

7.2 COllECtion COOMTINGLONceiteeierieesie ettt sttt st sa e b et sre et s esneennas 60
S T Mo o [< 4V = O OO PSP RRPPRP 60
A A o |1 o 1o g 1r='0 = o SRS 60
A T o - o (= £ PSSP 60
75.1 PIPE AUADLEN ... e nre e nre e 61
752 SO BOGDLES ...ttt e 61
753 RUN BOBOLEN ..o st e e sre e s ae e nreeenreen 61
754 0 o P 61

A T = 0 7= o 1/ SRS 62

8 Future WOrk/ReSEarCh QirECLIONS.c.eeieeeieeeeseeie ettt enneenes 63
S0 R V7= (U7 [OSSR 63
S 1 ¢ =0 = [o PSSR PP 63
8.3 Reated researCh dirECHONS.......cccuiiiiieeie e et 65
831 AT/ 7= 0] (oo TSRS RPRPRPRORN 65
8.3.2 REPOI FOMMEL. ...t sre e sre e e ae e sreeenreens 66
8.3.3 Enforcement of Security PrOPEITIES..........overieerieeee e 66
8.34 Standard for logging sSupport iN @EPICAIONS.cccvieiie e 66
8.35 Standard logging module in OPerating SYSIEIMSccuereeeerierese e 66
8.3.6 Reduction Of fAlSE POSILIVES.cocviiiecee et 67
8.3.7 Isolation Of ataCked NOAES..........ecovveeereee e 67
8.3.8 Andydssof the collected dataL...........ceeveeiiieiiececeee e 67

LS T . [£ 0= S 68
VN0 0= [D'QANNN WS < glo (oo U 0= g 1= (1o o OSSO 71
N A 1105 - | = 1o USSR 71
A U = o RS 71
A.3 Format of the configuration fIES.........ceiiiieeei e 72
Y 1 0/01 107 1= 0 = o 7= o £ OSSR 72
A5 HOW tO WIite YOUr OWN @OBPLEN ..ot 73

INTRODUCTION

1 Introduction

This chapter presents the background of the project presented in this report as well as a
brief introduction to the problem area of the project and the relevant technologies, intruson
detection and computer forensics. Lasgtly the hypothesis that the project is based on is
presented and explained.

1.1 Project background

The Norwegian Research Council announced an extra grant within the IKT 2010 program,
for projects within security, during the spring of 2002. The grant focused on sdected themes
and gpplication areas. The project we recaived funding for and that is presented in this
report is categorized under the theme enforcement of security properties and the gpplication
areanetwork infrastructure.

The project is motivated by two needs that we have identified, the need for a system that
amplifies and automates the collection of forensc evidence and tools for enforcement of

Security properties.

1.1.1 Collection of forensic evidence

Today hackers are sldom made accountable for their actions. However, physica intrusons
are amogst always reported and investigated. There are many reasons for this difference, like
that the knowledge of how to investigate a computer intruson is generdly low, many
organizations do not want computer intrusons to be publicly known, and the collection of
forendc evidence from computer systems is often a very troublesome and time consuming
activity.

Security work today is highly centred towards protective measures like access control, risk
andyds and patching of security vulnerabilities. In addition in recent years detection
measures have reached widespread use through Intruson Detection Systems (IDS).
Computer systems are as buildings protected with access control and intruson darms, but
computer intruson are seldom reported to legd authorities while physical intruson most
often are.

The attackers have an advantage over the security personndl. They can choose the place
and time of their attacks, having only to discover and exploit one vulnerability, or at most a
limited number of vulnerabilities. While, security personnd must protect al possible points of
attack. This leads to a sever inequity in the technicad and economic resources required for
defence versus those required for offence. We beieve that if attackers are made
accountable for their actions through crimina prosecution or civil lawsuits, it can provide the
deterrent effect that is needed to even the playing field.

Work is needed in many different fidds to make effective investigation of computer
intrusons possible. One area where work is needed is in the legd fidd, especidly in
agreements between states, since the Internet knows no nationa boarders. Such work is
underway in the G8 Recommendations on Transnational Crime[30] and the Council of
Europe Convention on Cybercrime [31]. Work is adso needed in improving the technica

A system for collection and analysis of forensic evidence

ability to track and identify the attacker. A survey of the current state and the chdlenges
within the fidd of tracking and tracing of Internet-based attacks is presented in Tracking
and Tracing Cyber Attacks: Technical Challenges and Global Policy Issues[32].

This project addresses another important aspect of investigation of computer intrusions, the
collection of computer forensc evidence a the attacked Ste. Today the collection of
forensc evidence is avery troublesome and time- consuming activity.

“There is a lack of guidance to employees as to how to respond to intrusions and
capture the information required to conduct a law enforcement investigation.” [33]

“ Great progress has been made in recent years to speed up the re-installation of the
Operating System and to facilitate the reversion of a systemto a ‘known’ state, thus
making the ‘easy option’ even more attractive. Meanwhile little has been done to
provide easy ways of archiving evidence (the difficult option).” [15]

Today logging is conducted in different formats and there is often no degp andysis behind
the events being logged. In any case it's seldom that the analyss has taken evidentiary
concerns into account. Another part that is missng in today’ slogging mechaniamsis handling
of the collected data so that it fulfils the requirements that are put on it to be judged
admissblein acourt of law.

The project presented in this report is founded on the observation, that if networks ae
equipped with a system for collecting forensc data during intrusons, that handles the
collected data in a way o that the legd requirements are fulfilled and present the collected
data in a standard report format, the collection of forensc evidence would be grestly
amplified and more accessible.

1.1.2 Enforcement of security properties

When security is discussed, three themes are often addressed: confidentidity, availability and
integrity. One example is 1SO 17799 [10]. An important agpect that often seems missed is
how implemented security measures can be verified to work as expected. This is what is
known as enforcement of security properties. Deviations from the expected behaviour can
be caused by a combination of faults in the configuration and faults in hardware or software
of the security mechanism.

Periodical risk analysis can provide enforcement of security properties, but arisk andysisis
only performed perhaps once or twice ayear — or more seldom. Penetration testing can also
be used to find shortcomings, but not on adaily bass.

Protective security measures like encryption, access control, and firewdls include in
themsdlves limited posshbilities to uncover breach of other protective security measures.
During a breech of the locd security policy the failing security mechanism(s) cannot be
trusted to report authentic information. The consequence is that the breach cannot be
guaranteed to be detected by the security mechanism itsdlf. In order to “benchmark” the

INTRODUCTION

implemented security solutions on adaily badgis, atool that collects data rdlated to events that
revedls breaches of the local security policy is needed.

The data that needs to be collected to enforce security properties may differ from the data
needed to collect from an evidentiary perspective, however the same collection mechanism
can be used. Data collected with the aim of enforcing security properties are aso not subject
to the rigorous requirements that forensic evidence is subject to. However, one should note
that data that are collected with the aim of enforcing security properties might till end upina
court of law.

The project presented in this report has so far focused on the data to collect from an
evidentiary perspective. Issues related to enforcement are therefore deferred to future work,
and isfurther discussed in section 8.3.3.

Tools for enforcing security properties can have many goplications It gives system
adminigrators possibilities to discover whether implemented security solutions actudly do
their intended work or to investigate a security breach. From the interna IT-revison's
viewpoint it enables them to find the reason behind the security breach so that improvements
can be proposed and respongbilities placed. Management will have many of the same
needs. They too want to place respongbility. Not necessary to make disciplinary actions
againg employees, but for economic reasons. If a security solution ingtaled by a third party
fails to fulfil a contract, compensation could be clamed. It is aso posshle tha software
vendors for eg. operating systems will be held responsible for security flawsin their systems
one day.

We dso recognize the need for other tools that support enforcement of security properties,
like tools that continudly scan or searches the network for the software components
present. This is especidly important for networks where the right to add new software has
been digtributed to the users of the network. New unwanted software may have been added
with malicious intent or in good faith. However, it's important for the security personnd to
have information about al new software present, Snce every new service represents a
possible attack target. This type of tool and others for enforcing security properties have
however not been worked on so far in the project.

1.2 Relevant technologies

1.2.1 Intrusion Detection Systems (IDS)

There are two main categories of IDS, misuse based and anomaly based. IDS are further
cassfied after from where they get ther input. Network Intruson detection Systems
(NIDS) get their input from the network, network packets, and Host Intruson Detection
Systems (HIDS) get their input from data available on the individua hodts.

Misuse based systems search for known threats (coded in signatures), e.g. known bit-<rings
in network packets or know sequences of local system events. A signature might be; search
the network packet’s payload for a string that equals assembly code for opening ashdl ona
Unix system. Such a string could be used in a buffer overflow attack.

A system for collection and analysis of forensic evidence

Anomaly based systems search for unusua behaviour, such as a PC receiving large amounts
of traffic a late hours. The information to search might be found in hosts sysemlogsor in
gatistics captured from the network. With detection based on anomaly detection there may
be a rather long delay before the attack is detected. This is caused by the fact that an
anomaly is often only detected after some threshold has been reached. For example in the
case an det is triggered after x messages (satisfying some criterid) have been received the
dert isfirs generated after x-th packet, but the atack may have been initiated with the first
packet.

1.2.2 Computer Forensics

There are two main types of computer forensics analysis tools. The first focuses on capturing
and anadlysing information on the network, while the second focuses on the same tasks
locally on hogts. Based on the discussion in various books like [5] and mailing ligs[3],[4], it
is our concluson that most emphass within the computer forensics community focuses on
how to collect evidence on a host after a compromise and after the system has been
powered down. This is sometimes termed collection on a corpse system. The opposite
collection before the system has been powered down is called collection on alive system.

One can argue that the forensic process begins when a new system is put in production. A
forendgc examination will depend upon the choices done a this Sage in the lifecycle of a
system. If no logging is enabled or if not the right events are logged, the forensc data
possible to collect after a compromise will be considerably reduced.

In the following two sections a generd introduction to forensic andysistoolswill be given.

1.2.2.1 Network Forensic Analysis Tools (NFAT)

These tools capture and inspect packets on the network. Example of such tools, include
netDetector [1] and SilentRunner[2]. They can log the complete traffic flow, just log part of
the packets or those meseting certain defined criteria. When the packets are saved, they can
be analysed later as part of the forensic process. One can consider NFATs as a survelllance
camerafor computer networks.

Some of these tools am a making it possble to replay the traffic flow on the network,
enabling investigators to discover exactly what happened and when. Others are tuned for
capturing interesting statistics and chosen packets or headers. The information gathered is
andysed by specialy designed applications that search for e.g. packets sent to a host or
occurrence of some bit-gring.

1.2.2.2 Host Forensic Analysis Tools (HFAT)

These tools mainly follow the same generd idear binary copy the hard drive of the affected
system to a safe place using the least intrusive techniques on the affected sysem. If afull
forendc analysis was started on the affected system, the sate of the system would be atered
and useful information logt, as well as excduding the andlyss as viable in a court of law.
Copying can be done using the dd command on a Linux system or with specidized software

INTRODUCTION

like EnCase [7]. Once copied, the safe copy is hashed and possbly signed with a digita
sggnature to ensure integrity for possible later usein a court of law.

The safe copy & examined with tools like EnCase [7] and The Coroners Toolkit [8].
Interesting information on the system could be logs of activity, files of a specid kind (eg.
pictures) or containing informeation of interest. It is possble to search through the files
registered in the operating systems file table, or for hidden or recently deleted files on areas
of the disk marked as unused or corrupt. Activity on the host is — assuming logging is
enabled — stored in various files. Depending on the leve of detalls in logging, past activity
can be examined.

There are dso tools for collection on a live sysem. The most famous being The Grave
Robber that is included in The Coroners Toalkit [8]. The Grave Robber can for example
callect information like: the image of every running process thet is removed from disk and
the command higtory.

1.3 Hypothesis
In our gpplication to the Norwegian Research Council [34], we presented the following
hypothess

“The hypothesis is that amodule based distributed system where every module is specidized
a collecting forensc evidence in a specific environment will smplify the collection and
increase the qudity of forendc evidence. The collection will be trigged, refined and
coordinated based on the intrusion detection information supplied by IDS technology. In a
large network it is not possble to continuoudy collect dl the data needed for forensc
anaysis due to performance and the enormous amount of data. The approach we propose
crecumvent this problem by collecting fine-grained data only when needed and only at the
hosts and network devices affected by the attack.”

1.3.1 Concept scenario

A system implementing this hypothesis will depend upon IDS technology to start logging of
data. The system collects fine-grained data, which is detailed and hence requires a lot of
space to be stored. Since storage space is not infinite and collection of the data might
consume consderable resources, it could cause a bottleneck eg. on a web-server. A
preferable solution would be to collect data only when a security incident is suspected.

The system could be compared to a survelllance camera. Instead of recording a stream of
pictures the system collects detailed information about the events that occur in the network.
It can collect both system events on the hosts and the packets traversing the network. If this
data collected is detailled enough the state transtions of the network could be recreated
given the initid dtate of the network. The system could offer the same playback functiondity
as a survelllance camera and even the possbility to zoom in and out (adjusting the leve of
detall).

IDS offer the possibility to detect when a security incident is under way. If we know the
sgnature of the attack, we can use a signature based IDS (NIDS or HIDS) to dert a

A system for collection and analysis of forensic evidence

pecidized collection module when an attack is launched. This module can then gtart
collecting the data and Store it, preferably on a dedicated server.

T Web Server

Central Log Storage

Figure 1: Simplescenario

The figure above illustrates a smplified scenario. The Sniffer functions like aNFAT sysems,
it has the ability to collect the packets traversing the network. When the NIDS derts that an
attack is underway, the Sniffer isinformed of it and it starts to collect the packets traversing
the network and transfer them to the log server. The dert from the NIDS aso triggers a
message to the host under attack, in this case the Web Server, tdling it, it should start fine-
grained collection. The data collected localy on the Web Server is dso sent to the Central
Log Storage.

Note, that a sysem implementing the hypothes's does not have to use only one IDS but that
it can use many IDSs and that they can be both misuse and anomaly based.

1.3.2 Scope

The work presented in this report focus on automated collection of forensic data. Including
both an analysis of which datato collect from aforensc perspective aswell as how this data
generdly should be handled for it to be admissble in a court of law.

Issues related to the analysis of the collected data and the report format of the data is not
treated in this report.

1.3.3 Research challenges

Developing a working prototype based on the hypothes's raises some important research
chdlenges. We have chosen to focus on some of them. These research chdlenges are
presented bel ow, and discussed among othersin later sections of the report.

What types of datais vauable asforensc evidence?

What are the requirements on a secure distributed collection tool ?

Which requirements must the collection process meet for the collected data to be
viable forensic evidence?

How can these requirements be implemented?

INTRODUCTION

1.4 Structure of the report

The remainder of this report is organised asfollows

The next chapter, chapter 2, presents prior work related to the work presented in this
report.

Then in chapter 3 some fundamentad and current imperfections in intruson detection
technology are presented, which affects a system implementing the hypothess.

Chapter 4 discusses which data to collect from an evidentiary perspective. The criteria that
data has to fulfil to be suitable for collection by a sysem implementing the hypothess are
also presented.

The following chapter, chapter 5, treats the requirements that have to be put on a system
implementing the hypothess

Note that much of the materiad presented in both the chapter 4 and 5 are applicable to dll
logging or collection of forensc evidence. Not just collection @nducted by the system
proposed in this report.

Chapter 6 presents the current design of the system proposed in this report.

In chapter 7 a prototype implementation, implementing parts of the design, is presented.
During the project, new research directions have been identified. These and work that we

didn’'t have time to carry out with in this face of the project are presented in the last chapter
“Future work and research directions’, chapter 8.

A system for collection and analysis of forensic evidence

2 Related work

There are different opinions on whether 1DSs should be used to collect and preserve
forensc evidence [42]. However, the approach we propose only uses the intrusion
information 1DSs generate to coordinate the collection of forensic evidence. The collection
and preservation is conducted el sewhere. Consequently, the approach we purpose does not
impose any additiond collection and preservation tasks on IDSs. The information gathering
and preservation is done outgde the IDS, with the logs that it generates as one of many
information sources.

Work on combining forensics and intrusion detection and their roles in the overal network
security picture, has been done by Stephenson [44]. Tom Perrine and Abe Singer in [43]
gtates the need for incident management tool that interoperate, scale and decrease security
investigator workload.

We have not found any papers or research projects describing anything smilar to the
concept we propose. During the cause of the project Psionic released (in June 2002) atool
named ClearResponse [22]. Psionic (later bought up by Cisco) claims that ClearResponse
offers an automated, just-intime analysis of each targeted host to determine whether a
compromise has actualy occurred. When ClearResponse receives an dert from the loca
NIDS it launches an andyss on the affected host to determine if the attack was successful
or not. It checksin order: the operating system that runs on the targeted hogt, the patch level
of the targeted hogt, and lagtly it anadyses sysem information including registry entries,
system files, log files etc. ClearResponse does not use remote agents on the hosts. It uses
the exiging authentication infrastructure to get reed-access to the targeted hogts. If the
andysis confirms an attack, Psonic cams that the system collects forensic evidence and
copies this information to a secure location. It's unclear what information is collected. It
should be noted that the design goals of ClearResponse and the system we propose differs.
ClearResponse is designed to lower the investigative burden of the NIDS operator. The
system we propose ams a amplifying and automating the collection of forensic evidence.
We have not been able to test the tool and since ClearResponse is proprietary software we
have not been able to sudy its design and implementation.

In [39] afirst responders tool for evidence collection on a live system is discussed. It has
amilarities with the system we propose, as it can be seen as an automatic first responder’s
tool. Another tool for collection of forensic data on a live systlem is The Grave Robber
included in The Coroners Toolkit [8].

Many sources discuss the possibilities for active response from intrusion detection systems
when an attack is detected. Active responses often mentioned include: tracing back the
intruder to the source of the attack, terminating the session carrying the attack, and direct a
firewdl or router to block traffic from the attacker. All these active measures have ther
problem, nainly that they can be used in denid of service attacks. Some sources aso
mention the posshility to trigger collection of system deta. However, the am of the data
collection does not have to be collect forensc evidence, it can aso be to refine the detection

10

RELATED WORK

capability. Below are a number of citations reated to starting data collection as a active
responseto an IDS dert:

“Active response can trigger further collection of data by starting another
application...” [46]

“Thus, our overarching objective is to be able to generalize a theory that supports
intrusion detection and forensics computer science in the same system, regardless of
its specific application. We believe that this overarching objective presents some
significant challenges in the case of host based intrusion detection systems. Most of
these challenges have to do with defining the lengths to which we wish to extend
forensic analysis of the target system. For example, capture of a physical image of a
computer disk by the IDS (or an extension of the IDS) presents some significant
difficulties.” [42]

“1DS agents communicate in “agendas’ that carry suspected intrusion intentions
based on the threads given by the global IDS This allows local agents to predict
possible attack directions and fine tune its own system specific auditing utilities to
pro-actively look for all relevant data. Later on, when meaningful data is observed,
local IDS agent reports back sub-goal confirmation as well as the supporting data.”

[47]

“Permanently recording the vast quantity of information flowing across a large
network is, in practice, impossible. However, if a network IDS has identified a
signature suggesting an intrusion, it could selectively record the relevant packets for
subsequent legal examination. Thus, an IDS could greatly reduce the volume of data
needed for legal support. Unfortunately, given the false alarm rates of current
network ID systems, it may be difficult to make a strong case for evidence collected
this way. In some cases evidence might simply be missed, and in other cases much
irrelevant information might be collected. Whether such information would hold up in
a court of law remainsto be seen.” [9]

11

A system for collection and analysis of forensic evidence

3 IDS issues

The hypothesis that is the basis for the work presented in this report leaves alot of questions
unanswered and problems |eft to solve if a system is to be congtructed with the hypothes's
as a bass. This section will address problems related to the system’s use of intrusion
detection technology. Possible solutions are dso discussed. The problems and their solutions
are further treated in later sections of the report.

3.1 False negatives

Current IDS technology does not detect dl attacks, cdled fdse negatives in IDS
terminology. This implies that the collection of fine-grained data will not be activated for
every atack, snce the IDSs will miss attacks. The data collected under this approach can
therefore not be that important that it must be collected during dl atacks. Data that are that
important shdl be collected continudly. Even if IDS technology continualy improve it is
unlikely that IDS technology in the foreseeable future will be able to detect dl attacks.

The incompleteness of IDS technology, misses to detect attacks, has many fundamental
causes, induding:

A NIDS does not have a complete picture of the network and hosts it monitors. A
packet might for example not be accepted at the dedtination because some
particularities in the implementation of the TCP/IP stack of the destination host. The
NIDS do not know this and accepts the packet. It may of course also be the other
way aound the dedtination host accepts a packet that the NIDS regect.

Misuse based IDSs use signatures to detect patterns that indicate an attack is under
way. The IDSs may not have any sgnature for the atack in question ingtdled, there
might not be any sgnature for the atack avalable yet, or it may have one or many
indalled for the attack but none of them detect the attack.

Many NIDSs are not cgpable recongtructing higher-level protocoal traffic. They often
just analyse single | P packets.

3.2 Collection delay

Between an IDS detects an attack and the nodes affected by the attack start fine-grained
logging, some time passes. During this time span plus the delay caused by the andyssin the
IDS no fine-grained collection is active. The attack gets a head dart. This problem is
particularly large for some anomay based IDSs. For example if the IDS examines the traffic
flow to different ports and generates an dert if the traffic to some port is un-normaly large,
an eventud atack may have gone on for some while before the dert is generated. The delay
also depends on the attack type. A dow scan takes longer time to detect than an attempt to
exploit a buffer overflow vulnerability.

Thisloss of data might not be a problem for some types of data. As an example, information
about whet files are currently open might not be so sensitive to this delay if one assumes that
files usudly are open longer time than the delay. For other types of data that are sensitive to

12

IDSISSUES

the missed collection during the delay, the collection can be activated continudly but the
local buffer were the data is saved is overwritten with a period larger then the delay. With
this technique no data needs to be missed if the ddlay is amdler then the period used. The
performance advantage of fine-grained collection is lost but storage and network resources
are il preserved.

3.3 Denial of service

An attacker can attack an IDS by generating a lot of packets or system events with the sole
purpose of triggering derts. The god of such an attack can for example be denid of service
or to hide the red atack in dl decoy derts. Snce a sysem implementing the fine-grained
goproach acts upon derts, the effect of the atack will be amplified if not countermeasures
are implemented by the system. A number of such countermeasures are presented in section
6.2.3.

3.4 One attack is possibly detected as many attacks

Intrusion detection systems may generate many aerts for each atack. These derts can be
grouped together during andyss. However, methods for grouping or corrdation of aerts
and the data collected as aresult of the dert are not treated in this report.

13

A system for collection and analysis of forensic evidence

4 Analysis of which data to collect

This chapter will discuss the importance of collection of different types of data from a
forensc perspective. How different types of datafit into the hypothesis (see section 1.3) will

aso be examined. This discussion will not be complete as this subject done is enough for a
report of its own.

What is not logged is lost. Every gpplication and operating system on every device on a
network represents alogging opportunity. During analyss of an intrusion one can never have
too much information as stated by Marcus Ranum in [36] “ I've done numerous incident
responsesin my career. In every one, | wished | had more information.” Aslong asthe
informetion is hierarchicaly structured, more information can only be pogdtive. Thet is the
andysis tool should support a birds view of the data and the possbility to drill down in
detall. However increased data collection comes with a price, which is consumption of
resources. The fine-grained collection gpproach tries to limit these negative effects.

From Goal-Oriented Auditing and Logging, By M. Bishop, C. Wee and J. Frank [37]:
“With respect to computer security, logs provide a mechanism for analyzing the
system security state, either to determine if a requested action will put the systemin a
non-secure state, or to determine the sequence of events leading to the system being in
a non-secure (compromised) state. If the log records all events that cause state
transitions, as well as the previous and new values of the objects changed, one can
reconstruct the system state at any time. Even if a only a subset of this information is
recorded, one might be able to eliminate some possible causes of a security problem;
what remains provides a valuable starting point for further analysis.”

Today only a subset of the events that lead to Sate transactions are recorded. This can have
many causes like, performance and storage issues, the question about what to log has not
got the attention it deserves, and more data complicates the anayss.

We have only found one paper anaysing what to log [37]. The paper contains a study of
prior work up to 1996. According to the authors none of the listed prior works trest the
question of how to determine what to log in any depth.

Agan from [37]:

“1n the past, scant attention has been paid to the mechanics of developing a theory of
how to determine what should be logged; the focus has instead been on the
mechanisms.”

The technique presented in [37] derives from the security policy which data to log. The
security policy is viewed as a atement of congtraints upon commands and sates. Violation
of these condraints must be audited. This combined with the syslem modd gives the low—
level commands and data that must be logged to enable effective auditing.

14

ANALY SIS OF WHICH DATA TO COLLECT

Thefocusin [37] isauditing to determine violations of the security policy. This guides which
datato log. Our focusis somewnhat different. We are not only interested in detecting security
violaions, but dso to get a detailed picture of the events after the violation.

The Orange Book [38] specifies what events should be logged and what information the log
should contain for each event. However, we are not aware of any work that motivates the
choices made regarding which events to log. The Orange Book specifies four classes of
criteria namely A, B, C, and D, with systems neeting the highest criteria (A) providing the
best level of security assurance. There are a number of subdivisons in classes C and B.
Classes C2 to Al require the ability to log security relevant activates on the system. For
example, criteria C2, requires that the sysem mus log the fallowing events use of
identification and authentication mechaniams, introduction and deletion of objects into a
user's address space (eg., file open, program initiation), actions taken by computer
operators and system administrators and/or system security administrators and other security
relevant events. Moreover, for each recorded event, the audit record shal identify: date and
time of the event, user, type of event, and success or falure of the event, origin of request
for identification/authentication events and name of object for object introduction and
deletion events.

4.1 Analysis

It's naturd to sort the information about an atack chronologicd, in atime line of the actions
taken by the hacker. Therefore a timestamp should be added to al events logged. Thetime
line can be seen as a recording of the attack. As with a video recording of a traditional
burglary one first of dl wants to have an as complete picture as possble and one wants the
ability to zoom into detalls.

All data that can shine light on the actions of the attacker are valuable, especialy such data
that can be used to identify the attacker. A commonly used anays's technique is to attempt
to link the ‘fingerprint’ of the case with other known cases. Characterigtics of an attack that
make up the ‘fingerprint’ include, time of atack, vulnerability exploited, script or method
used in the exploit of the vulnerability, and the action taken after compromise. The attacker
might have crested new user accounts with the same username, executed the same sequence
of commands, and modified the same configuration files etc. during separate attacks. This
type of correlation between attacks can uncover information that was previoudy
overlooked.

The attacker tools used and the actions taken by the attacker indicate how well connected
and skilled he is. Another important aspect of the andysisisto try to figure out the purpose
behind the attack, examples include: espionage (motivated by information on the system),
use the comprised system as a springboard for new attacks, and using the compromised
system as a“hacker’s clubhouse’.

4.2 Data suitable to be collected under the fine-grained hypothesis
[39] Dividesfragile evidence into three categories:

15

A system for collection and analysis of forensic evidence

Trandent data — Information that will be lost a shutdown, such as open network
connections, memory resistant programs, etc.

Fragile data — Data that is stored on the hard disk, but that can easily be dtered,
such as last accessed time stamps.

Temporarily accessible data — Data that is stored on the disk, but that can only be
accessed at certain times.

Transent data can include data kept in memory to speed up access, programs that are
running but have been removed from the disk. This technique can be used by a hacker to
hide a maicious program like a sniffer or backdoor. In addition, trangent data can include
information that in it sdf is trangent as information about ongoing network connections,
content of received network packets, users logged on etc.

Fragile data are the data stored on the hard drive but that can easily be dtered. For example
file access timestamps, temporary files, and swap space. Once this data has been dtered
there is no way of recovering it.

Temporarily accessble data include encrypted deta that is only available in plain text format
during the times it is decrypted, for example after a password is presented. The actud
password used to decrypt the datais also temporarily accessible data

All three of these types of fragile evidence are gppropriate for collection by a system for
collection of daa on a live sysem, induding a sysem implementing the fine-grained
approach.

In addition it should not be essentid that the data, as discussed in section 3.1, must be
collected during dl attacks, ance the IDS functiondity that the system depends on will miss
attacks, so cdled fase negatives. There is aso a ddlay from the attack is staged until the
collection is garted, as discussed in section 3.2. For types of data that are senditive to the
missed collection during the delay, the collection can be activated continualy but the loca
buffer where the data is saved is overwritten with a period larger then the delay. In this way
al data snce the attack was staged is dtill available when the collection is started.

The data could aso based on the reasons below be inappropriate to collect continualy:

Performance
Storage
Network
Privacy

The tree first reasons are dl related to resource consumption and they are dl rdated to the
amount of data collected. More CPU power, storage and bandwidth are consumed as the
sze of the collected data increases. The consumption of network resources is an effect of
that it is assumed that the data is sent to a centra log server for security reasons.
Performance problem could dso arise if the collection of the data is in itsdf resource

16

ANALY SIS OF WHICH DATA TO COLLECT

consuming, for example if the collection infers alot of disk access or advanced aggregation
of anumber of different sources of information.

Storage and network resource consumption can be addressed through compression.
However, compression increases the CPU resource consumption.

The data collected might intrude on usars privacy. This risk increases if the data is very
detailed and/or sengtive. The data might for example represent chat conversation. If such
sendtive data should be collected continudly it would severely affect users privacy even if
grict access control and encryption would be used. By only collecting this type of
information during presumed attacks the risk for misuse is somewhat reduced. If the
attacked node is a persona workstation the user could even be darmed that fine-grained
collection is ongoing to even more reduce the potentid privacy intruson The privacy can
adso be improved by pseudonymizing the data, i.e. exchange user names etc. for
pseudonyms or cryptographic hashes. An authorized authority can later personalize the data
again. Privacy vs. Intruson Detection Andyss by Lundin and Jonsson [40] presents how
data can be pseudonymized.

4.3 Collection candidates

The date of a computer system is made up of the image of the operating system, the
processes running in memory, and the files on the syslem. Therefore if one can collect the
information about modification of these entities (including creation of new files and execution
of new processes) and the time of these modifications one can record al state changes.
Modification of operating sysem image is done through loadable kerne modules or
recompilation of the kernd.

Data that can be collected on a computer system can come from three different sources. the
operating system, the applications and the network. From the operating system a myriad of
different data can be collected, like information about resource usage, file access etc. The
data that can be collected from an application depends on the nature of the application; a
firewdl application offers different possbilities then a web server gpplication. From the
network the traffic traverang it can be collected. In this context the network is the medium
trangporting the information. The routers on the networks are seen as nodes with operating
System running arouter application.

Data from dl three sources give vauable information and data should be collected from dl
three. They dl contain complementary information. As an example the plaintext of encrypted
network traffic can only be collected after it has been decrypted by the receiving application.
The network packets in turn contain information that might not be available from the other
sources, like for example the address of the sender or information of how far away the
sender are (deduced from the time-to-live fidd).

Infrastructure goplications like, firewdls, IDS, DNS, routers, proxy servers, LDAP servers,
DHCP servers, did-up servers, VPN etc, are al sources of vauable forensic data.

Information that can be collected from the operating system, include:

17

A system for collection and analysis of forensic evidence

Resource usage statistics (e. g. CPU, memory, hardware availability)
Processinformation (e.g. active processes, active DLLS, user executing process)
Fle sysem information (e.g. file access, file permissions)

Network information (e.g. open ports, traffic Satistics)

User accounting information (e.g. new user added, login, logout)

System cdls executed

Many of the types information mention above can be used to extract the same informetion.
As an exanple, file access and system cdl information can give information about the
processes executed. However, from a forensc viewpoint the value of the evidence will
improve, as severd different sourcesindicate the same event.

The data that can be collected from an gpplication and OS is determined by the
implementation. One can only hope that the logging offered has been based on a thorough
andyds. However, some gpplications and operating systems may provide the possbility to
add modules or plug-ins that can extract data. For example Linux offers the possbility to
extend the logging facilities with loadable kernel modules.

4.3.1 System calls

The only way applications can use the services the operating system provides is through the
system cdls that the operating system offers. So if information about al executed system
cdls with their parameters and return values are collected one gets a complete picture of the
date trandtions of the system.

There are different types of system cdls. Not dl system cdls can help an intruder gain full
access to a sysem. But they might be “useful” for an attacker in other ways, like when
launching a Denid of Service attack. Bernaschi et. d. [11] have anadysed the system cdls
used inthe Linux kernel 2.2.

In [11], the system calls have been grouped in categories according to their functiondity, as
presented in Table 1.

In addition, they classified each system call according to Table 2, which portrays the
essentid features of the four levels of threst they consider.

Group Functiondity

I File systlem, devices
] Process management
"l M odule management
\Y] Memory management
V Time and timers

\4 Communication

VII Sygem info

VIl Reserved

IX Not implemented

18

ANALY SIS OF WHICH DATA TO COLLECT

Table1 System call groups

19

A system for collection and analysis of forensic evidence

Threset level Description

1 Allows full control of the system

2 Used for adenia of service attack

3 Used for subverting the invoking process
4 Harmless

Table2 Threat levels

The dasdfication in Table 2 “corresponds to a threat hierarchy, since a sysem call
classification at threst level n may be employed also to carry on an attack at threat level mif
m>n. For example, if a system cadl alows the attacker to gain access to a privilege shell,
then the attacker has full control of the system (threet level 1). Inthiscaseitistrivid to carry
on a Denid of Service attack (threat level 2)” [11]. The attacker now has the ability to e.g.
shut down a process.

The system cdlls qudifying for threet level 1 are the following:

Group | Sysem Cdls

I open, link, unlink, chmod, Ichown, rename,
fchown, chown, mknod, mount, symlink, fchmod
[l execve, setgid, setreuid, setregid, setgroups,
setfsuid, setfsgid, setresuid, setresgid, setuid

"l init_module

Table 3 System callsqualifying for level 1

An interegting result seen in Table 3 isthat only system calswithingroup |, 11 and 111 can be
used to gain full control of the system.

4.3.2 File access timestamps and file content

File access timestamp is an example of fragile data, that is data that is stored on the hard
disk, but that can eadly be dtered. The problem with file access timestamp is that every time
afileis accessed, the lagt timestamp is overwritten. The higtory is logt and it’s impossible to
congiruct an accurate time line of the file accesses.

An attacker can easly modify the timestamps of the files he/she has modified so that it looks
like they have not been accessed during the attack, since the history of access is not saved.
It is however not enough to just to save the higory localy, since then the attacker can
modify it too. It must be stored remotely.

Most operating systems offer a least three time stamps for each file. They are cdled
modification, access, and change of datus times. Access time indicates the last time the file
was accessed or opened for content viewing, modification time holds the last time the
content of the file was modified, and change of tatus time contains the time of the last
change of the metaiinformation about the file, such as permissions and ownership.

20

ANALY SIS OF WHICH DATA TO COLLECT

In addition to collect the information that modification has happened the actud changeto the
file can be collected or the whalefileif it isbeing ddeted.

With the capabilities of today one might see that an executable or script named X was
executed at some time but one cannot be certain about what this process was doing since
the origina X might have been replace with a new executable named X or X may have been
ddeted. If dl eventua changes to X where collected and stored remotely this would not be
a problem anymore.

Not changes to dl files need to be collected if resources are scarce. Some files are more
critica then others, like password and trust configuration files, and some may contain more
interesting information then others, like temp directories. Temp directories serve as a scratch
pad and working directory for the system. Files in temp directories are normaly more
volatile the other files. These temporary files can give important information about the Sate
changes of the system.

21

A system for collection and analysis of forensic evidence

5 Requirements

A complete ligt of al requirements that can be put on the system is not discussed here. The
basc system functions of the system are presented and system attributes from the categories
security requirements and legd requirement. Selected system attributes from other
categories that are seen as important are also presented. Requirements related to operation,
management, indallation etc are not handled.

Ultimately the lega authorities determine the requirements on a system for collecting forensic
evidence. Projects like the Computer Forensc Tools Testing (CFTT) [41] that is to
edtablish a methodology for testing computer forensic software tools by development of
generd tool specifications, test procedures, test criteria, test sets, and test hardware will
likey aso influence the requirements put on computer forendc tools. The requirements
presented below have different importance; some are essentid for the collected data to be
admissble in any court of law while others shal be seen more as desirable. It should be
noted that legal requirements differ from nation to nation. The requirements presented below
shall therefore be seen as generd requirements that do not necessarily gpply to al nations.

5.1 System Functions

The system has three main functions.
The system shdl collect forensc data.
The system shall compile the data into a sandard report format.
The system shdl ad in andysing the collected forensic data.

The system functions define the high level basic functiondity of the system. The focus so far
in the project has been on coallection and not on andysis and definition of the standard report
format. A discussion about which data to collect is presented in chapter 4. The andysis
capabilities of the system and the standard report format will be defined in a later phase of
the project.

5.2 System Attributes

System atributes are characterigtics or dimensions of the system; they are not functions. The
attributes have been categorised into security, legd and other requirements.

5.2.1 Security requirements

5.2.1.1 Integrity

In the following discussion the concept of integrity has been divided into access, process and
data integrity.

Process integrity. Asserting that the process, in this case the collection system, has
not been exposed to mdicious or accidental ateration.

Data integrity. Asserting that data, in this case the collected data, has not been
exposed to malicious or accidenta ateration or destruction.

Access integrity. The prevention of modification or destruction of an asset by an
unauthorised user or entity.

22

REQUIREMENTS

For the collected data to be of any evidentiary value the access integrity must not have been
violated and process and data integrity guarantees that an eventud violaion of access
integrity is detected. Since it is paramount that the authenticity of the collected data can be
trusted dl three types of integrity must be implemented to the highest degree possible.

The access integrity of the data can be violated during severd stages. The source of the data
can be modified to deliver false data. The process that collects the data can be modified to
ddiver false data. Once collected the data can be modified while it is being trandferred and
gored. And ladly the daa can be modified while in permanent dorage.

Access integrity is implemented through access control mechanisms, that guarantees that
only authorized users or entities can modify the source of data, the process collecting the
data, and the actud collected data. Data integrity is implemented by cryptographic
techniques that detect modification of the protected asset if the protection barrier offered by
access control is broken. Process integrity can aso make use of the same cryptographic
techniques as dataintegrity and in addition monitoring techniques (e.g. heart beets).

However, neither access control or cryptographic integrity techniques can protect against a
hacker that has gained super user privileges. The super user on a host has access to
everything on that hogt. Implying that the victim's own hard drive(s) is not a safe place to
gtore the collected data. Another reason for not storing on the victim’s hard drive(s) is that
we don't want to overwrite what could be crucia evidence. It istherefore essentid that the
collected data is transferred and permanently stored on a separate dedicated host, so that
the hacker do not have access to data collected prior to the point of compromise.

The source of data is either some application or the Operating System (0S). The trust
placed in these gpplications and the OS must be carefully evauated. The security mechanism
of the OS and the ingdlation and configuration of the gpplication in question must assure
that only a user with super user privileges can modify the source's executables. If an
attacker acquires super user privileges on the host that the data is collected on it cannot be
guaranteed that the hacker to cover his own actions does not modify the source application
or OS. The modification can cause the stream of data generated by the source to leave out
the data the attacker wants to hide or even worse the source can have been changed to
cause serious damage. Such damage could include deleting files, corrupting files, transferring
information to a host controlled by the attacker etc. It's therefore desirable to be able to
control the integrity of the source, so that if it is violated an informed decison can be made if
the source ill should be used or not.

As long as the host on which data is collected from is not compromised the collected data
must be protected againg dteration during the stage from collection to permanent storage. If
the host has been compromised the hacker can modify the collection process. As with the
source it would be desrable to be able to detect eventud modification of the collection
process.

23

A system for collection and analysis of forensic evidence

To achieve this detection capability the sysem must include components that control the
integrity of the data sources, the collection processes and the communication and storage
process.

The collection process can be designed so that the hacker must terminate the collection
process to ater its behaviour, the termination of the collection process can then be detected.
To increase the protection of the collection process it should be as hard as possble to
terminate the collection process. It would be desirable that the collection process only can
be terminated after a reboot.

The data integrity of the collected data must be protected during transportation from the host
where it was collected to the dedicated host where it is stored. The communication must
provide guaranteed delivery. The components communicating must authenticate each other,
so that protection againgt replayed data and false data can be accomplished.

Finaly while in permanent storage the access and data integrity of the collected data must be
uphold. The protection of the access integrity should be as strong as feasible, taken into
account the cost of the access control solution. The combination of physicd and logicd
access control mugt a least implement the lowest leve required by the legd authorities.

The integrity of the software components of the sysem must be verified manudly during
indalation and periodicaly during operation. The integrity verification during operation can
be handled automatically, but should also be checked manudly to protect againgt corruption
of the automatic integrity verification tool. The result of the verifications should be
documented and protected according to the same requirements as the data collected by the
sysem.

The integrity of the system configuration must dso be protected. On restart when the
configuration is reread it must be confirmed that the configuration has not been modified by
any unauthorized entity.

It should be documented under which conditions the integrity of the collected data cannot be
trusted. For example data collected after an attacker has acquired super user privileges
cannot be trusted. These conditions must be clearly defined so that it can be determined if
the collected data is trustworthy or not by an operator of the system.

These requirements imply that it is impossble or hard for a hacker to modify the data
collected before the time of compromise, since the llected data is stored on a separate
dedicated host. To modify data collected before the compromise the dedicated hosts must
adso be compromised and if the data is stored on write once medium not even that is
enough. Then the hacker must physcaly access and destroy the collected data.

5.2.1.2 Confidentiality

Confidentidity is the prevention of unauthorized disclosure of information. The need for
confidentidity of the collected data is motivated by the requirement of privacy for users -
which actions are being logged, thet the collected data may contain sengtive information

24

REQUIREMENTS

about the computer environment of the organization, and that the collected data may contain
sengtive information that would harm the investigation if they where known to the public.
Therefore the confidentidity of the collected data should be protected during transport
between the components of the system and in permanent storage.

5.2.1.3 Access control

Access control must be implemented to fulfil the confidentidity and access integrity
requirements. Access control to the source of data (application or OS), the collection
process and the collected data are dependent on the underlying access control mechanismin
the used OS. Super user privileges should be required to access these resources. The
confidentidity of the collected data can further be protected by access control mechanism
above the OSlevd.

To increase the drength of the authentication mechanism the system can use one of or a
combination of password (some thing you know), token (something you have) and
biometrics (something you are). The leve of strength required must be determined by the
requirements set by the legd authorities.

5.2.1.4 Availability
With avallability we mean the protection of the system from denid-of-service threets that

might impact system availability. The fault tolerance requirements discussed beow will aso
limit the effect of denid- of-service attacks.

The system shdl be able to recover from system crashes, either accidental or caused by
madidous activity. Upon start-up, the system must be able to recover its previous state and
resume its operation unaffected.

The system shdl provide graceful degradation of service. If one component goes down, the
rest of the system should work as normal.

As discussed in section 3.3 is intrusion detection technology inherently vulnerable to denid
of service attacks, snce it's possble to generate packets or system events with the sole
purpose of triggering derts. Since the system reacts on the derts by starting data collection,
the sysem will amplify the effect if not countermeasures are included in the design. Such
countermeasures should be implemented.

5.2.1.5 Fault tolerance

The system is dependent on the functiondity of IDSs. Since the IDSs used are not part of
the system, it can only reduce the dependency by using many IDSsif possible.

It's degrable that that dl functiondity in the system is implemented with redundancy or other
techniques that ensure that the system will offer full functiondity even during a fallures of
sngle components.

The sysem shall support out of band (SMS, emal ec) notification of serious system
functiondity degradation to the operator of the system, so that the functiondity can be
restored manudly.

25

A system for collection and analysis of forensic evidence

5.2.1.6 Logging and Auditing

The sysem must log its configuration, dl action taken interndly and dl interaction with
outsde systems and users. The logging should be a a sufficiently low level so that the state
of the sysem can be recreated. The confidentidity and integrity of the logs must be
protected.

The system shdl include support for auditing the logs of the system. It's dso desirable that
the system includes functiondity for automatic auditing of the logs.

5.2.1.7 Protection of credentials

Communication confidentidity and integrity requires that the components posses credentials.
These credentials must be protected against unauthorized access.

5.2.2 Legal requirements

This section will try to answer the question about which requirements that has to be put on a
data collection system if the llected data should be accepted as digita evidence in a
courtroom.

One can divide collection of forensic data into two categories depending on the sate of the
system that the evidence is being collected from. If the system has not been rebooted or
shutdown since the attack took place the collection is taking place on a live sysem. The
oppodite is collection on a corpse, a system that has been rebooted or shutdown since the
attack took place. When collecting on a live system one wants to obtain as much volatile
data as possible, as for example memory content, Sate of network connections and state of
running processes. This data is lost when the system is powered down. On a corpse
collection traditionaly takes the form of making a binary copy (image) of the disk, which is
further andysed. We will focus on legd requirements on systems that collect data on live
systems. However, much of the requirements discussed will be applicable to both types of
sysem.

The International Organisation On Computer Evidence (IOCE) [35] defines digita evidence:
“Information stored or transmitted in binary form that may be relied upon in court” .
What requirement the phrase “ may be relied upon in court” implies may differ fromnation
to nation. The IOCE was gppointed just to draw up internationd principles for the
procedures relaing to digital evidence, to ensure harmonisation of methods and principles
among nations and guarantee the ability to use digitd evidence collected by one Sate in the
courts of another gtate. In this section we focus on common requirements on digital evidence
that are used in mogt nations.

According to [15] digitd evidence must be:
Admissible: It must conform to certain legd rules before it can be put before court.
Authentic: It must be possible to pogtively tie evidentiary materid to the incident.
Complete: 1t must tell the whole story and not just a particular perspective.
Rdiable There mugst be nothing about how the evidence was collected and
subsequently handled that casts doubt about its authenticity and veracity.
Bdievable: 1t must be readily bdievable and understandable.

26

REQUIREMENTS

According to [33] evidence nug satify two tests. admissibility and weight. Where weight
implies that the evidence “ must be understood by, and be sufficiently convincing to the
court” . Weight encompasses authenticity, completeness, reliability and believakility.

Evidence can be judged inadmissible for a number of reasons depending on the laws of the
individud nations. Examples are hearsay and tha evidence has been acquired unfairly or
illegd, for example without a search warrant. Once evidence has been ruled admissible the
court can assessit for weight.

The remainder of this section will present requirements that a system for collecting digitd
evidence mugt fulfil for the collected data to be judged admissible and of weight.

The Chain of Custody must be carefully maintained. The Chain of Custody is the process of
documenting the complete journey of the evidence during the life of the case. The Chain of
Custody is used to prove that what is presented in court is what was origindly collected.

The Chain of Cusgtody includes answersto the following questions:
Who collected the data/evidence?
How and where?
How wasit stored and protected in storage?
Who took it out of storage and why?

Anyone who has possession of the evidence, the time a which they took and returned
possession, and why they were in possession of the evidence must be documented. Every
action performed during anayss of the data should be carefully documented, so that the
actions can be repeated resulting in the same andysis result.

Since we here discuss a system for collecting digitd evidence, the chain of custody
requirements regarding handling of collected evidence during andysis is not gpplicable to the
sysem. The actions taken during the collection process must however be documented.
Answersto questions like the following must be answered:

The machine the data was collected from (identified with seria number and/or
hostname)?

The source on the machine that generated the data?

The part of the system that collected the data?

Thetimeinterva of the collection (including the time zone used) with as high
resolution as available and feasible?

The quantity/size of the collected data.

Which other parts of the system handled the data on the way to permanent storage?
The name and verson of the system used in callection?

The configuration and Sate of the system during the collection?

The reason behind the collection (dert that trigged collection)?

27

A system for collection and analysis of forensic evidence

Traditiondly the records that make up the chain of custody have been handled manudly.
However, these records can be created by a computer system. As with the collected data
should the Chain of Custody document also be signed to protect itsintegrity.

Every collected item must be identified and labelled. The labe should include:
Incident identification
Item identification
Brief description of theitem
Date and time of label creation
Signature of label

The pair incident and item identification uniquely identifies the item.

The system should make the data collected for each incident, the collected data with labels
and the Chain of Custody document, available for analysis.

To further protect the integrity of the evidence (including the collected data and the
documentation of the collection) should the data be signed with multiple hash agorithms, so
that the integrity is secured even if a cryptographic attack is discovered againgt one of the
agorithms used.

As gated in [33] and [16], the raw data collected should aways be preserved, even if the
datais processed in order to make it easier to understand, perform anaysis or transform it
to a standard format. The origind data may not be modified and therefore should al anadlyss
work on a copy of the origind data. Defining what's raw data on a computer isv't atrivid
meatter. The aerts from an IDS can be consdered to be derived data, the raw data is the
dump of the traffic on the network that triggered the aert. The requirement must be that the
data collected should be as raw as possible. For example, if one has the possibility to collect
the raw network traffic in addition to the derts the IDS generates it is certainly positive.

For data that is derived from raw data the credibility of the system that derived the data is
essentid. The same holds for every system handling the digitd evidence. If the system is
closed, that is the source code, architecture and specification is not available for review the
admissbility of the evidence can be questioned. The lega authorities must sanction aclosed
system (data that the software collects or produce are gpproved as evidence) or it must be
defendable by expert witnesses for the data collected to be of any vaue in court. However,
it may be difficult for an expert witness to be credible in defending a closed system. If he
does not have access to the implementation details of the system his tesimony has limited
vaue and if he has access it can be clamed that he has dependencies to the system owner.
Further it is problematic if the parts in the trial have different access to the details of the
system implementation. With open systems both parties in a legd dispute can examine the
system and both parties will have access to the same information.

Inany caseisit essentid that only systems or tools that are properly evauated and validated
are used. The same of course dso holds for al techniques and procedures that are used
during the collection and forensc examination. Vdidation includes that the technique's or

28

REQUIREMENTS

procedure’ s limitations have been identified, it has been demondrated fit for its purpose, it
has procedures in place for monitoring performance and it is documented and the results
obtained are reliable and reproducible [18].

It is an advantage or even a requirement to have many independent sources of data
indicating the same event. As stated in [33] “ Single streams of evidence are unlikely to
be adequate to convince a court; what is required are multiple independent streams of
evidence which corroborate each other.” To be able to link these streams together it's
important that time synchronization is used and that it is accurate. Other sources of
information can be loca on the system, for example logs of network traffic, but it can aso be
logs from intermediate hosts that the attacker relayed through during the attack.

Commands executed during data collection on a live sysem may modify the ate of the
system and thereby taint the evidence. They can for example modify access times to files,
introduce new log entries and modify the memory content. If possble execution of such
commands should be avoided. If not, their execution needs to be clearly documented so that
the state changes they infer can be separated from the ones introduced by the attacker.

However, when collecting data on a computer system it's inevitable that the State of the
system is modified at lower levels. For example processes (including the process collecting
data) modify the RAM during their execution and if too much RAM isused it isarisk that
the use of virtud memory overwrites data on disk that might hold crucid evidence. The
collection process will change the date of the system, but the changes nust be kept to a
minimum.

To limit the effect of state changes introduced by the collection process on the collected
data, data that might be modified when other data is collected should be collected first. As
an example, when a file is accessed the access time of the file is changed. Therefore the
accesstime of afile must be collected before the actud fileis accessed and collected.

The collected data and the documentation of the collection should not be stored on the same
system as the data is collected from. Storage on physicaly separate media is required,
media on another system than the one compromised. Traditionally the collected data is sent
to and stored on a centrdised log server. One centralised point of storage is easier to
secure.

The access to the data both physicaly and logicaly must be gtrictly controlled. No one that
redly doesn’t need to have access to the data should have it. If it can be shown that
numerous individua possibly can have accessed the data its vaue as evidence diminishes.
The defence attorney can argue that anyone who had access to the evidence could have
dtered it. He/she does not have to prove that the evidence was redly tampered with for this
tactic to work. He/she only has to point at the possibility.

5.2.3 Other requirements

The architecture must be extendible, meaning that it is easy to and documented how to add
support for new types of data sources and log formats both regarding collection and

29

A system for collection and analysis of forensic evidence

andydgs This is criticd snce new operaiing systems and applications is continualy
developed and the system has to be able to plug in these new sources with as little work as
possible.

The architecture should dso be scalable, meaning that it should be possible to add collection
capabilities to additional nodes as the need arises.

The sysem mugt dlow dynamic reconfiguration. That is it must be possible to change the
configuration of apart of the system without taking the whole system down.

The architecture and implementation should am a being as independent of underlying
software (e. g. operating systems, databases €tc.) as possble.

The system should avoid starting any new processes, open any files, open any sockets or
pipes in conjunction with garting collection locdly, since this will increase the chance of the
system being detected by the attacker. The system should be as slent as possible to not
aise suspicion.

As discussed in section 3.2 there is a dday from the time of the attack to the collection is
darted locdly. This delay should be minimized as much as possible in the design.

30

DESIGN

6 Design

The following chapter discusses the design of a systemn architecture that is cgpable of sarting
fine-grained collection of log-data as an answer to an dert from an IDS asdiscussed in 1.3,
and that satisfies the requirements presented in the last chapter. The design presented leaves
some design issues unresolved, but it discuses possible solutions to these issues.

The main function of the system is to collect forensic evidence after a security incident has
been detected. The system should be able to collect evidence on anumber of platforms, and
from many different sources. The design should be modular; it should be easy to extend to
support new kinds of targets and new types of analysis or processing of the data.

6.1 Overall design

The system congsts of a number of server components and a client component on every
node where collection is to be conducted. The server components may be co-located on the
same node. However, the log server component should be located on a dedicated node
according to the requirements.

The components represent functiondity. Fault tolerance (traditionaly implemented through
redundancy) of this functiondity is currently not addressed by the design and is deferred to
future work. However, the design is amed a amplifying introduction of fault tolerance
through: smple design, components with clearly defined responshilities, and date-less
components.

The client components connect to targets on the node they are located. The targets are the
processes that actudly generate the data that are collected by the system. Examples of

targets include the OS, system logs, like sydog on Unix systems, gpplication logs, programs
that generate output that tells us something about the system, like for example ps(1) on Unix
systems, and intrusion detection systems. Any program that generates, collects or extracts
information can be atarget.

The information that the targets generate is collected by a collection agent. The main function
of the collection agent isto be the point of communication between the locd targets, and the
res of the system. The communication between the collection agent and its targets are
handled through adapters, one for each target (see Figure 2). The collection agents o
monitor its targets through the adapter for the target, if the adapter and target supports
monitoring. Some targets may only be possible to monitor through periodicaly monitoring
that the target process is dill dive. More advanced targets may offer hooks that make it
possible to aert the collection agent of events like, restart, shutdown, failure etc.

The adapter component fills the function of enabling support for new targets without having
to change the collection agent implementation. To the collection agent every target presents
the same interface through an adapter. Besides forwarding the data from the target to the
collection agent, the adapter has a number of additiond functions. The adapter may trandate
the data from a target- goecific format to a genera system wide format; it may provide

31

A system for collection and analysis of forensic evidence

capabilities to ingtruct the target of which data to collect; and it may offer monitoring of the
target.

The data collected by the collection agents are sent to the log server, the central server
where dl the collected data from dl the different targets in the system is stored. The log
server dso stores the logs generated by the system.

The collection coordinator is the component that directs the collection. It receives derts
from the IDS(s) in the system, andyses these, and issues the orders that make the
appropriate collection agent(s) start data collection.

The design dso includes two components that support analyss functiondity of the collected
data, the log andyser and the management console. The management console lets an
operator configure the system and andyse the collected data. The log analyser conducts
automatic andyses of the data in the log server tha are presented through the management
console and possibly given as feedback to the collection coordinator. The detailed design of
the log andyser and the management console is however deferred to future work.

The collection monitor monitors the system. It compiles information about the system’s date
from the status, heartbeat and failure messages it receives from the other components. The
system’ s state can be monitored through the management console and the collection monitor
can be configured to aert an operator through mail, SMS etc.

Management console Log analyser

Collection coordinator Collection monitor Log server

Collection agent Collection agent

Adapter Adapter| Adapter Adapter Adapter | ---- | Adapter

Target Target e Target Target Target s Target

Figure2: An overview of the proposed design of the system.

32

DESIGN

The following scenario is an example of a possible chain of events:

An attack is detected and one or many aerts are generated.

The dert(s) isrouted through respective adapter to its collection agent.

The collection agents send the dert(s) directly to the collection coordinator.

The collection coordinator generates collection orders based on the dert(s) and
distributes them to the appropriate collection agents.

The collection agents instruct the affected adapters according to the collection order.
The adapters ingtruct the targets to start collecting data according to the order, and
send the collected data to the collection agent. Alternatively, the collection has been
activated the whole time but the data has not been relayed to the collection agent
until now.

7. The collection agents forward the collected data to the log server.

A owbdpE

o U

During the execution of this scenario the collection coordinator may receive new aerts that
results in new collection orders and maybe revoceation of old collection orders. In a system
that gives feedback, it's possible that the collection coordinator aso can generate collection
orders on bass of information that it recelves from the log analyser, or based on information
from other parts of the system, like the collection agents.

Note that the collection agents may be configured to have some collection activated
regardiess if any collection order has been received. Data collection activated congtantly is
termed background collection.

Collection
domain

Collection
domain

Collection
coordinator

Collection
coordinator

Figure 3: Communication between collection domains

Figure 3 illugrates a collection domain. Each collection domain is controlled by one
collection coordinator and congsts of the collection coordinator, the collection monitor, the
log server and the collection agents and targets connected to them.

A large network can be organized into severa domans and an organizaion tha is
geographicaly distributed may have one collection domain at each ste. To follow distributed
attacks there is a need for communication between these domains. Such communication is

33

A system for collection and analysis of forensic evidence

done between the callection coordinators in the respective domains (see Figure 3). The
details of this communication are deferred to future work.

6.2 Implementation of requirements

This section discusses the implementation of some of the requirements presented in chapter
5.

6.2.1 Component monitoring and integrity

It's criticdl that the data collected are authentic. The data collected on a host an intruder has
gain super user privileges on @nnot be trusted, but it's important that it's as difficult as
possible for the intruder to modify the collected data without being detected. It's aso
important to identify which data can be trusted, and which that cannot be trusted. The
system must be able to detect disruption of the components running in the system, and the
integrity of the configuration files and the component executables.

The survellance functiondity of the system is implemented by the collection monitor. Each
component of the system send heartbeat messages (periodic messages that indicates that the
component is aive), datus messages at datus change (for example a Start, stop,
deterioration of service leve etc.) and failure messages to the collection monitor. The Status
and falure messages are dso sent to the log server. The collection monitor controls that the
heartbeat messages, tatus and failure messages are correct and that the heartbeat messages
are received as expected. The period between successive heartbests is determined by the
configuration of the system.

Failure messages are sent if a component detects a maformed packet, it may for example
contain an invaid sgnature or sequence number. A fallure message is an indicator to the
collection monitor that the sender of the malformed packet is corrupt.

Like al other messages, the heartbeat message contains an identification of the sender, a
sequence number, and an encrypted/signed hash of the message that protects the integrity of
the message (See section 6.3.2.4 for more details on the content of the heartbeat message).

The heartbeat mechanism offers a limited protection againgt modification of the component
sending the heartbest. If the hacker will replace the component with a corrupt component he
has to retrieve the key used to sign the heartbeast messages, and the next valid sequence
number, and he must time the replacement so that the heartbeat period is uphold. When the
collection monitor receives a heartbest it calculates the time since the last heartbest. I this
period differs sgnificantly from normd, an dert is triggered. The time of a normd period is
based on the configured period and gtatistics on norma deviations from that period. How
this is implemented is deferred to future work. The collection monitor sends dl calculated
heartbeat periods to the log server where they are stored so that they are accessible during
andyss.

An attacker can however change the behaviour of a component, without being detected by
the heartbeat mechanism, through modification of the underlying libraries and operating
system services that the component uses. For example in Linux an attacker that has acquired

DESIGN

super user privileges (root) can modify the behaviour of the OS by loading kernd modules
into the kerndl. To reved the loading of mdicious kernel modules, the system should collect
data about kernd module loading events via its ordinary collection mechanism. The system
can acquire some protection againgt maicious librariesif the libraries are gaticdly linked into
the components executables. The integrity of the system’s executables is protected by
manua and automatic integrity checks (see below).

The adapters monitor the targets to the degree dlowed by the target. Some targets may only
be possble to monitor through monitoring the liveliness of the target process. Others may
offer hooks to connect to, eg. SNMP trap. The adapters inform their collection agent of
datus changes to their targets. The collection agents compile the satus information received
from their adapters and send status and heartbeat messages to the collection monitor, and
status messagesto the log server.

The adapters are executed in the same process as their collection agent. Hence, the
collection monitor monitors them too. It can be made harder to disrupt the service of the
collection agents and their adapters if they can only be shutdown &fter a reboot. Then an
attacker that wants to replace a collection agent must do so by activating the corrupt
replacement on another node, since the time to reboot is consderably longer then a
reasonable heartbeat period. Automatic restart is discussed further in the next section.

The events that should generate an dert to the administrator of the system are determined
during configuration. Obvious candidates include failure of any component and especidly the
log server and the collection coordinator, and if the collection monitor receives a failure
message indicating the corruption of one of the componentsin the domain.

The log server should for security reasons not use the production network to send
messages. Ingead, the log server communicates with the log andyser, the management
consol and the collection coordinator through a dedicated adminigrative network. The log
server sends heartbests over this network to the collection monitor.

Each component’s configuration is stored in one or severd locd configuration files. A copy
of the configuration is dso stored in the collection monitor. This implies that every time a
locd configuration file is modified a copy of it must aso be ingdled in the collection monitor.
In the status messages sent at start-up and restart, the loca configuration is included. The
collection monitor compares this configuration with its copy of the configuration. If they
differ, an dert is generated. The reason tha the complete configuration is included in the
gtatus message and not just a hash of the configuration is that the configuration is also sent to
the log server, to make it avallable during andysis.

The integrity of the software components (executables) for the sysem must be verified
during inddlation and periodicdly during operation. The integrity verification during
operation can be handled automaticdly, but should aso be checked manudly to protect
agang corruption of the automatic integrity verification tool. The automatic integrity
verification could be done either periodicaly or after every access to the monitored file. The
result of the verifications should be documented and protected according to the same

35

A system for collection and analysis of forensic evidence

requirements as the data collected by the system. How the result from the automeatic integrity
check is documented and stored is currently not specified in the design. However, it would
be naturd that the result is transferred to the log server like the rest of the system logs and to
the collection monitor.

Collected data cannot be trusted after a system compromise where the attacker has
acquired super user privileges or after the collection monitor has detected possble
corruption of the system. However, note that it's not guaranteed that the collection monitor
detects an eventua system corruption or that an eventua detection is correct.

The trust to put in the collected data must be ultimady determined by andysang the
collected data, and the system’'s message exchange and logs, for dgns of system
compromise. This data can reved if and when an attacker has acquired super user
privileges. If s0 is the case the collected data, even if the attacker generates or modified it,
will give vaduable information. One cannot however be sure that it indicates what has redly

happened.

The collection monitor can detect system corruption in many ways, heartbeat periods
ggnificantly differert from norma and through falure messages and status messages. The
correctness of the collection monitors detections must be assessed during andyss, by
examining both data collected by the system and the system data logged.

6.2.2 Recovery

The requirements section states that the system should recover from system crashes. Upon
sart-up, the system shdl recover to its previous state and resume its operations unaffected.

Currently, the system components do not maintain any date information. Implying for
example that if a collection agent goes down, it will not resume the collection activated
before the crash, except the background collection. The introduction of dtate is deferred to
future work. If sateisintroduced, the integrity of the state must be protected.

Autométic restart of components makes the system more fault-tolerant, and more difficult to
stop. Automatic restart requires that the components are highly reliable so that they do not
go down repeatedly because of faults in the component, and thereby jeopardize the
system’ s Sability.

Automatic restart can be implemented in a number of ways. One-way isto have a daemon
or a kernd module (Linux) monitor the process. However, with both these methods a
hacker with super user privileges can disable the daemon or kernd module and then
terminate the component. 1t would be desirable that the components only can be terminated
after areboot. That is a setting in a configuration file is changed o that after the next boot
the component is not active any more. It's unclear whether any current operating systems
support this feature.

36

DESIGN

Automatic restart implies that keys used by the component to authenticate itsef must be
stored unencrypted or encrypted by a password, which then must be stored unencrypted.
Thelast key or password in the chain must be stored unencrypted.

Automatic restart should be done locally, and not via the network. This is important, snce
remotely controlled restart would be a big security hazard. If an intruder could restart a
component without having access to the node that the component is running on, he/she
would be able to direct a deniad of service atack on the remote component through
repeated restart orders.

6.2.3 Denial of service

As discussed in section 3.3, intrusion detection technology is inherently vulnerable to denid
of service attacks, snce it's possble to generate packets or system events with the sole
purpose of triggering derts. Since the system reects on the aerts by starting data collection,
the system will amplify the effect if not countermeasures are included in the design. Possible
countermeasures include:

Anayse the derts and data collected to determine if extra logging should dart.
Simple thresholds can be used. If too many derts are received within someintervd,
the fine-grained collection is restricted.

Implement a threshold based on loca resource consumption, so the fine-grained
logging cannot consume more resources then specified by the threshold. This
threshold must be carefully sdected, so that it's not reached under norma
conditions.

Dynamicdly adjust the leve of fine-grained collection. When resource usage is high,
collect data a a higher granularity. For example if data about open files is gathered
periodicdly, the load locdly can be used to determine the period.

Anayse the effects of the eventud attack localy on the attacked node to determine
if collection should stop, because the aerted attack is a fase darm. In section
6.4.1.5 it isfurther discussed how to determine when collection should be stopped.

These counter measures can be implemented locally by the collection agents, by the
collection coordinator or by a combination of them both. The prototype implementation
does not currently implement any of these countermeasures, since this issue needs to be
investigated further.

In any case the collection agents should not be configured to collect more data then feasible
from a resource perspective. That is when maximum collection is activated the resources
consumed should not remarkably effect the ordinary applications running on the node. It is
currently not known if the resource consumption of the collection generdly is of the degree
thet it may influence norma operation.

37

A system for collection and analysis of forensic evidence

The log server must be scaed so that it can handle if the maximum fine-grained collectionis
activated in dl collection agents. The only way to verify thisis to test the ingalation before

deployingit.

6.2.4 Auditing

The requirements State that the system must log its configuration, dl action taken interndly,
and dl interaction with outside systems and users. The logging should be a a sufficiently low
level 50 that the State of the system can be recreated. The confidentidity and integrity of the
logs must be protected

All messages between the components of the system except heartbeat messages are dways
sent to the log server. Heartbeat messages are only sent to the collection monitor. The
collection monitor processes heartbeat messages and send the result to the log server.

The components logs should be transferred to the log server. The andyss of what the
individua components should log and the mechaniam to transfer them to the log server is
deferred to future work.

The confidentidity and integrity of the system log should be protected by the same
mechanism as the data that the system collects.

6.2.5 Chain of custody

The requirements that the documentation of the chain of custody sets on the system are
discussed in section 5.2.2. They can be summarized as follows: the origin of the collected
data and its way from collection to storage in the log server must be documented.

The dert that triggered the collection order and the collection order itself are both sent to
and stored in the log server. Every collection order contains a unique identifier that is used to
link collection order, and data collected due to the collection order, together.

After gart-up and restart, the collection agents send their configuration, including information
about the adapters they use and the configuration of the adapters, and the hostname of the
node to the log server. Every adapter type is identified by a unique id, which is made up of
the name of the author of the adapter, and the name and verson of the adapter. The
collection agent software is identified by its verson and the ids of the plug-insincluded in the
collection agent. Plug-ins are described in section 6.4.2.1.

Every collection agent has a unique d assigned to it in its loca configuration file. It's the
adminigtrator’ s respongibility that no collection agents are assigned the same id. However, in
the case of duplicate ids the collection monitor will detect it. The collection agents assign
locdly unique ids to its adapters. The collection agent id and the adapter id together form a
domain unique identifier.

To dl data collected, the adapters add the time interva when the data was collected, the
format type, and the quantity of the collected data.

38

DESIGN

The collection agent adds more information to the collected data. It adds the time it received
the data from the adapter, the id of the adapter and its own id and the ids of collection
orders that caused the start of the collection.

6.2.6 Labelling and Integrity of collected data

The requirements State that every collected item should be labelled and that the label should

include:
- Incident identification

Item identification

Brief description of the item

Date and time of |abel creation

Signature of label

The label is condructed by the log server from informetion in the log messages it recalves.
The incident identification is crested by combining the collection order id that trigged the
callection and the domain unique identification of the collection coordinator that sent the
collection order in question.

The item identification is made up of the sequence number that al messages contain
combined with the unique identification of the component that sent the message. Every
component has a separate sequence number counter for each message type. The
components reset the sequence numbers at restart.

The requirements gtate that the Chain of Custody information and the collected data should
be signed to protect their integrity. These sgnatures and the sequence numbers should not
be confused with the sSgnatures and sequence numbers used to assure communication
security, as described in section 6.3.3. The communication security mechanism assures that
messages originate from authorized components. The signatures discussed here assure
integrity and trace ability of the collected data and the data that describes the dtate of the
sysem.

Collected data should be signed by the collection agent that collected the data and the log
server if it is received correct, i.e. the communication security mechanism vaidates thet it
originates from an authorized component. The content of al messages should likewise be
sgned by the sending component and the log server, as dl messages are stored in thelog
server.

The keys usad to sign the data must be managed. The public keys corresponding to the
private keys used to create Signatures must be stored so that they can be accessed during
andysis and their integrity must be protected. At the same time the secrecy of the private
keys must be protected. It needs to be further investigated how the signature keys should be
managed (i.e. updated, stored and secured) and which cryptographic algorithms that should
be used.

Note that the components do not verify the signatures and sequence numbers described
here during operation. The components only verify the Sgnatures and sequence numbers that

39

A system for collection and analysis of forensic evidence

implements communication security. If a message contains an invaid sgnature or sequence
number the component sends a failure message. The signatures and sequence numbers
described in this section is used to ensure the integrity of the data during anayss.

6.2.7 Time synchronization

To be able to correlate events on different machines, and to make the evidence more
reliable it's necessry with some form of time-synchronization between the different
components. The system uses the Network Time Protocol (NTP) [14]. The officd
Coordinated Universd Time (UTC) should be used to avoid problems with corrdating
timestamps from different time zones.

NTP is based on amulti tiered system where each layer is called a stratum. Servers at each
level peer with each other and provide time services to lower levels. Servers at the top or in
stratum 1 are directly connected to atomic clocks or radio based time receivers. By
compensating for their distance from the authoritative time sources, these receivers provide
highly accurate time services to stratum 1 servers.

Below stratum 1, NTP servers are supposed to obtain time from servers above them as well
as a their own leved (stratum). The configuration ingructions say that each top leve server
within a specific domain should be aclient to & least two servers & the leve directly above
it and peer with dl the other servers in their own domain at their same level as well as a
least one other outside peer on the same level. The servers receive time from but never
provide time to the servers at the next higher stratum. Peers receive time from and provide it
to other peers. There should be at least three coordinated top-level serversin each doman
s0 each network should communicate with at least Sx outside servers at the next higher
(numericaly lower) stratum and at least three outside peers in the same stratum.

If avalable, it's dedirable that the timeservers in the collection domain connect directly to a
primary reference source, usudly awire or radio clock that is synchronized to aradio station
that provides a stlandard time service.

Mesasures to protect the integrity of the timeserver and the communication between the
timeserver and the components are deferred to future work.

6.3 Communication

The requirements section states that the communication between the components in the
sysem must guarantee ddivery and offer both integrity and confidentidity. These
requirements apply to both inter-process communications within a host and network
communication between components on different hodts.

This section focuses on the network communication between components on different hosts.
Communication between the collection agents, collection coordinator, log server and
callection monitor will be trested, while communication with and between the log anayser
and management console are referred to future work. Communication between adapter and
target is presented in detail in the section 6.4.2.3.

40

DESIGN

6.3.1 Communication protocol

All the information that is sent over the network is pushed; the sender initiates the
communicetion. The collection agents push information to the collection coordinator, the log
server and the collection monitor, while the collection coordinator pushes orders to the
collection agents, etc.

6.3.2 Message types

Figure 4 gves a summary of the different message types and where they’re sent. Detailed
descriptions of the message types are given below.

-

Sender Collection Collection Collection Log Server
Agent Coordinator Monitor

Collection - Alet - Status - Log
Agent - Heartbeat - Alet

Falure - Satus

Falure
Collection | - Order - Heartbeat - Saus
coordinato - Status - Order
r - Falure - Falure
Collection - Sdus
Monitor - Falure
Log Server - Heartbeat
- Falure

Figure4: Messagesthat ar e sent between the different components

Fgure 5 shows the message header that is used for al types of messages. Ver is short for
protocol verson. Type is type of message. Format denotes how the message shdl be
interpreted depending on the Type. For dert and log messages the Format denotes how the
payload is formatted. For status messages the format denotes the kind of status message,
while the vaue is ignored, and should be zero for heartbeat and order messages. Payload
length gives the tota length of the payload. The Sender Component Type, Sender
Component ID, Plug-in ID triplet uniquely identifies the origin of the message and the pair
Receiver Component Type and Receiver Component ID uniqudly identifies the receiver.
The Component Type denotes the kind of component, eg. if the node is a collection
coordinator or a collection agent. The Component 1D fidd contains the identification of the

41

A system for collection and analysis of forensic evidence

component. The Component Type together with Component 1D uniquely idertifies the
component, which sent the message. Plug-in ID is used to identify the plug-in or adapter
that origindly generated the message. This fidd should be zero if the message not originates
from a plug-in or adapter. The two lagt fields in the header gives the timestamp of the
message with microsecond precison.

0 8 16 24 32

Ver Type For mat Sequence nunber

Payl oad | ength

Sender

Component Type Sender Conponent |ID Plug-in ID

Recei ver

Conponent Type Recei ver Conponent ID

Ti mest anp seconds

Ti mestanmp m croseconds

Figure5: Message header

6.3.2.1 Alert message

A collection agent that has received an dert from one of its targets sends an dert message.
The message is sent to the collection coordinator and the log server. The origin of the dert is
a target of a collection agent with IDS-functiondity or dternatively, a syssem component
with attack detection capabilities. An example of such a component could be the log
andyser that might detect attacks when andysing the logs. In the future, the collection agents
may aso include attack detection functiondities themsdaves and just not through their targets.

The dert message contains the aert and the header presented above. The time samp in the
header identifies when the alert was issued. The dert format id that is located in the header is
used to identify how the data thet the dert consst of is formatted. This identifier is globaly
unique and every dert format supported by the system must be assgned such anid.

The processing of dert messages by the collection coordinator is discussed in section 6.4.1.

6.3.2.2 Log message

The log messages contain collected data that is sent to the log server for storage. They
contain information about events on the network and the hosts supervised.

It's ill an open question if these messages should be in a tandard format, or if they should
be stored in their origind format. Presently the system has support for both.

In addition to the header, the message must contain the log record and two time stamps. The
two time stamps identify the interva in which the adapter collected the log record. The log
format id isfilled into the formet field in the header and is used to identify the format of the

42

DESIGN

log record. This identifier is globaly unique and every format supported by the system must
be assgned such anid.

In addition, the log message should contain the ids of the collection orders that triggered the
collection of the log record in the message. However, note that if norma background logging
caused the collection of the log record, the message won't contain any collection order ids.

6.3.2.3 Status messages

Status messages are sent by the components in the system to inform about state changes. Al
components send status messages to the collection monitor, which checks these messages,
and triggers an darm if some part of the system doesn’t seem to work as it’s supposed to,
or if there are indications of wunauthorized modification of the sysem. The status messages
are a0 sent to the log server so the Sate of the system is available during andlysis.

A collection agent sends four types of status messages. start, stop, collection state changed,
and deteriorétion of service. The start status message contains the configuration of the
collection agent, and a list of adapter ids. It aso contains information about the software
verson of the collection agent and the ids of the plug-ins used. A ‘Start’ status message is
sent when the collection agent is Sarted or restarted. The ‘stop’ Status message contains the
cause of the shutdown. A ‘collection state changed’ status message is used to indicate the
st of fine-grained collection activated. It is sent after a collection order is received. The
message contains the id of the collection order that trigged the message and list of adapter
ids, with their adapter type id and their configuration. A deterioration of service message is
sent out when one adapter detects that atarget no longer fulfilsit collection assgnment. The
deterioration of service message contains the adepter id, adapter type id and the
configuration of the adapter of the target that hasfailed.

The collection coordinator and the log server send two types of status messages. start and
gop. The ‘sat’ satus message contains the configuration and software verson of the
collection coordinator or log server and is sent a Start up. Similar to the ‘stop’ status
message of the collection agents the stop message of the collection coordinator and the log
server only contains the cause of the shutdown.

The collection monitor sends status messages to the log server for storage. As the other
components it sends ‘start’ and ‘stop’ status messages. In addition, the collection monitor
sends dl caculated heartbest periods for the other components in the domain and
information compiled from the status messages it receives in ‘system da€ satus messages
to thelog server.

As dtated above al components should send a status message at shutdown. Components
should catch the sgnd (e.g., POSIX or ANSI signd) that indicate request of shutdown or
restart, and sends a status message before acting upon the signal. However, not dl sgnas
can be caught. In those cases, the component will be terminated immediatdy, and it will
have no chance of sending a status message.

A system for collection and analysis of forensic evidence

6.3.2.4 Heartbeat message

Heartbeat messages are messages that a component sends periodicaly to indicate that it's
gill operating. All heartbests from all components are sent to the collection monitor, where
the time since the last heartbeet is caculated. If this period differs sgnificantly from normd,
an dert is triggered. The collection monitor sends al calculated heartbeat periods to the log
server where they are stored o that they are accessible during andysis.

6.3.2.5 Collection order message
Collection order messages are messages sent from the collection coordinator that tells the

system to gtart or stop fine-grained collection and what collection to start. These messages
are discussed in detail in section 6.4.1.

The collection orders contain an id, the collection order id, which is used to link collected
data to the collection order that trigged the collection.

6.3.2.6 Failure message

If a component detects a maformed packet, it may contain an invaid sequence number or
an invaid sgnature etc, it sends a falure message to the collection monitor and the log
serve.

6.3.3 Communication requirements

The requirements section gates that the communication between the components in the
sysem must guarantee ddlivery, offer integrity and confidentidity.

The confidentidity of log, heartbeat and failure messages must be protected. However, aert
and order messages should perhaps not be encrypted because of the extra delay introduced.
These messages carry on the other hand sensitive information. Messages between collection
coordinators in different domains should be encrypted, since they may traverse the Internet.

The integrity of all message types should be protected. All message types should aso be
protected against replay.

The design does not specify how the communication security requirements are implemented.
Communication security is provided by the communication protocol used by the systems
components, like BEEP or HTTPS (see section 7.1.1).

However, the system manages the credentiad's needed for secure communication. Therefore
each component must be configured with the identity and credentials of dl componentsit will
need to communicate with.

The collection agents must be configured with the identity and credentias of the
collection coordinator, collection monitor and log server in the domain.
The log server, collection monitor and collection coordinator must be configured
with the identity and credentids of al other components in the domain.

The components must aso protect their credentias from access by unauthorized entities.

DESIGN

Each component must dso assure that it is informed by te underlying communication
protocol of authentication errors so that it can act upon them.

It is not currently defined if symmetric or asymmetric cryptography is to be used by the
system to secure the communication. If an asymmetric solution is chosen it must be decided
if certificates (PKI) should be used, or if the public keys should be manudly registered in the
different components. In the long run probably a certificate solution is preferable. It provides
easy adminigration, Snce a new collection agent can be added without having to register the
new collection agent’s public key in al components and the other component’s public keys
in the new collection agent. With a certificate based solution the adminigtrator only has to
issue a new certificate to the new collection agent.

6.4 Components

6.4.1 Collection coordinator

The collection coordinators basic respongbility is as the name indicates to coordinate
collection. It is accomplished by receiving input, processing this input and finally sending out
collection orders addressed to the collection agents in the domain of the collection
coordinator. The collection orders contain information about the collection that should be
started.

It's important that the process of generating a collection order from received input is as fast
as possible to minimize the delay from the point of detection to when data collection Sarts.

The mapping from input to collection order should be easy configurable. New attacks are
discovered and new signatures are generated continualy. The adminigtrator of the collection
domain must also be able to customize the set of mappingsin usein the domain.

6.4.1.1 Inputs

The collection coordinator in adomain can receive input from a number of different sources:
Alert messages from the collection agents in the domain.
Feedback messages from the log analyser in the domain.
Feedback from the collection agents in the domain.
Information from collection coordinators in other domains.
Feedback information from the collection monitor in the domain.

Only the firgt type of input, dert messages from collection agents, is currently used by the
system. The eventua use of the other types of input is deferred for future work.

Information from a collection coordinator in one domain to a collection coordinator in
another domain can be vauable if the collection coordinator in the first domain detects that
an attack is spreading to the domain of the second collection coordinator. The other tree
types of input are al feedback information from components in the collection coordinators
domain that may improve the accuracy of the collection coordinators orders.

A system for collection and analysis of forensic evidence

Alerts from intruson detection systems differ from the four other types of input in thet it is
generated from an entity that is not a pat of the sysem. The format of the dert is
determined by the IDS that generated it and different dert format may contain different
information. The desgn and implementation of the collection coordinator is smplified
radicdly if derts are received in a sandard format, since then the collection coordinator only
needs to support that dert format.

Snort is probably the most widespread NIDS today. It is developed as an open source
project. Both the source code and the signatures are available for review. The format of
derts that Snort [13] generates contains a snort-id that uniquely identifies the dert. The
snort-id is as it name suggests only supported by Snort. The dert also contains a category, a
priority and possibly one or many references to vulnerability databases or dictionaries, like
CVE [50] or Bugtrag [51]. The name of the dert often includes the vulnerahility thet is
exploited and/or the attack tool being used.

oo +
| | DMEF- Message |
oo - +
!\
I

o e e e oo Fommo oo +

I I
Fomme o + o e o + Fomm e e + o oa s +
| Alert |<>-| Anal yzer | Heartbeat |<>-| Anal yzer
Fomm oo + SR + Fomm e m oo + SR +
| | I + | | oo +
| | <>-| CreateTi ne | | | <>-| CreateTi me |
| | E T T TSI + | | L L +
| | E I + | | B I +
| | <>-| Det ect Ti ne | | | <>-] Additional Data |
| | Femm e e aa o + e + Foemmm e e e aaa e +
| | E T T TSI +
| | <>-] AnalyzerTime |
| | I +
| | Fommmam - + - +
| | <>-] Source |<>-| Node |
| | B + Fomm e - - +
I I I I Hociaeo- - +
I I I | <>-| User |
| | | e *
| | | e *
| | | | <>-| Process |
| | | e +
| | | *
| | | | <>-| Service |
| | Fommmm - o + Feommme e aa +
| | [SRS + Feom e e mma oo +
| | <>-| Target |<>-| Node |
| | [TR + Fommmmeaaa +
| | | *
I I I | <>-| User |
I I I I LR +
I I I I Hos-iio- - +
| | | | <>-1 Process |

Figure 6 IDMEF data format

The fact that individua 1DS use proprietary formats for derts and that many organisations
use many different IDS, has lead to the need for a tandard dert formats, so that derts from

46

DESIGN

different IDS can be corrdlated. The Intruson Detection Message Exchange Format
(IDMEF) [26] is a proposd of such a standard format put forward by the Intruson
Detection Exchange Format working group (IDWG).

IDMEF presently defines two types of messages. Alert and Heartbeat. The data modd of
IDMEF is object-oriented. The Alert message type, which is of mogt interest in relaion to
the functiondity of the collection coordinator, contains a number of different classes, each
with its own attributes and aggregate classes. The Classfication class and the Assessment
class are more interesting then others from the collection coordinators point of view:

The Classification Class contains two classes. The name cdlass that contains the name of the
attack and the URL class which contains an URL at which one can find a description of the
dert. The Classfication class dso contains an atribute cdled origin. The permitted vaues of
origin are currently: unknown, bugtragid, cve and vendor-specific.

Common Vulnerabilities and Exposures (CVE) is a lig of dandardized names for
vulnerabilities and other information security exposures. CVE ams to sandardize the names
for dl publicly known vulnerabilities and security exposures. When a new vulnerability is
discovered it is assigned a candidate number. After review the candidate may be assigned a
CVE name Bugtrag is maling lig for discusson and announcements of security
vulnerabilities and a vulnerability database.

Since not dl dert are vulnerahilities and CVE and Bugtrag classfies vulnerdilities, the cve
and the bugtragid don’t provide a complete and consstent dert taxonomy [48]. That is not
al derts contain a Classfication name from cve or bugtragid.

The Assessment class aggregates by others the Impact class that contains three attributes,
severity, completion and type. The severity attribute holds an estimation of the relative
severity of the event. The completion atribute gives an indication whether the IDS system
that sent the Alert believes the atempt was successful or not. And lastly, the type attribute
contains a classfication of the attack.

admin | Adminigtrative privileges were attempted or obtained

dos A denid of service was attempted or completed

recon | A reconnaissance probe was attempted or completed

user User privileges were attempted or completed

other | Anything not in one of the above categories

Table4 Table of IDMEF classifications

IDMEF defines three subclasses to the Alet message class the ToolAlert class, the
OverFlowAlert class and the CorrdationAlert class.

47

A system for collection and analysis of forensic evidence

The ToolAlert class carries additiona information related to the use of attack tools or
malevolent programs such as trojan horses. With the Tool Alert class one or more previoudy
sent derts can be grouped together, to indicate that the derts were al the result of someone
using a particular tool. The ToolAlert class contains information about the name of the tool
and the commands used in executing the toal.

The OverHowAlert class carries information related to buffer overflow attacks. It contains
the name of program the overflow attack attempted to run, e.g. a shell, the sze in bytes of
the overflow and the overflow dataitsaf.

The Corrdation class can be used to group one or more previoudy sent derts together, to
indicate that that they are related. The class contains a string describing the reason for the
grouping, for example a particular corrdation method.

The IDMEF Alert message contains other information that is of essence to the collection
coordinator. Especidly the Target class is of importance. The Target class contans
information that identifies the node (network address, network name etc.) being attacked,
and possibly the user id used in the attack, the process that is being attacked, the network
sarvice being attacked, and files on the target involved in the attack.

6.4.1.2 Generating collection orders

The process of generating a collection order conssts of two activities
- Identify which nodes to send collection orders to. This can be the host(s) under
attack, but also other nodes like the firewalls, routers etc.
Generate the content of each collection order, the information about what collection
to start.

Note that an aert message can result in a number of unique collection orders addressed to a
number of different destinations. Which nodes to send collection orders to, the first point
above, is treated in the next section. The format of the collection orders istreated in section
6.4.1.4.

The content of the collection orders can be decided in a number of ways.
Use a proprietary identifier, like the snort-id. The advantage is that the trandation
from aert to collection order becomes straightforward.
Use a gtandardized identifier, like the CVE name or bugtragid.
Use the dert’s classfication or category, like the IDMEF impact type or the snort
Classtype rule option.
Use information about the attack tool used, supplied by IDMEF s ToolAlert class.
Attack tools can be analysed to determine which data that needs to be collected to
capture their actions.
Use information about the program being attacked, the user id used in the attack,
the process that is being attacked, the network service being attacked, and files on
the target involved in the attack, supplied by the two IDMF classes OverHowAlert
and Target.

48

DESIGN

A combination of the listed sources of information above can of course be used. The
information that different derts contain varies so different information sources must be used.
However, it can be assumed that some form of id (either proprietary or standardized) is
adwaysincluded in the dert.

The mapping functiondity, from input to collection order, is implemented by a rumber of
tables or functions, one for each type of input. In this way the trandation functiondity is
eadly extendable. If a new input type is to be supported a new table or function is added
and the old are left unchanged.

When an dert message is recelved its content is matched againg the available tables and
functions. The tables and functions which input is present in the dert return as result a set of
collection orders. A table or function may return many collection orders but each order has
a separate destination address from the others. Then, the resulting set of collection ordersis
grouped after destination. Findly, each group of collection orders is merged to form the
collection order to each dedtination. Collection order format and merging is discussed in
section 6.4.1.4.

The tables can be of varying complexity or sze. In the amplest case the table only condgst
of one entry that specifies a standard set of collection orders. In this case al detected
attacks results in the same et of collection orders.

The specification of the semantics and the syntax of the tables and functions are deferred for
future work. The tables and functions must evolve over time, as the sgnatures of IDS
systems do. However, how the mapping functiondity is maintained is dill an open question.

The mapping functiondity is currently defined as date-less, the mapping is only determined
by the current input and not by past input. State-full mapping would make it possble to
congtruct collection orders based on a sequence of derts.

6.4.1.3 Where to send collection orders

The identification of which nodes to send a collection order to is decided by the same tables
and functions that decide the content of the collection orders. Usudly the collection order
generation results in collection orders to the host or hosts under attack and sometimes aso
to server and network component nodes.

The degtination may be a symbolic name such as firewdls, routers etc or an absolute name,
typicaly the hostname or |P-address of the attacked host. The symbolic names are resolved
in the last step of the collection order generation, possibly resulting in that the collection
order is sent to severa nodes.

The symbolic names are mapped to network addresses (1P-addresses) in the configuration
file of the collection coordinator.

Except the host(s) under attack there are numerous nodes that the collection coordinator
could send collection orders.

49

A system for collection and analysis of forensic evidence

The currently defined symbolic names are:
- network_sniffers

routers
firewdls
fileservers
directory_services
authentication_servers
emal_servers
modems_pools
VpNn_servers
web_servers

A copy of dl collection orders is dways sent to the log server.

6.4.1.4 The format of collection orders

Each collection order has one destination and the collection orders contain information about
the type of collection that the loca collection agent shdl sart if possible. The collection agent
will examine the collection order and follow it according to its collection capabilities.

How precise should the collection orders be? Is it enough to define log levels and define the
collection to take place in the different levels? Or should the orders be more specific? They
could contain a collection set of adapters types and the collection that each adapter type
should gtart.

Since the results from the functions and table lookups should be merged, the format must
include a definition of the merge operation. For log leves the naturd definition is to let the
result be the highest log level among the merged. For collection sets the naturd definition of
the merge function would be the union function.

The format of the collection orders must be further evauated. The prototype implementation
presented in chapter 7 useslog levels.

6.4.1.5 When to halt collection
Bdow isalig of different methods for determining when the collection should be hated:

Manually by an operator. Only feasible if the number of dertsislow. Otherwise too
much of the operator's time will go to determine when to hdt collection.

Use pre-defined time congtants, possibly infinite, for different attacks. That is, after x
seconds is the fine-grained logging turned off, where x is dependent on the attack. If
X is infinite the operaor must dop the collection manudly.

The log andlyser could analyse the collected deta to determine in red-timewhenit's
safe to turn of the collection. The andyss could for example be based on system
properties like: users logged on; open network connections and the processes

50

DESIGN

running on the node in question. If these system properties indicate that the attacker
has |eft the node and left no running processes behind him the collection could be
stopped. The anadyss will dso indicate if the attack was successful or not. If so, the
node should be manually examined after the collection has sopped.

It's currently not defined how collection is hated. To use predefined time congtant is easy to
implement and offer better functiondity then hating the collection manudly. In the long run
the method based on analysis of the collected data is preferable. However, to get there
more research needs to be conducted.

6.4.1.6 Configuration

The configuration of the collection coordinator consists of three parts: the mapping tables
and functions, system integrity configuration, and the communication security configuration.

The integrity configuration conssts of the key materid used to sign al messages sent by the
collection coordinator to assure integrity and trace ability.

The collection coordinator’ s communication security configuration specifies:
The identity and credentias of dl the other components except the log in the
domain
The identity and credentias of the collection coordinators in other domains thet the
collection coordinator should cooperate with. It aso contains the range of network
addresses that isincluded in each of these domains

6.4.2 Collection agent

Fgure 7 gives an overview of the systlem architecture on a collection node. The targets can
be loca processes that generate data that the system collects but the adapter can aso
communicate directly with some part of the operation system. The collected data can be
log-data from for example a web-server, derts from an IDS, output that is generated by
running a system command, or statistics about network load, etc.

The collection agent collects this data and is responsible for the communication between the
local system and the log server, the collection coordinator and the collection monitor. The
collection agent communicates with the targets through the adapters. Usudly the adapters
collect output from their targets and send it to the collection agent, but the adapters may aso
collect system data on their own (directly from the OS). The adapters control what kind of
data that is collected, and the format of the data.

To minimize the delay from attack to collection garts is it important that dert messages is
relayed to the collection coordinator and that collection orders are processed as fast as

possible.

The loca callection system has an extendible design, which isimplemented through adapters
and plug-ins. Plug-ins are built into to the collection agent a compilation. It should be easy
and require a minimum of knowledge about the system to make a new adapter. The
interface that adapters need to implement should be clearly defined. It isdso desrable that a

51

A system for collection and analysis of forensic evidence

new adapter can be added without any change to the collection agent, except a change of its
configuration to include the new adapter. A verson of the adapter interface for Linux is
defined in Appendix A.

Raw logdata Raw logdata Raw logdata

Adapters

A

Formated logdata
Status information

Collection order

Collection agent

4 I
| Log
Alert

H
1
Collection Status

orclier Heartbeat

| Failure

! v
Figure 7: Thedesign of the system on a supervised machine.

The collection agent should avoid starting new processes, opening sockets etc when fine-
grained collection is started. The collection agent should be as sllent as possible, to not arise
sugpicion from an eventud attacker.

6.4.2.1 Architecture of the collection agent:

The collection agent controls its adapters. It starts, stops and reconfigures its adapters. The
collection agent collects dl the messages from the different adapters, and sends them to the
log server. It recaives collection orders from the collection coordinator and reconfigures its
adapters according to them. Findly, the collection agent monitors the targets through the
adapters and is respongble for forwarding this information through status and heartbest

MESSages.

The agent may be extended to implement functiondity to process the streams of data sent
from the adapters. Examples of processng are filtering, correlation of data, or
implementation of intruson detection or andyss cgpabilities The functiondity is added
through the plug-in interface. There is one plug-in chain for each of the log, dert, and Satus
message streams from the adapters. When a new message is received from an adapter it is
handed over to the corresponding chain. The message then travels trough each of the plug-
ins in the chain, before it is processed by the collection agent and finaly forwarded. Note

52

DESIGN

that it's possible to add plug-insto the dert chain but it should be carefully contemplated so
that no unnecessary ddlay isintroduced.

The plug-ins compiled with the collection agent must be documented. Every type of plug-in
is asggned aglobdly unique id. The id congsts of the name of the author, and the name and
verson of the plug-in. The ids of dl plug-ins that a collection agent uses are included in the
status message sent at start-up.

Hgure 8 illugrates the amplified workflow of the collection agent. The figure does not
include the sending of heartbesat and the processing and sending of status messages.

Parse
configuration

Configure and
start adapters

Message
from collection
oordinator?

Alert from
agents?

Log from
agents?

Yes Yes Yes

Reconfigure Treat log message Treat alert in
agents in plug-ins plug-ins

L

A 4 A 4

Send alert to
— collection —
coordinator

Send log to
log server

Figure 8: Workflow for the collection agent.

The collection agent starts up, and reads the configuration file. Then it sarts al the adapters
according to the configuration, and darts to ligen for messages from the collection
coordinator, and for messages from the adapters.

6.4.2.2 Adapters

The adapters provide the system with an interface to the target. That means that each
adapter is specidly congdructed for a single target, or a group of targets with the same
functionality. The adapters collect the data that the target generates. Theregfter it has to

53

A system for collection and analysis of forensic evidence

convert the message into a format that the other modules of the syslem understand, before
sending it to the collection agent as either a log message or an dert message. The adapter
ataches a tag to the message, describing the contents of the message (format id) and the
time interva during which the data was collected.

The adapter dso generates status messages when its status changes. Status change events
include gart-up and shutdown of the adapter, and when it recelves new orders about what
to collect. The adapter should also monitor its target, and generate a status message if the
datus of the target changes, for exampleif it goes down.

If the target is a process (gpplication or a pocess that collects system information) the
adapter can check the liveliness of the target process through eg. periodicaly polling the
target if possble, listen to eventuad periodic output from the process etc. If the target offers
hooks to connect to, for example SNMP trap, the adapter may listen to these. The target
process can potentidly be monitored in many different ways. It needs to be examined in
each case which of the possble waysthat is preferable.

The target must not be a process. It can be a part of the operating system, for example on
Linux systems there is interesting information to be read in the /proc directory. In that case
the adapter itsdlf implement the collection functiondity. This is dearly preferable since the
adapter then doesn't have to trust and monitor any target process. The adapter must
however trust the operating system. On for example Linux it’s not obvious that the OS can
be trusted since it can be modified with loadable kernd modules.

If it's possble to reconfigure the logging of the target process, the adapter should be able to
receive collection orders from the collection coordinator via the collection agent, and
reconfigure the logging of the target process according to these. If the target process does
not dfer the possihility to be reconfigured the adapter has to filter the data from the target
according to the collection orders.

Every adapter is assgned a globdly unique type id, which is made up the name of the
author, and the name and version of the algpter. The collection agent includes the unique
type ids of dl the adapters it uses in the status message sent at start-up (included in the
configuration of the collection agent) and when the adapters are reconfigured as an effect of
acollection order.

It is desirable that the adapters are executed within the process that executes the collection
agent. The adapters in the prototype implementation (see section 7.5) are executed in the
same process as the collection agent. Otherwise the collection agent must somehow monitor
its adapters. If the adapters execute in the same process as the collection agent the
collection monitor aso monitors them.

6.4.2.3 Communication between adapters and targets processes

There are saverd constructs for inter process communication that can be used by an adapter
to communicate with atarget process, including:

DESIGN

Pipe (e.g. target | adapter)
Through the target’slog file
Sockets

Named pipe

Fug-insin the target

API supported logging

Not al congruct are available in dl operating systems. Pipe and communication through the
targets log file offer only unidirectiond communication. The other types may offer bi-
directional communication.

To ensure integrity, it's feasble to enforce some authentication mechanism between the
target and the adepter if possble. However, it is of course only possble if the target
supportsit.

If the communication uses congtructs like sockets, named pipes or files the access rights to
theses congtructs must be set so that the attacker must gain super user privileges to access
them. An attacker with access to one of these congtructs can send false information through
them or disrupt the communiceation.

If the target supports some sort of plug-ins mechanism or APl that enables trandfer of
information between target and collection agent it is preferable over the other communication
dternaives. There has not been conducted any in-depth investigation so far in the project
over currently avalable plug-ins and APIs for exchange of logging information. In section
8.3.4, covering possible future work, the desirable functiondities of an application plug-in or
AP for transfer of gpplication logs and monitoring is discussed further.

6.4.2.4 Configuration
The adapters are configured in the collection agent’ s configuration file.

The key materia used to sign the log messages (the collected data) and other messages sent
by the collection agent must be configurable.

The collection agents must be configured with the identity and communication security
credentias of the collection coordinator, collection monitor and log server in the domain.

6.4.3 Log server

The function of the log server is Smply to receive the logs from dl the other componentsin
the system, and store them. The log server should log al messages generated by the system,
that is dl log messages, dert messages, collection orders, status messages and failure
messages. Implying that the log server is both responsible of storing the data collected by the
system and the data that describes the operation of the system.

Fgure 9 shows a proposed design of the log server, where the log server is connected with
the production network via a one-way connection, while dl access to the data in the log
sarver is done via a dedicated adminigtrative network. A one-way connection can be

55

A system for collection and analysis of forensic evidence

implemented with firewdl rules or for higher security by cutting the outgoing connection
physicdly if the network medium uses different cables, for incoming and outgoing traffic.

One-way connection

Production
network

Administrative

Log server [—
network 9

0

Log storage

Figure9: Thedesign of thelog server

6.4.3.1 Storage

The data in the log server can be sored in many different formats, for examplesin text-files,
as XML-documents, or in a database. The log server is desgned so that the Sorage is
handled by a plug-in, compiled into the log server. This way it's easy to extend the log
server to store in a new format. For most formats it’s necessary for the log server to parse
the log messages that arrive. This makes andyd's easier, but the origind form the messages
arived inis log. A solution is to both save the data in the received origina format and the
common format.

The data should be stored in such a way that relevant data can be efficiently found. For
example should it be easy to search after al logged data for a particular host and a particular
period of time or al data collected as the effect of a pecific collection order.

6.4.3.2 Security

The confidentidity and integrity of the collected data must be protected. No access to the
dtored dataiis dlowed through the management network. Authorized traffic coming from one
of the other components in the domain is only adlowed to gppend informetion to the stored
information. The data can only be accessed trough the administrative network, and then
only by the domain’'s log anadlyser and management console. Stored data cannot be deleted
without physica access.

These access condraints are implemented by a combination of firewal rules and file
permissions. In addition, the log server should be located on a dedicated host with an
operating system only supporting aminimum of functiondity.

The stored data should aso be encrypted and signed with multiple hash agorithms, as sated
in the requirements section.

56

DESIGN

For ahigher level of integrity protection, the Sgnatures (Sgned hashes) could additiondly be
saved on a separate node. This feature would be motivated by the fact that an attacker that
gans access to the log server may modify the saved log records and corresponding hashes.
If the hashes are only saved localy on the log server this unauthorized adteration will not be
detected. The design does not currently include this feature. Since the collected data and al
messages are dready signed by the component that collected the data or sent the message
there is dready some protection. To fadfy the data stored in the log server an attacker must
acquire the key used to origindly sign the collected data or message and acquire access to
the log server.

In addition, as mentioned above, may the log server be physicdly restricted to send over the
production network if the network medium dlowsit.

6.4.3.3 Configuration

The log server must be configured with the identity and communication security credentids
of al other componentsin the domain.

The log server must aso be configured with the key materia used to sign the received data
and messages.

6.4.4 Collection monitor

The collection monitor is regponsible for monitoring the other components of the system. It
compiles information about the system’s dae from the daius, heartbest and falure
messages it recaives from the other components. The system’s state can be monitored
through the management console and the collection monitor can be configured to dert an
operator through mail, SMS etc.

The functiondity of the collection monitor is described in section 6.2.1, ‘Component
monitoring and integrity’.

6.4.4.1 Configuration

The collection monitor must be configured with the identity and communication security
credentids of dl other componentsin the domain.

The log server must dso be configured with the key materid used to Sgn the recelved data
and messages.

57

A system for collection and analysis of forensic evidence

7 Implementation

As a part of the project a prototype has been implemented. The prototype implements parts
of the design proposad in section 6. We didn’t have time to implement dl the components,
or dl the functiondlity, so we focused on implementing the core functiondity, remote logging
and logging based on detected attacks. All requirements have not been implemented, but the
prototype is designed to smplify the implementation of this functiondity later.

In the firg phase of the implementation, we focused on making an extensble architecture
thet is cgpable of fine-grained logging. We especialy focused on that it should be easy to
add new adapters. Therefore it was the interface and interaction between the collection
agent and the adapters that got the most attention.

The user documentation for the prototypeis given in Appendix A, where the ingdlation, and
configuration ingructions for the prototype are given.

We have implemented prototypes of the log server, collection agent, and the collection
coordinator. We ve adso implemented a number of adapters. one for collecting derts from
Snort [13], an adapter for collecting system-calls, a generic adapter that listens to a named
pipe and collects everything written to that pipe, and a adapter that runs system-commands
and collect the output of these commands.

The prototype is implemented on Linux and written in C. The reason for usng Linux is that
it's a gandard Unix-like operating system, which has a large market share of the server
market. We use C since it's a muchused programming language that offers good low-leve
interaction with the operating system.

7.1 Communication

7.1.1 Communication protocol

Since the requirements date that the communication between the components of the system
should be reliable it must be based on TCP. Both HTTP and, IDXP or BEEP, are dl
application protocols built over TCP that offer additional services compared to TCP.

IDXP [25] stands for intruson detection exchange protocol, and is a protocol that is
gpecified by the Intruson Detection Workgroup (IDWG) at IETF. It's meant to be a
gandard for transactions of intrusion detection data, especidly in conjunction with IDMEF
[26]. IDXP uses BEEP, a generic protocol over TCP where characterigtics like
confidentidity, integrity, etc. can be added using profiles. For an introduction to BEEP see
[28].

The advantage with BEEP is that it's a generic toolkit for congtructing application protocols
where many communication mechanisms, like framing, encoding, negotiating capabilities,
dready are implemented. BEEP lets the gpplication protocol designer choose with
mechanisms to include through the congiruction of profiles. Another advantage with IDXP is
that if IDXP becomes a standard, it'll be easier to incorporate our components with other

58

IMPLEMENTATION

components that tak IDXP. A problem using BEEP is that it's a new technology, so it
hasn't matured yet. It's dso fairly complex to develop your own profiles. Codefactory are
working on an implementation of IDXP, but the implementation isn't Stable yet. See[23] for
details about the implementation.

Developing our own protocol from scraich using sockets could give us the mogt efficient
protocol, since the protocol could be custom made, it's possble avoid some of the
overhead in a more generic protocol like BEEP, or HTTP. It's possble to implement
security using VPN, or SSL [29]. The problem with this gpproach is that it's a consderable
amount of work to implement everything from scratch, protocol design is hard and it's easy
to make mistakes, and it's troublesome to implement security features like confidentidity,
integrity, etc.

If we use HTTP, we can reuse dl the sarvices that HTTP offers. Implementing security is
possible, and can be implemented in a standard way using SSL (HTTPS).

We decided to use IDXP, because it seems like it'll become a standard, and it's relatively
smple to extend the protocal to fulfil the system’s security requirements. But since the
implementation of IDXP 4ill wasn't mature at the time when we started implementing our
prototype, we where forced to congtruct a smple gpplication protocol, while we wait on
IDXP to mature. This application protocol is built on top of standard TCP-sockets.
However, one should note that the prototype is prepared for the use of IDXP. As an effect
of not usng IDXP initidly the security requirements on the communication is not fulfilled in
the prototype.

7.1.2 Message formats

Three of the message types that are presented in section 6.3.2 have been implemented, the
log, dert and collection order messages.

The prototype implements a smplified verson of the message header defined in section
6.3.2. Only the Type, Format, and Payload length fields are included.

The only implemented format for log messages is the raw format. In this format the log
messages contain log-records sent as a text-strings without any additional metadeata.

Alerts can be sent in two different formats. They can either be sent as a text-giring, or they
can be sent as a data structure. If they’ re sent as a text-string, the receiver of the dert hasto
parse the string to obtain the information needed to process the dert. The data structure
format presently contains the dert message, the attacked host and the attacked port.

Collection order messages are implemented using the log-level approach as described in
section 6.4.1.4. The log-level should be interpreted as an indicator on how serious the
attack is.

59

A system for collection and analysis of forensic evidence

7.2 Collection coordinator

The implemented collection coordinator is a smplified verson. It generates the same
collection order for al derts recaived. It listens for dert messages from collection agents. If
it receives an det message from a collection agent with an IDS target, it will send a
collection order to al the connected collection agents, independent of the contents of the
dert. In the prototype the log levd is set to a congtant vaue, independent of the dert that the
collection coordinator receives.

The collection coordinator is configured with the listening ports of the different components,
and the addresses of the log server, and the collection agents.

7.3 Log server

The prototype log server implements a minimum of functiondity. The only thing it doesis that
it receives log messages from the collection agents, and stores these in a normd text-file
The name of the text-file and the lisening port are configurable.

7.4 Collection agent

The collection agent defines an interface for the adapters to implement. The adapters are
implemented as libraries that are loaded dynamicdly a run-time. The adapters are initidised
with a pointer to a cdlback function that is used to send messages back to the collection
agent. The adapters init function returns a structure that contains information about the
adapter, among other things functions to cal when you start the adapter, when you sop it,
and when you change the configuration. The messages from the adapters are put in a queue
according D type: dert, log or satus. These messages in the queues may be processed
(filtered, extraction of etistics etc) before they are finaly sent to the log server.

The collection agent dso lisgtens for messages from the collection coordinator, and if it
receives a collection order, it ingructsiits adapters to Sart extra logging.

Ligening ports of the collection agent, log server and collection coordinator are
configurable. The same goes for the addresses of the log server and the collection
coordinator, and the paths of the adapter’ s shared object-files.

7.5 Adapters

Asexplaned earlier are dl the adapters implemented as libraries that are loaded dynamicdly
a run-time. This way more adapters can be added to the collection agent, without
recompiling the agent. To add an adapter it's enough to add the location of the compiled
shared object-file for the adapter to the configuration file of the collection agent and for the
new adapter to be loaded the collection agent only needs to be restarted. All adapters
implement a common interface that defines functions that the adapter must implement. For
detallson thisinterface see A.5.

The adapters are configured in the same configuration file as their collection agert.

So far we have implemented four adapters, the pipe adapter, the run adapter, the snort
adapter and the auditd- adapter.

60

IMPLEMENTATION

7.5.1 Pipe adapter

The pipe adapter is a general adapter that listens to a named pipe. All messages that the
adapter receives on the pipe ae sent as log messages to the collection agent. The name of
the pipe is a the moment hard-coded, but it should be configured in the collection agents
configuration file.

7.5.2 Snort adapter

Thisis an adapter specid for the Snort IDS. It receives dert Sructures from Snort through a
UNIX socket, and transforms the derts to a standard dert format. The derts are then
relayed to the collection agent.

7.5.3 Run adapter

Thisisa dample adapter that runs a UNIX system command, and sends the output from this
command to the collection agent. The command that isrun is at the moment hard-coded, but
it'll be configurable from the agents configuration file later.

7.5.4 Auditd

The kernd is a protected area of the operating system, which is only available through
system cdls. System cdls are the connection between kerndl space and user space, where
user space is the logicad area of memory and CPU usage where user processes run. All
activities on a computer, e.g. open a document or start a program, results in system cals.
Hence, the obvious place to be sure dl user activities are logged isthe system calls.

When a system cdl is executed, the PID of the process cdling the system cdl can be
identified. From the PID the red user ID of the user executing the system cdl can be
identified. This makes it possble to log useful information about what actions a user perform
and when they happen. The fallowing is an example system cdl log entry from a package
cdled SNARE [12]:

dhcp62.nr.no LinuxAudit event,open(O_RDONLY), Thu Jul 11 16:16:05 2002
user,root(0),root(0),root(0),root(0) process,24724,snare path,/proc/auditinfo
return,8 sequence, 75098

As can be seen, the machine name, system call, date, time, red user ID and red group 1D
are presented, as well as other useful information.

SNARE is developed by InterSect Alliance, and released under GPL. They use a wdll-
known principle for recording system calls, by using a kernd module. A kernd module can
be insarted into the kernel a run-time. This makes it possible to ingdl such a module
without recompiling the whole kernel or rebooting. As this module is run in kernd space, it
can attach itsdlf to and be cdled viathe proc file sysem. The kernel module can then access
interna feetures of the kerndl, giving user space access to the kernd via the inserted kernel
module.

The mogt interesting capability in our setting is modifying the system call table, which gives
references to where handlers for the different system cdls can be found. By usng a kernd

61

A system for collection and analysis of forensic evidence

module, we can access and replace the entries in the table with our own, located in the
kernd module we inserted. From our kernel module we can then call the origind system
cdls. We have now intercepted the system cdls, and can find the informeation as givenin the
example above by asking for the current user PID and time, as well as record what kind of
system cdll the user requested. The result may be a string as the one in our example above.

In our solution, we have modified the user space part of the SNARE package to run as an
adapter. The kernel module is kept as origindly written. The basic steps performed to be
able to monitor the use of system cdls are these:

1. Insert the kernd module.

2. The kernd module regigters itsdf when inserted, adding afile caled auditmodule to
the proc file system.

3. A (user space) process cdls the kerne module via functions registered in the proc

file sysem to Sart logging of specific system cdls.

The kerndl module registers the cdling process PID.

When a system cdl is intercepted, the kernel module logs it in a linked ligt, and

natifies the caling process that requested the logging.

6. The process requesting logging ask for the next sructure in the linked list held by the
kernel module to be returned via the proc file system

o &

7.6 Portability

The main system with the agent, coordinator and the log server should be easy to port
among different UNIX-platforms. The same goes for the Pipe adapter, snort adapter and
run adapter. When it comes to porting to a non-POSIX platform, for example Windows, is
becomes much more difficult. The main reason for this is thet the sysem is implemented
usng POSIX threads. When it comes to the auditd adapter it can only be run on Linux or
Solaris, snce the audit module only isimplemented for these platforms.

It may be necessary to be able to catch signals in the adapters. The auditd-adapter already
communicates with the kernd module using sgnds. This can give problems on traditiond
UNIX platforms, snce it's not possible for another process to easy send a sgnd to a
gpecific thread. On Linux this presents no problem however, snce in Linux every threed is
assgned its own processor id, and therefore hasits own signd handling.

62

FUTURE WORK/RESEARCH DIRECTIONS

8 Future work/Research directions

This chapter presents a number of areas and issues related to the work presented in this
report that needs further work. The work needed to complete the system is presented,
including the prototype and the issues that need to by be examined and clarified in the design
presented in section 6. Functiondlity and ideas regarding the design not presented before are
also presented. Lastly are a number of related areas of future work and research presented,
that ether have been identified during the course of the project or that have not been
addressed so far in the project (not prioritised in this phase of the project).

8.1 Evaluation

So far in the project the hypothess and the system designed based on it has not been
practicaly evauated. For an evauation to be of any value the functiondity of the prototype
needs to be extended to include monitoring, a more advanced implementation of the
collection coordinator, authentication etc. A more complete prototype can be used to
validate and £t the hypothess and the design againg red attack scenarios. In the first
phase the am should be to vaidate the core idea of the hypothesis thet is starting collection
based on derts from intrusion detection systems. Theresfter can the design be evaluated
againg the requirements put on the system.

Tests need to be conducted to quantify the delay from the time of the attack until collection
is started. The components of the ddlay (delay caused by processing in IDS, collection
agent, and collection coordinator and delays caused by the communication) should aso be
quantified.

Test is dso needed to get a sense of the resource consumption that collection of different
types of data, like system calls, introduces.

8.2 Thedesign

This section presents a summary of the issues that needs to by be examined and daified in
the design presented in chapter 6 and some ideas of new functiondity that have not been
presented before.

Fault tolerance (traditionaly implemented through redundancy) is currently not addressed by
the desgn. However, the design is amed a smplifying introduction of fault tolerance
through: smple design, components with clearly defined responshilities, and date-less
components.

The syntax and semantics of the tables and functions that implement the mapping from derts
to collection orders needs to be specified. Different modds for the maintenance and
development of these tables and functions will dso in the long run be necessary to
investigate.

The format of the collection orders also needs further work. In section 6.4.1.4 two ideas for
formats are discussed, log levels and collection sets.

63

A system for collection and analysis of forensic evidence

How to determine when to hdt fine-grained collection was discussed in section 6.4.1.5. A
number of different directions to further investigate were presented. The most advanced
method, to analyse the success and progress of the attack, requires work on adding analysis
capatilities to the system. The design identifies a log analyser comporent for this purpose,
but analysis can aso be conducted in other components, or in new components that are not
currently part of the system.

In section 6.4.1.1 a number of different input sources to the collection coordinator were
presented. The only input currently used by the system is dert messages from the collection
agents in the domain. The need for and the eventua mechanisms used for inter-domain
communication between collection coordinators needs to be further investigated. The same
goes for the intra-domain feedback from collection agents, log andyser and collection
monitor.

The design identifies two components that are not specified in any detall, the log andyser
and the management console. The respongbilities and functiondity of these components
needs to be specified.

How the collection monitor handles heartbeat messages needs to be further specified.
Especidly how the collection monitor caculates the time of the norma period between two
heartbeat messages. The design currently only suggests that the calculation can be based on
aconfigured period and gatistics on norma deviations from that period.

The dedgn dates that the integrity of the system executables should be protected by
automatic and manual integrity checking (see section 6.2.1). It is further proposed that the
documentation of the results of the integrity checks should be transferred to the log server.
The mechanism that transfers the documentation needs to be designed.

The keys used to d9gn the data must be managed. The public keys corresponding to the
private keys used to create signatures must be stored so that they can be accessed during
andyds and ther integrity must be protected, while the secrecy of the private keys must be
protected. It needs to be further investigated how the signature keys should be managed (i.e.
updated, stored and secured) and which cryptographic algorithms that should be used.

In section 6.2.3 a number of countermeasures againgt denid of service attacks are listed.
The feadhility of the identified countermeasures and where in the system they should be
implemented need to be anaysed.

Which events the individua components should log and how these logs are transferred to the
log server are currently not specified by the design.

The design does not treat how the integrity of the communication that carries the time
synchronisation information between timeservers and components is protected.

FUTURE WORK/RESEARCH DIRECTIONS

It is not currently defined if symmetric or asymmetric cryptography is to be used to ensure
communication security. The advantages and disadvantages of the dternatives are discussed
insection 6.3.3.

It needs to be andysed how different types of data collection taint the system. The system
must include the possibility to pecify the order of collection so that collection that taints the
system is conducted after the tainted data in question is collected. This implies that the
tainting of the different targets used by the system needs to be identified.

How the collection of different types of detais affected by the delay described in section 3.2
needs to be investigated. The use of a smal locd buffer to circumvent the problem aso
needs to be investigated.

Currently the analysis of the collection coordinator is state-less. The need for and the
posshilities with sate-full analyss need to be further analysed. State-less andyss smplifies
the design of the sysem but the introduction of state makes new andyss functiondity
possible. As an example |P addresses that have been used in former attacks can trigger fine-
grained collection if they regppear again within a certain interval. More complicated andyss
like the prediction of the attackers future behaviour aso requires the introduction of State.

By predicting the attackers behaviour the system could pro-actively sart collection. In [49]
a profile of the attacker is created based on information he/she reveals about himsdf/hersdf
during the attack. Principles from economics are used to predict the attacker’s behaviour,
based on estimates of hisher asset-gppraisal, attack-cost, and attack-resources. Based on
the profile and economic-based estimates likely compromised devices are identified. In [47]
analysis of the attacker’ s attack strategy is proposed to be able to perform “pro-active ook
ahead adaptive auditing”.

The collection agent could be put in kernd space. In the current design it resides in user
gpace. The main advantage of running the collection coordinator in user space is thet it is
eader to port it to different platforms. If the collection coordinator is placed in kernel space,
for example as a loadable kernd module in Linux, many of the monitoring and integrity
requirements put on the sysem are eader to fulfil, snce the collected data then can be
transferred directly to the other components without passing through user space.

8.3 Related research directions

8.3.1 Whatto log

We bdieve that forensc collection on a live system (i.e. logging) is a fidd within computer
security that has not yet got the attention it deserves. The literature study conducted in the
project has uncovered only afew papers in this field. Further work is needed in classfying
different types of log data, analysing the relation between the classes and ther value from
different perspectives, asfor example their value in detecting intrusions or making a profile of
the attacker.

65

A system for collection and analysis of forensic evidence

8.3.2 Report format

One of the gods of the hypothesis thet this project is based upon isto smplify the collection
of computer forensc evidence. To smplify the part of the forensic process after collection a
gtandard format for reporting computer intrusions is needed. Tool development would be
gregtly smplified if a standard format existed. Collection tools could ddliver the data in this
format and analyss and presentation tools could work againg this format. The work of the
human investigator would aso be smplified if dl incidents where reported in the same
format.

8.3.3 Enforcement of security properties

Asdiscussed in section 1.1.2 the system presented in this report can be used to collect data
to enforce security properties. The project has not addressed this application of the system
so far. To automatically detect events that breach aloca security policy, it must be specified
in a formd language o that it is possble to automaticaly derive the set of events that
breaches it. To specify awhole security policy in aformd language is not feasible today, but
parts of the security policy can be specified this way. Parts of loca security policies are
dready today specified in formd languages. As examples firewdl and access control
configurations can be mentioned. Based on these forma specifications it can be determined
which eventsthat are of interest and that therefore should be collected.

8.3.4 Standard for logging support in applications

The fine-grained approach would benefit if agpplications offered standard APIs for
contralling their logging. Currently the logging (whét to log and where to store the logs) of
applications is often controlled through configuration files and the logging is modified through
modification of these configuration files and the restart of the application (or possible only
the logging process of the gpplication). Modification of configuration files and restart of the
gpplication isadow process and logging is not activated during the restart.

Monitoring functionaity may be included in the API. If so, the monitoring process would use
the API to subscribe to information about the application’ s state changes.

All commands received through the API should be logged, so that information about all
changes to the logging is digtributed to dl interested. This is to protect the integrity of the
level of the logging conducted by the gpplication. Otherwise, a hacker can change the level
of the logging to not include events that would reved him/her without being noticed.

To our knowledge no standard or proposed standard API for controlling logging exists
today.

8.3.5 Standard logging module in operating systems

The system presented in this report could be extended with a logging module that logs the
users interactions with the operating sysem. A standard API controls the logging of the
module, much like the logging API for gpplications discussed above.

The logging module should be logicaly separated from the rest of the system (its actions
should not modify the system gate), that is for example its actions should not modify MAC

66

FUTURE WORK/RESEARCH DIRECTIONS

times of files it accesses. The module should aso be “impossible’ to remove (compiled into
the kernd). Only the levd of the logging and where the logs are stored or sent can be
modified and the modifications are logged.

A logging module prototype for Linux can be developed in the form of a loadable kernd

module. A loadable kernd module can be removed by unloading it, but the module can log
the unloading event before it is unloaded, so the unloading is detected. The logging module
can be integrated with the system prototype, through an adapter for the logging module. The
logging module should however be indructed to send the logs directly to the log server, and
not pass the logs to the collection agent. The collection agent resides in user land and if the
logs are passed through the collection agent it makes it possibly avallable for a hacker with

super-user privileges.

Further work is needed in what logging capabilities the logging module should have. The
project has so far identified a number of candidates (see section 4), as for example system
cdls, file access, loading of kernel modules etc.

8.3.6 Reduction of false positives

The data that the system collects can be analysed to rule out IDS derts as fase positives.
This resembles the functiondity of ClearResponse from Psionic. The work darted in
callecting system cdls could offer a base for further andysis. If the pattern of system cdls
executed when exploiting different vulnerabilities could be identified, the success of atacks
taking advantage of these vulnerabilities could be measured.

8.3.7 Isolation of attacked nodes

The system presented in this report passively collects data during presumed attacks. It
would clearly be desirable to use this collected datain red time to determine if attacks are
successful and if so isolate the attacked node from the attacker. Resulting in ether
terminating the attack or hindering the attacker from returning and use hisher acquired
privileges. In any case the harm the attacker has caused is limited and the examination of the
attacked node can be conducted without risking that the attacker returns. In the cases the
attack is determined successful it is possible to redirect the attacker to a deception system, a
so-called honeypot or honeynet. However, to determine if an attack is successful or not is
hard since the accuracy must be high, snce one cannot accept isolation of nodes that in
redlity are not compromised (or at least not very often).

8.3.8 Analysis of the collected data

The project presented here has not addressed issues related to the analysis of the collected
data. In this areait needs to be developed new innovative andys's methods that integrate
severd different types of data. The anadysis work conducted today needs to be andyzed to
identify missing functionality and tasks that can be automated. Analys's methods and
guidelines aso need to be developed and tested. Thisis alarge research area that can be
attacked from many different perspectives.

67

A system for collection and analysis of forensic evidence

9 References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]
[14]
[19]

[16]

[17]

[18]
[19]
[20]

[21]
[22]
[23]
[24]
[29]

[26]
[27]

[28]
[29]

NIKSUN, www.niksun.com

SlentRunner, www.d lentrunner.com

Forensgc mailing ligt at Securityfocus, forens c@securityfocus.com

Focus-1DS mailing ligt at Securityfocus, focus-ids@securityfocus.com

Casey, E. ed: Handbook of Computer Crime Investigation, Academic Press, 2001
Shadow, www.nswe.navy.mil/I SSEC/CID/

Guidance Software, www.encase.com

The Coroners Toolkit, www.porcupine.org/forens cs/tct.ntml

Allen, Jlig, e d.: Sate of The Practice of Intrusion Detection Technologies,
(CMU/SEI-99/TR-028). Rittsburgh, PA: Software Engineering Inditute, Carnegie
Méelon University, 1999.

Information technology — Code of practice for information security
management, 1SO 17799 part 1, 2000

M. Bermaschi: REMUS. A Security-Enhanced Operating System, ACM
Transactions on Information and System Security, Vol. 5, No. 1, February 2002,
Pages 36-61

Snare, http://www.intersectaliance.com/projects/ Share/Documentation/index.htm
Snort IDS, www.snort.org

Network time protocol homepage, http:/Amww.eecis.udd .edw/~millg/ntp.htm

D. Brezinski and T. Killdea: Guidelines for Evidence Collection and Archiving,
RFC3227, February 2002

Paul E. Proctor: The Practical Intrusion Detection Handbook, Prentice Hall PTR,
New Jersey, 2001

John Tan: Forensic Readiness,
http://www.atstake.com/research/reports/acrobat/atstake forensic readiness.pdf,
July 2001

IOCE: Guidelines For Best Practice In The Forensic Examination Of Digital
Technology, http://Amww.ioce.org/2002/ioce bp exam digit_tech.html, 2002

E. Spafford, D. Zamboni: Intrusion detection using autonomous agents, Computer
Networks 34, 2000, Pages 547-570

C. King, E. Osmanoglu, C. Ddton, Security Architecture Design, Deployment and
Operations, chapter 4, McGraw-Hill Osborne Media, 2001

Psionic HostSentry, http://Awww.ps onic.com/products’hostsentry.html

Psionic ClearResponse, http://www.ps onic.com/products/clearresponse.html
Codefactory’ s IDXP-implementation, http://idxp.codefactory.se/

Beep homepage, http://beepcore.org/beepcore/home.jp

B. Feingein, G. Mathews, J White: The Intrusion Detection Exchange Protocol
(IDXP), draft-ietf-idwg-beep-idxp-07, Internet draft, July 2002

D. Curry and H. Debar: Intrusion Detection Message Exchange Format Data
Model and Extensible Markup Language (XML) Document Type Definition,
Internet draft, draft-ietf-idwg-idmef-xml- 06, June 2002

Homepage IDWG, http:/mww.ietf.org/html.charters/idwg- charter.html

Marshdl T. Rose, BEEP The Definite Guide, O'Re

openSSL project, http://Awww.openss.org/

68

FUTURE WORK/RESEARCH DIRECTIONS

[30]

[31]

[32]

[33]
[34]

[35]

[36]
[37]
[38]

[39]

[40]
[41]

[42]

[43]

[44]

[49]
[46]

[47]

[48]

G8 Recommendations on Transnational Crime, Endorsed by G8 Minigtries of
Jusice and Interior. Mont-Tremblant, May 2002 http://Aww.g8j-
i.calenglisvdocl.html

Council of Europe: Convention on Cybercrime, November 2001,
http://mwww.conventions.coe.int/Treaty/EN/Cadrel igteTraites.htm

H. Lipson: Tracking and Tracing Cyber Attacks: Technical Challenges and
Global Policy Issues (CMU/SEI-2002-SR-009), CERT Coordination Center,
November 2002

Peter Sommer: Intrusion Detection Systems as Evidence, Recent Advances in
Intrusion Detection — RAID 98, Louvain-la-Neuve, Belgium, September 1998

J Danidson: Project Description A system for collection and analysis of
forensic evidence, Application to NFR, April 2002

IOCE: G8 Proposed Principles For The procedures Relating To Digital
Evidence, http:/Mwww.ioce.org/G8 proposed principles for forensic evidence.html,
2002

M. Ranum: Some Tips on Network Forensics, Computer Security Ingtitute, 198
(September 1999): 1-8

M. Bishop, C. Wee and J. Frank: Goal-Oriented Auditing and Logging,
http://secl ab.cs.ucdavis.edu/papers/tocs-96.pdf, 1996

US Department of Defense: DoD Trusted Computer System Evaluation Criteria,
(The Orange Book) DOD 5220-22-STD, 1985

J. Kornblum: Preservation of Fragile Digital Evidence by First Responders, Air
Force Office of Specid Investigations, Digitd Forensic Research Workshop, August
2002

E. Lundin and E. Jonsson: Privacy vs. Intrusion Detection Analysis, RAID 1999,
Indiana, USA, September 1999

Computer Forenscs Tool Tedsing (CFTT) Proect Web Ste
http:/Avww.cftt.nist.gov/index.html

P. Stephenson: The Application of Intrusion Detection Systems in a Forensic
Environment (Extended Abstract), Oxford Brooks Universty, School of
Computing and Mathematical Sciences, Oxford, UK, RAID 2000, Toulouse, France,
October 2000

T. Parineand A. Singer: New Paradigms In Incident Management, New Security
Paradigms Workshop 2000, Cork, Ireland, September 2000

P. Stephenson: Intruson Management: A Top Level Model for Securing
Information Assets in an Enterprise Environment, Proceedings of EICAR 2000,
Brussdls, Belgium, March 2000

B. Fraser: Ste Security Handbook, RFC 2196, September 1997

V. Broucek and P. Turner: Bridging the Divide: Rising the Awareness of Forensic
Issues amongst System Administrators, School of Information Systems, University
of Tasmania, Audrdia, 2002

Ming-Yuh Huang, Thomas M. Wicks, A Large-scale Distributed Intrusion
Detection Framework Based on Attack Strategy Analysis, RAID 98, Louvain-la-
Neuve, Belgium, September 1998

D. Andersson, M. Fong, A. Vades. Heterogeneous Sensor Correlation: A Case
Sudy of Live Traffic Analysis, http://www.sdl.sri.com/usersival des/ndss01spl. pdf

69

A system for collection and analysis of forensic evidence

[49] J Yuill, S Wu, F. Gong and M. Huang: Intrusion Detection for an On-Going
Attack, RAID 1999, Indiana, USA, September 1999

[50] Common Vulnerabilities and Exposures, http://cvemitre.org/

[51] Bugtrag vulnerability database, http://online.securityfocus.conmvbid/bugtragid/

70

A USERDOCUMENTATION

Appendix A User documentation

A.1 Installation

To ingdl the system you should first obtain the source. Put the source in a directory. The
source code has the following subdirectories:

Directory Description

\ Root-directory of the digtribution. Contains
generd library code, and documentation.

\adapters Source-code for the adapters.

\agent Source-code for the agent.

\coordinator Source-code for the coordinator.

\log_server Source-code for the log server.

\messages Contains the message formats.

\test Test-programs for the various “libraries’.

Run the command ‘make’ in the root-directory of the distribution. If everything went ok, the
following binaries should be present:

agent\agent

coordinator\coordinator

log_server\log_server

adapters\auditd.so

adapters\pipe_adapter.so

adapters\run_adapter.so

adapters\snort_adapter.so

A.2 Usage
This sysem is actualy not ready to be used yet, but the adventurous could try the following:

The system contains three main modules.

The agent is the module that controls the logging localy. The agent loads adapters according
to which targets that one wants to supervise. The configuration of the agent and the adapters
is given in agent.conf.

The log server receives dl the log messages from the agents, and logs them. At the moment
the log server just writes everything to a text file. The configuration of the log server is given
inlog_server.corf.

The coordinator is responsible for processing derts, and sending collection orders to the
various agents. At the moment it's only possible to use one agent per coordinator. The
configuration of the coordinator is given in coordinator.conf.

The configuration files have to be in the same directory as corresponding binary.

71

A system for collection and analysis of forensic evidence

A.3 Format of the configuration files

The generd format of al configuration files
Reserved tokens:

#: Marks the rest of the line as a commen.

$: Marks the beginning of an inserted varigble. The variable must be in parentheses.
Ex: (MY _VAR). Only reserved if it isfollowed by a'('.

(: Used for variables.

): Matchesan (.

{: Marks the beginning of configuration statements that go over severd lines, like for
example the configuration of adapters.

}: Matches an '{". Not alowed to be on the same line as an unescaped {'

The following syntax-rules gpply to the configuration files:

Two linesis conddered asonelineg, if the first one endswith a'\'.

At the moment it's not dlowed to have configuration statement blocks where both the
opening bracket {" and the closing bracket }' are on the sameline.

All norrempty, non-comment lines have to start with a keyword. The keyword marks the
beginning of a configuration statement, and tells how the line (or block for statements thet
gpans more than one line) should be parsed. Some keywords are generd, while others
depend on what kind of configuration file that is being parsed.

Generd keywords:

var Definesavariadle.
indude: Includes another configuration file with the same format.
SSil Marks an definition of a program varigble.

A.4 Implemented adapters

At the moment four adapters are implemented: auditd, snort-adapter, pipe-adapter and run-
adapter.

Auditd is an adapter that connects to SNARE's system call logging kernel module,
Snort-adapter uses the Unix-socket output plug-in in Snort. This plug-in writes snort-aerts

in raw format (as a struct) to /dev/snort socket that the Snort-adapter creates, and reads
from.

72

A USERDOCUMENTATION

Pipe-adapter reads data from a pipe, a the moment hard coded to TEST PIPE located in
the same directory as the agent binary. The data is sent to the log server as strings. Pipe-
adapter can be used in conjunction to al logging ystems that lets you pipe the logs. An
example on thisis the apache web server and sydog.

Run+adapter can run Unix-commands. At the moment the run-adapter is hard coded to run
the who command.

A.5 How to write your own adapter

It's pretty smple to make your own adapter. You need to implement the APl defined in
adapter.h:

typedef struct _adapter
{

char id;
int (*start)();

int (*stop)();

int (*reconfigure)();

/* int (*shutdown)(); */
} adapter;

typedef int (*t_send_nsg) (nessage* nsQ);
adapter* init(char* config, t_send _nsg send_nsgQ);

It means that you've got to implement an init function of the above format that returns an
adapter gtruct. This function will be caled from the agent. Further the function pointer start
must point to the function that starts the adapter, stop must point to the function that stops
the adapter, and reconfigure must point to the function that handles messages from the
collection coordinator, for example about refined logging. Shutdown function is not yet
implemented, but is meant to be a function the collection agent calls before it's shut down, to
let its adapters to clean up. If some of these functions aren’'t defined, the corresponding
function pointers should point to NULL.

The init-function is caled from the agent-program. The parameters given are a text-gtring
that contains the configuration of the adapter, and a pointer to a function. The function is of
the defined function type t send msg, and is defined in the agent. The adapter cdls this
function when it wants to send some messages back to the agent.

The message structure is defined in message.h. To put it Smple the adgpter should build an
dert message if it wants to reach the collection coordinator, or it should build alog message
if it wants to send the message to the log server. The adapter then puts the message in a
gruct, or a string, depending of what format it chooses to use, and give the format and type
of message in the header. Be aware that the structure that the pointer is referenced to is
freed by the message handler in the agent, and that the pointer is used there.

73

A system for collection and analysis of forensic evidence

For examples on smple adapters, take a look at the source code of the snort-adapter, or
pipe-adapter.

74

