Squashing Massive Data Sets:
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Abstract

Data squashing was introduced by DuMouchel et al. (1999). It is a method for
reducing (“squashing”) a massive data set to a smaller data set that can be handled by
traditional statistical methods. The squashed data are constructed such that some
weighted empirical moments are approximately equal in the squashed and original
data sets. The squashed data set is generally not a subsample of the original data
set.

In this paper we review data squashing. We also discuss several aspects of the
method that are not covered in DuMouchel et al. (1999) and present ideas for further
research.
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1 Introduction

Suppose that we have a data set with so many records that traditional statistical methods
of inference are computationally impractical or even infeasible. What do we do?

In simple cases the problem can be solved by increasing computer memory and processing
capacity. When this is not sufficient, one idea is to develop specialized methods to deal
with very large data sets in reasonable computation time. (For information on data
mining, see e.g. Berry and Linoff (1997) or Aas et al. (1999).)

Alternatively, one could imagine extracting a smaller data set from the large, and then
employing traditional methodology on the smaller set. It is this data extraction approach
that will be discussed here.

Consider a density f(X;0) with @ unknown. Suppose we have a large number N of
i.i.d. observations xy,... ,Xxy. We wish to find ‘observations’ yi,... ,yyu, M < N, with
associated weights wy, ... ,wys, such that inferences about @ on the basis of y1,... ,yum
and wy, . .. ,wys are similar to inferences made on the basis of the original data x;,... ,xy.

Possible ways of determining yq,... ,yx and wy,... ,wys are:

1. Let y1,... ,yu be a random sample from xy,... ,xy, and set w; = N/M for all i.
We refer to this method as Simple Random Sampling (SRS). Of course, SRS works
even if the form of f(-) is unknown.

2. If all the variables are discrete, then a simple way to aggregate them is to create one
point y; for every combination of values of the variables that occur in the data, and
let the weight be the number of original data points with that particular combina-
tion. If some variables are discrete and others continuous, we may regionalize the
data using the discrete data and applying other techniques within each such region.

3. When the form of f(-) is known, we may use a method called Likelihood-based Data
Squashing (LDS). In LDS, each y; will be the ‘center’ of a cluster of observations
{x;}jec. Each cluster consists of observations of similar likelihood. The weights
{w;} will be the number of observations in each cluster. The LDS technique is
summarized in Appendix B.

4. If f(-) is unknown (but smooth), an alternative to SRS is to determine yy,... ,yun
and wy, ... ,wy by requiring the extracted data set to have approximately the same
likelihood as the original data set. This method, Data Squashing (DS), is the main
topic of this document. As for LDS, the squashed set is not generally a subset of
the original set: A record in the squashed set is not necessarily equal to any of the
records in the original set.

The rest of this document is organized as follows. Section 2 summarizes the original
paper, gives some simple examples and discusses some related issues. Section 3 contains
some comments and discussions pertaining to DS and DS-type algorithms. Section 4 is a
informal collection of ideas for further research in the field.
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2 Data Squashing by Moment Matching

2.1 Summary of Data Squashing
Data squashing as presented in DuMouchel et al. (1999) consists of three steps:

e Group the data in regions. If some of the variables are discrete (categorical), they
are used to bin the data. Each of the resulting regions can be sub-divided in e.g.
hyper-rectangles or data spheres (Johnson and Dasu, 1998).

e Cualculate empirical moments for each region. The number of moments that need to
be calculated increases with the number of squashed data points to be generated.

e Generate pseudo data points and weights. For each region, a set of pseudo points is
created so that their weighted moments match those of the original data. The sum
of the weights of the generated data in a region should equal the number of original
data points in that region.

The goal is that likelihood-based methods applied to the squashed data and original data
should give the same inferences, regardless of the choice of statistical model.

Suppose that the original data set has columns (variables)
Al AC XY L X9

The As are categorical variables, while the X's are continuous. Assume that the N original
data points are the results of N independent draws from the unknown density

fla,... ac,z1,...,20;0).

Our goal is to find squashed data y; = (Bi,. .., Bic, Yi,- .. , Yig) and weights w; such
that the likelihoods of the real and squashed data sets are equal for any f(-) and €. That
is, we want

M
Hf(lea ,BiCaKIa"' ,KQ,O)’MM,
=1
N
= Hf(Ajl,... ,Ajc,le,... ,XJQ,O) (1)

Jj=1

We now regionalize the data using the categorical variables, so that we have one region
for every observed combination of categorical data. Optionally, DuMouchel et al. (1999)
suggest that the regions are divided further in the continuous variables. They describe two
different techniques for subgrouping the data, hyper-rectangles and data spheres. Data
spheres are also described in Johnson and Dasu (1998).

Let R be the number of regions and N, be the number of original data points within
region r so that Zle N, = N. For region r we create a squashed data set with M, < N,
points.
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We enforce (1) separately in each region. Because of the way we have created the regions,
the categorical variables of the original data are constant within them,

Ajc:Aj’c:Am VCE{].,... ,C}

for any pair of points j, ' in the same region r. We set the categorical variables of the
squashed data equal to the categorical variables of the original data,

Bic:Ac, \V/CE{L ,C},

where ¢ are the indices of the squashed data points in region r.

Taking logarithms, we now have
M,
Zwi 1n{f(A'r17 s aArCa Yril; s 7Y;Q; 0)}

N,
= W{f(Am, ..., A, Xj1, ..., Xjq;0)}. (2)
=1

We now replace In{f(-;0)} by its Taylor expansion on both sides of the equation. (See
Appendix A for a brief review of Taylor expansions.) Since the Taylor coefficients depend
only on f, 8, and (A;,...,Ac), which are the same for the original and squashed data,
and since we expand around the same point x, the Taylor coefficients will be the same on
both sides of the equation. Hence, we may write

Q
szzgkﬂ T S I8 | LI
i=1 k=1 g¢= j=1 k=1 g¢=1
for each region r. In the approximation above, (pg1,-.. ,pkq), k = 1,... , K are Q-vectors

of non-negative integers corresponding to the needed powers in Taylor’s formula. We
change the order of summation to obtain

ngzwln ig — Lq pqungZH g — Tg)"M. (3)

=1 k=1 j=1q=1

If this is to hold for any smooth f, and hence for arbitrary Taylor coefficients g, the sums
above must be approximated term by term:

szH Zq—xqpquZH ja— TP k=1,... K, (4)

j=1g¢=1

for each region 7.

Since each k is associated with a moment about x, the above approximations may be
interpreted as follows: Fix a moment k£ and a region r. Calculate the weighted sum of
this moment for the squashed data in r and the (unweighted) sum of the same moment
for the original data in . These two sums should match, for every moment k and region
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r. DuMouchel et al. (1999) emphasize this idea of moment matching and discuss the
equivalent equation of likelihoods only as motivation.

The above moment matching criteria are what we use to determine the squashed data
points {Y;} and their weights {w;}. In addition, to obtain interpretable results, we require
positive weights and ‘non-extrapolating’ squashed data:

min X;, <Y, <maxX,;, je{l,....N},ie{l,...,.M,} Vg, Vr
j j

The {(y;, w;)} that achieve the closest approximations (4) may be determined by the use
of a least squares criterion. That is, calculate, once and for all, the moments

N, @Q
2k = Z H(qu — Tq)P

j=1¢=1

of the original data. Then, DuMouchel et al. (1999) suggest, determine the squashed data
and weights by minimizing the objective function

K ; Q 2
S(Y,w) =) w < > wi [[ (Vi — )) , (6)

i=1  g¢=1

where {ux} are optimization weights. The optimization weights determine the moments
that are matched with the highest precision. They might for instance give equal weight to
every moment, or require lower-order moments to be matched more closely than higher-
order moments, as is done in DuMouchel et al. (1999).

Unless where stated explicitly, we shall in the following assume that the original data con-
sist of only continuous variables. We do this without loss of generality, since the method
is performed independently in each region. In each region, the categorical variables are
constant. They may therefore be regarded as part of a density function of the continuous
variables alone.

2.2 The Number of Equations and Order of the Expansion

Let K be the number of equations needed to find a set of squashed points. Assume
that the original data have dimension @) so that the full data set is X; = (Xj1,..., Xjq),
7 =1,..., N. For simplicity we assume that there is only one region. In order to determine
M squashed points Y; = (Yi4,...,Yig), ¢ = 1,..., M with weights wy,...,wy we need
K > M(Q + 1) equations.

Consider the Taylor expansion that leads to (4). The rth order expansion gives (?*7 1)
equations. So, in order to obtain K or more equations, the Taylor expansion must be
taken up to and including order v, where

V:min{m:zm:(Q+T_l> > M(Q+ 1)}

r
r=0
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As only M(Q +1) equations are required to solve for our squashed points, we often do not
need all terms (combination of derivatives) of order v. A relevant question is therefore
which equations from the vth level that should be included in our set of equations.

(Since we will in practice be performing an optimization, and not solving a system of
equations, we may use all vth level equations. But this may lead to unnecessarily heavy
computation, since the number of Taylor coefficients increases sharply from one order to
the next.)

As an illustration, assume that () = 4 and that we want to generate M = 5 squashed
data points. Then at least K = 25 equations are needed. Taylor expansion up to order
2 generates 15 equations. Taylor expansion of order 3 generates 20 additional equations.
We need at least 10 of these, but which of them are we to choose? (DuMouchel et al.
(1999) seem to give preference to the marginal moments.) It is not clear how our selection
will influence the resulting squashed points.

How many squashed data points should we create in each region? The algorithm itself
gives no clear answer. DuMouchel et al. (1999) use the somewhat arbitrary formula

M, = max(1,alog, N,),

with o > 0.

2.3 Some Simple Examples

The different complexities of the examples below are the result of varying three parameters
of the massive data and the squashing procedure. The first is (), the dimension of the
original data. The second is the number of regions into which we subdivide the data.
And the third is the number of Taylor terms we employ. The complexity of the system
increases with all of these.

Ezxample 1 In the simplest cases, we deal with continuous, scalar data Xi,..., Xy,
that is @ = 1.

()

Consider first using only one region (i.e. no regionalization), and matching Taylor terms
up to and including order 1. This yields K = 2 equations. Hence, we can only generate
one pseudo point {Y,w}. The equations (4) become :

w = ibz\r, (k = 1);
w —2) = Y (-a), (k=2

The Norwegian Computing Center, Gaustadalléen 23, P.O. Box 114 Blindern, N-0314 Oslo, Norway.
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with solution

1 N
Y:N;Xj, w = N.

(b)

To generate more than one pseudo point we can either group the original data in regions
or include more terms in the Taylor expansion. Assume now that we want to generate
two pseudo points, Y; and Y; with weights w; and ws. With no assumptions on the
distribution of Xi, ..., Xy, it is natural to let the two regions R; and Ry consist of positive
and negative values of the data points. That is Ry = {X; < 0} and R, = {X; > 0}. Our
equations are now

N
N, =Y I(X; €R,),

j=1
wr(Y;_x) = Z(X]'_w)v (k:2)7
X;€R,
for r = 1,2. Hence, we find
1 N N
Yi = ————— X;1(X; <0), wy = I(X; <0) (7)
1 zmmmg T 1 Z ’
1 N N
Yo = ——~—— X;1(X; > 0), We = I(X; > 0) (8)
’ ZI(X]'>0)]Z:; T ’ ; !

(c)

The alternative way to generate two pseudo points is to match moments up to and in-

cluding the third order, that is, use K = 4.

In this case the equations become

Wy, + Wy = N
sz-(Yi—w) = Z(Xj—w)
Zwi(ﬁ—w)2 = Z(Xj—wV
Zwi(Y; z)® = Z(Xj—x)3.

Observe that even in this very simple case a general solution to this set of equations is not
available. To get an idea of what a solution would look like, assume that the empirical
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mean and skewness of Xi,..., Xy equal zero and that we Taylor expand around the
empirical mean (or zero). In this case we have

w+wy, = N
wi1Y1 +waYs = 0
w Y2 +weY? = N&*>0
wYP + woYy = 0,
with > = 3 X7/N. A solution is given by w; = N/2 and Y1 = =Y, = 7. A simple
numerical example shows how the results differ from the pseudo points defined by (7)-
(8). Let N =4, X; = —X; =3 and X, = —X3 = 1. Hence X =0, 52 =5 and EX;’:O
From (7)—(8) we find w; = wy = 2,Y; = —Y3 = 2, while the latter procedure yields
wy = wy = 2,Y; = =Y, = /5 so the pseudo points are more spread.

Ezxample 2 Assume that we have a data set in () = 2 continuous variables, and that
we use one region only. We want to match the moments of squashed and original data up
to and including order 1.

How many squashed data points may we create? (Note that the number of original data
points does not really matter, except to impose an upper limit.) If we want M squashed
data points, there are M (Q + 1) unknowns. Taylor expansion up to order 1 implies K = 3
so we can have at most M = 1 squashed data point.

(In general the number of wanted squashed points will determine a minimum number of
moments required. For an increase in the number of moments matched, one may generally

choose between adding more squashed points or ‘improving’ the existing squashed points.)

The equations (4) become

w1 —z1) = Z(le — 1), (k= 2);
w(Yy —z3) = Z(X,-2 — ), (k=23).

In larger and possibly over-determined cases, recall that we will use some kind of least
squares technique to solve the system. Then the fact that the right hand sides of the
equations are constants and may be calculated once and for all, is helpful. In the simple
case above, however, we easily solve to find

w = N;
LN
i = NZXJ'U
j=1
LN
Y, = N;Xﬂ.
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Ezxample 3 In the final example we set the number of continuous variables to two,
@ = 2. We still work with only one region. To get more than one squashed point, we
need to increase the order of the Taylor expansion to two so all moments of order < 2
will be matched. This will give us K = 6 equations. In order for the system not to be
under-determined, we need K > M(1+ Q), so M < g = 2. So we can have at most
M = 2 squashed points.

(Observe that we could have chosen to create only one squashed point. The equation
system would have been over-determined. But since we use a minimum-distance solution

concept, a solution could have been found.)

The 6 equations in 6 unknowns become

ng(Yu z1) = g(Xﬂ —z), (k= 2);
éwz(ym —a) = ji_v;(Xp —x3),  (k=3);

gwi(Yﬂ —z1) (Yo —22) = é(le —29)(Xjp —22),  (k=4);
gwi(yﬂ —z)’ = é(le @)%, (k=5);

Zwi(Yiz —1)’ = ) (Xp-w),  (k=6).

A more elegant notation is to write only the exponent vectors p; in the Taylor expansion
for which these equations arise;

po= (0 0)F,
b2 = (1 O)T’
ps = (0 T,
pa = (1 1T,
ps = (2 0)7,
De 0 2)".

Note that these are, as they should be, all 6 possible non-negative integer vectors of ¢) = 2
elements summing to a number < 2.

2.4 On Applying DS to Regression Data

Suppose for simplicity that there are no categorical variables, so X = (Xi,...,Xqp).
Suppose also that the first variable X; is to be regressed on the others, Xs,... , Xp. In
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this context the parameters of interest 8 are the regression coefficients.

Many important problems involving huge data sets are regression problems, yet it is not
obvious that the DS technique as described is immediately applicable. In a regression
context, we wish to maximize the likelihood corresponding to the conditional density

N
Hg(XllXQa cee 7XQa0)>
j=1

and not the joint density

N
Hf(Xl,... , X0|0)

j=1
which has been used to until now.
But
N N N
H f(le, ‘e aXJQ|0) = Hg(X]1|X]2, e anQa 0) H h(ng, e anQ)a
j=1 j=1 j=1

since X», ..., Xg does not depend on 6. Hence, taking logarithms,

N N N

> In(f(Xj,..., X0l0)) =D In(g(Xn|Xjo, .-, Xjg,0)) + >_In(h(X, ..., Xjq)).

=1 j=1 =1
So our squashed data {(Y;, w;)} satisfy

N N
Zwi ln(g(}/tﬂlY;?’ e 7}/‘2Q7 0)) + sz hl(h(}/;'g, e 7}/;Q))
i=1 i=1

N N
~ Zln(g(X]1|XJ2, P ,XjQ, 0)) + Zln(h(ij, . 7X]Q))

j=1 7j=1

For fixed {X;} and {(Y;, w;)}, the second sum on either side of the approximation does
not depend on @. So maximizing the conditional likelihood of the squashed data is ap-
proximately equivalent to maximizing the conditional likelihood of the original data. This
means that estimated regression coefficients of the squashed data will approximate those
that would be obtained from the original data. Hence, data squashing “works” for such
regression data.

2.5 Significance of the Taylor Expansion Center

When only one squashed point is generated per region, it is always the region mean.
Hence, the squashed point is independent of the Taylor expansion center. With more
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points per region, the influence of the center is less clear. In example 1 (c¢), where two
points are generated in one region, assuming the mean and third central moment of the
original data to be zero, a simple calculation shows that here too the pseudo points are
independent of the expansion center.

Moreover, if x = (z1, ..., z¢) is the Taylor expansion center, we may substitute Y, =Y~
zqand Xj, = Xj,—z,in (4). If we find Y;; = f(X') for some f(-), then Vi, = f(X—%)+zs.
This illustrates that matching moments about x is equivalent to matching moments about
zero in another region defined by X} = X;, — z, and then inverse-transforming.

2.6 Implementing Data Squashing

DuMouchel et al. (1999) suggest to minimize (6) using the Newton-Raphson method with
second order derivatives.

The cost of computing the squashed data points can be broken down into the cost as-
sociated with the regionalization, computation of moments for the full data set and the
Newton-Raphson iterative procedure to find the squashed points and weights. For the
regionalization and computation of moments, the CPU demand is proportional to NQ
and NMQ respectively.

These steps are minor compared to the computationally much more intensive Newton-
Raphson method. Denoting by K, and M, the number of equations in (4) and the
number of squashed points in region r = 1,..., R, we have that K, = O(M,Q). (We
have assumed here that the requirement K > M(Q + 1) is enforced with equality.) Each
iteration in the Newton-Raphson procedure is dominated by evaluations that involve
O(Zle M.K,) = O(Zil M?Q) operations for regions r = 1, ..., R. Hence, the number
of squashed points and the length of each record are the two most important factors for
the CPU time.

By using M, = max(1, alog, N,) as in DuMouchel et al. (1999) the evaluations involve

R

0(a*Q ) (logo(N,))?) = O(a’QR(logy(N/R))?)

r=1

operations. The computational cost increases quadratically in log, N. DuMouchel et al.
(1999) refer to this as “scaling well in N”. The CPU for the optimization step increases
linearly in (). It should be noted that the regionalization allows to use parallel computing,
as the squashed points are found independently for each region.

A software implementation of the DS algorithm is currently under development at the
Norwegian Computing Center.
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3 Some General Remarks

3.1 Moment Generating Functions and Characteristic Functions

The moment generating function of a random scalar X is defined as
Mx(t) = E(e'¥).

The moments (about zero) of X are M(T)(O) = EX’“. For a data set Xi,..., Xy the
estimated moment generating function is M X( ) = >, N eXi/N with rth derlvatlve in
t = 0 equal to the rth empirical moment, i.e. M)(( (0) = Zl L X"/N.

A squashed data set Y7, ..., Yy should of course have a sunllar moment generating func-
tion as the original data X 1,---,Xn, and we should have My( ) =M X( ). One possibility
is to require that ]T/I\i(,r ) (0) = ]TI\ + (0) for r = 1,2,... with increasing precision for increas-
ing r. In fact, equating the estimated derlvatlves of the moment generating function,
amounts to solving the equations 3.1, X7 = (N/M) Z] Y7, r=1,2,..., which are ex-
actly the equations obtained for scalar data from Taylor expansion about zero and using
equal weights w; = N/M, j=1,..., M.

More generally, equating M. )((T)w( ) =My M J(a), 7=1,2,... we obtain the same equations
as with Taylor expansion centered at a point a, assuming equal weights.

Generally, if data Y1, ..., Yy, have weights vy, ..., vy that sum to one, a natural general-
ization of the estlmated moment generating functlon is My( ) = Zj\il vje’i. Equating

the derivatives in ¢t = 0 we get Zi:l X! = ijl Nv;Y]. Again, with w; = Nvj this is
the equations obtained from Taylor expansion/moment matching argument. In conclu-
sion, the moment matching criterion in DuMouchel et al. (1999) is exactly what would
have been obtained if the initial requirement had been equation of the moment generating
functions (through the derivatives). Observe, that the argument also holds for multidi-
mensional data.

Another function that completely describes the distribution is the characteristic function
bx(t) = Ee™™ = Ecos(tX) + iEsin(tX).

For the derivatives we find that ¢$)(t) = E{(iX)"e"*} and hence ¢¢)(0) = /"EX" =
"M )(; ) (0). Equating the estimated derivatives of the characteristic function of the squashed
and original data set is equivalent to equating estimated moment generating functions.

3.2 What DS Really Is

The “core” of the DS technique is the following: There is a density f(z; ) from which the
massive data set x = (z1,s,...,2Zy) is a realization. We approximate the log-density
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In(f(z)) by a finite sum

] =

ln(f(x)) ~ ak(xa 07 f)bk(X7 .73) (9)

k=1

Here we have used a sloppy notation to indicate that ax(-) is dependent on the form of
the density function f(-) whereas bg(-) is not. The form of the sum is essential. We must
be able to split each term in two factors. The “coefficient” term ar must not depend on x.
The “expansion” term by, must not depend on @ or f(-). Both may in general depend on
the original data set x, although in the original version of data squashing, only b; does.

We now require the log-likelihood of the original data set to approximate the log-likelihood
of the weighted squashed data set as in (2), giving

M K K
Zwizak(xaoaf)bk(xa yz) - Zak(xaevf)bk(xv mj)'
=1 k=1 j

Now comes the crucial part of the technique, and the reason for the requirements on the
terms: We change the order of summation. We obtain

K M K N
Z ak(X7 07 f) Z wibk(x7 yz) - Z ak(X, 0; f) Z bk(X7 .Z'j).
k=1 i=1 k=1 j=1
We require this to be valid for any unknown € and f(-), hence the equality must be valid
term by term. Then for each k, ax(-) cancels, leaving

M N
Zwibk(x,yi) = Zbk(x, mj), k= 1, e ,K.
=1 j=1

This is the system we use to determine w; and y;.

So in principle any log-density decomposition of the form (9) may be used. Taylor and
Fourier series are two examples of decompositions of this kind.

3.3 When is DS Useful ?

DuMouchel et al. (1999) state that DS is preferable if there is no acceptable traditional
solution from one or two passes over the data. In a sense this is correct, but it is not
the only consideration. For the data squashing to be worthwhile, the total computational
expense of squashing and analysis must be smaller than direct inference based on the
original data set. Also, since SRS is a faster way of reducing a data set, the squashed
dataset should be superior to SRS (or versions of stratified sampling). Moreover, the
statistical method that we intend to apply to the squashed set must be able to handle
weights.

A question that has not been adequately addressed is the practical use and importance
of DS. When is SRS or other sampling techniques insufficient and when can the cost of
data squashing be defended?
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A non-manageable massive data set typically consist of more than a million records. For
many types of statistical analysis, a data set of about 10.000 or even 100.000 records is
manageable. Unless the data shows a very large inter-record variability, it seems that
such a SRS sample will be sufficient to do inference on means, trends or variances of the
data. For many applications, for instance regression, data may be aggregated and the
analysis performed on the aggregated data without loss of information.

In the contexts of tail probabilities and threshold considerations, SRS is known to be
inadequate and data squashing could be a good idea. While an SRS of 10.000 records
would typically represent an original set of one million records very well, this is not the
case for very small samples. If the computation is heavy, a small sample is nevertheless
desired. In this case, the ability of DS to squeeze more information into the sample could
be of importance.

3.4 Comparing Different DS Techniques

Working with extending and improving the DS technique of DuMouchel et al. (1999), we
must consider how different DS techniques could be compared. It is difficult to imagine
that the “goodness” of differently generated squashed data set can be compared without
using them for a specific purpose. This means that any result will depend on the applied
method. DuMouchel et al. (1999) imply that squashing typically reduces the variability
in the data, and that this aspect is important for many methods.

Moreover, the results obtained from the squashed sets need to be compared to some
“truth”. With simulated data this could be the model (parameters) used to fit the data.
Besides, with simulated data we could estimate under the true model using the squashed
data set, and this way eliminate the “model-dependent” part of the comparison. Also,
the approach used in DuMouchel et al. (1999) seems reasonable. Here, the results ob-
tained from fitting the full data set to the chosen model is used as the “truth” in the
comparisons. In the logistic regression example in DuMouchel et al. (1999), residuals
are defined as “(estimated coeflicients from squashed data - true coefficients)/std”. MSE,
the average squared value of these residuals, is compared to the reduction factor N/M. A
squashing technique is deemed do work well if MSE <« N/M.

We should always keep in mind that the data squashing techniques should be compared to
clever sampling strategies. In DuMouchel et al. (1999) DS is only compared to SRS. Since
regionalization is a part of the DS routine, comparing it to stratified sampling techniques
seems more natural.
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4 Ideas for Research

4.1 Dependencies in the Data

In DuMouchel et al. (1999) the records of the massive data set are assumed to be i.i.d.
and the density must be “smooth”, but otherwise no distributional or independence as-
sumptions are made within each record. However, data squashing is also of interest for
data sets that exhibit dependencies, either horizontally within the records or vertically
between the records.

4.1.1 Time Series

An interesting case of horizontal dependencies occurs when the records of the data set are
time series. Data squashing for time series is considered in Dimakos (2000b) and here we
review some of the results presented in that paper.

A typical source of massive data sets is consumer data such as monetary transactions,
purchases or telephone calls. Typically, each record in the massive data set represents
a customer whose behavior is registered over a certain time period. For time series,
autocorrelations or autocovariances are of particular importance. In DS, squashed data
points are found by matching empirical moments, including a certain set of autocovariance
estimates as the following argument shows.

Assume that the massive data set of interest consists of i.i.d. time series X; = (X1, ..., Xjq),
j=1,...,N. Without loss of generality we will assume that the times series have zero
mean, so that E(X;,) = 0 Vj,Vq. For a stationary time series X; = (Xj1,..., Xjq) with
zero mean the autocovariance at lag £ may be estimated by either

Q—k

XiqXj@qrn/Q, j=1,...,N
q=1

or by the covariance across the records of a pair of columns that are lag k apart, i.e. by

N
qX):ZquXj(quk)/N’ ¢=1....,Q —k (10)
j=1

Both estimates above are partial in the sense that they do not make use of all the available
information as does the best estimate of the autocovariance which is

Qk: N

N Q—k
=) Xiaen/(QN) = Y Fu(X) /N = 3 54(X) /Q. (11)

j=1 ¢g=1 7j=1

Matching all the (@ + 1)(1 4+ @/2) moments corresponding to Taylor expansion of order
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2, we must minimize

(@+1)(1+Q/2) N Q M Q

S(Y,W) = ; Uk(ZHXf;q szl_Ilkaq

j=1g=1 1 g=

Fa)
5
A

o iM
Mz

=
Q M Q

H ka:q Z w; H Y; kq
=1 ¢g=1 i=1 q=1

N

U;cq(z quXj(q+k sz Y(q+k . (12)
j=1

The relabeled optimization weights u;, depend on the ordering of the exponent vectors
PO+2; - - -» P@+1)(1+@/2)- In (12) the second order terms are reordered according to the
lags k = 0,...,Q — 1. Also, it is clear that we are matching the partial autocovariance
estimate d7(X) in (10) with the corresponding weighted autocovariance estimate in the
squashed data set. From (12) we see that these autocovariance estimates are included for
alllags k =0,..., — 1 and all columns ¢ =1,...,Q — k.

_+_

IS
M7T 5

q=1

The function S(Y,w) has a global minimum of zero at the solution of the original set of
equations (4), pr0v1ded that such a solution ex1sts Hence, if a global minimum exists,
it also holds that Z ZJ 1 X5aXj(g+h) = Z Z — WYY for k=0,...,Q — 1.
This implies that the best estlmate of the autocovarlance k(X) is matched with the
corresponding weighted estimate in the squashed data set if there is a global minimum.
Otherwise, there is a possibility that the autocovariances are only approximately matched.

In DuMouchel et al. (1999), the same optimization weights are used for all second order
terms except for the variance (lag zero) terms, which are given a larger weight. From
(12) it is clear that for time series the optimization weights should be equal for all terms
representing the same lag, and also that it is possible to emphasize or scale down the
importance of certain lags by adjusting the corresponding weights.

Another issue when considering data squashing for time series is the increase in the hori-
zontal dimension that is typically associated with time series. Time series of length 50 or
100 are not particularly long, but still considerably longer than the records considered in
DuMouchel et al. (1999). With a large @ it is not possible to use hyper-rectangles in the
regionalization. Instead we need to use data spheres or another regionalization technique
that does not suffer the same curse of dimensionality. DuMouchel et al. (1999) suggest
to collapse several regions into larger regions. Another possibility is to generate regions
using a data set consisting of moments or other characteristics of each record, rather than
using the data directly. Specifically, for each record X; = (Xj1,...,Xjq), 7 =1,...,N

we may find a set of moments, percentiles etc. m; = (m},m3,...,m}), j=1,..., N with
P < @. The data set my,..., my is then grouped using for instance hyper-rectangles.
The regionalization for X,..., Xy is defined by assigning X; to the same region as m.;.

Also the minimization to find the squashed points will suffer from an increase in the
horizontal dimension. First of all, the CPU time for each iteration increases linearly in
(. Secondly, optimization is very difficult in high dimensions and at best requires many
iterations. This implies that if data squashing is to be feasible for reasonably sized time
series, effort is needed to improve the computations.
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4.1.2 Vertical Dependencies

A simple kind of vertical dependence is Markov dependence, where record X; only depends
on the previous record X;_;. For instance, data sets with this structure arise when doing
MCMC. In this case we are able to write down the log-likelihood which is

N
ly(x1,...,xn;0) = Z log f(x;|x;_1,8).

j=1
It follows that the coefficients in (4) are of the form g,; = ¢(0,a,j). Hence we cannot
change the order of summation as was done in (3) and equate term by term without
calculating these coefficients.
For other dependency structures we may not be able to write down the full likelihood.
Even if we are not able to show that moment matching arises from equating Taylor ex-

pansions of the log-likelihoods, we may still calculate moments and do moment matching.
However, the interpretation and properties of such a squashing are still unexplored.

4.2 Alternative Expansions

One idea for a research project is to look for alternative decompositions (9). The ideal
decomposition would satisfy the following requirements. (Some of these are necessary.)

e The decomposition converges toward the real log-density.

e The convergence is such that we may cut the sum at any point we want; i.e. the
first terms in the sum should be the most important.

e No matter how many terms we include, the sum is always a valid log-density. (L.e.,
the corresponding density is positive and integrates to 1.)

e The factors by(-) are interpretable (e.g. moments).

e There is no need for regionalization.

e It is “democratic” in the sense that the added accuracy obtained from using more
terms in the sum is spread evenly over the area of interest and not concentrated

around one point.

e And more?

Quite possibly, there is no such perfect decomposition. But it is also possible that there
is at least one that is more apt to our use than Taylor expansion.
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4.2.1 Fourier Series Expansion

Let f(z) be a real function with period 27 so that f(z) = f(z + 27), with z € R. The
Fourier series expansion of f(x) is

f(z) = 5 * ;(An cos(nz) + B, sin(nz)),
where

A, = %/W f(z)cos(nz)dr n=0,1,2,...
and

1 ™
B, = —/ f(z)sin(nz)de n=1,2,....
™ —T

More generally if f is defined on [—a, a] the expansion is as above but with nz substituted
by nmx/a and the integral in the Fourier coefficients is taken over [—a, a] and divided by
a rather than 7.

Using that €®® = cosf + isin6, the Fourier expansion may also be written in the more
general complex form

f(z) = Z Cpe™.

If, as in our case, the function f(x) is real, the pairs of coefficients (C,,C_,) are complex
conjugates for all n. And the coefficients in the real and complex forms of the Fourier
expansion are related by

C,=(A,—1B,)/2 and C_, = (A, +1iB,)/2.

Now consider using the Fourier expansion in place of the Taylor expansion in (18). Assume
that the log-likelihood fulfills the Fourier requirements. For notational simplicity, we
suppress the indexing on regions. We then find

M [e%) N oo
E W E C,emYr = E E C,em%i.
k=1 -

7=1 —©

Changing the order of summation we obtain

[eS) M [e'S) N
§ :Cn 2 :wkeank — § :Cn 2 :eanj
—o0 k=1 —o0 j=1

which should be compared to (3). Equating term by term, the squashed points are
obtained from

M N
ZwkemYk _ Zeian, In| =0,1,2,.... (13)
k=1 j=1
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Equating the real and imaginary terms separately, we obtain the equivalent system

N
Zwk cos(nYy) = Zcos(an), n=20,1,2,... , (14)

Zwk sin(nYz) = Zsin(an), n=12.... (15)

As an illustration consider generating one squashed point Y (example 1 a). The equations
to solve are then

N
we™ = E e i In|=0,1,2,....
=1
or
w cos(nY) E cos(nX;) n=0,1,2... |
wsin(nY’) E sin(nX;) n=12....

Inserting n = 0 we find w = N as expected. Setting n = 1 yields

.cos(X; sin(X;
cos(Y) = M and sin(Y) = w,

N

With X; = —X; =3 and Xy = —X3 =1 as in example 1 (c) and n = 1 we find Y = 1.80
and Y = 0 from the two equations respectively.

As stated above the characteristic function of a random variable X is ¢x(t) = E(e?X). A
natural estimate of this function is ¢x(t) = >, €"*i/N. Hence, with wj, = N/M we see

that (13) may be written as $y( )= n x(n). To summarize, we have showed that term by
term equation based on Taylor expansion is equivalent to matchlng estimated derivatives
MI(0) = M (0) of the moment generating function in ¢ = 0, while (if w, = N/M)
using Fourier expansion is equivalent to matching the estimated characteristic function
for [t| =0,1,....

4.2.2 The Discrete Wavelet Transform

Wavelets are an alternative to using Taylor expansion of the log-likelihood. The Wavelet
expansion or representation of a signal f(t) in continuous time is

Z SkPak(t) + ZdJk%/ka

+Zdj 1k -1,k (t +Zd1k¢1k
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Here J is the number of multi-resolution components and & ranges from 1 to the number of
coefficients in the specified component. The coefficients s, d sk, . ..,ds_1 are called the
wavelet transform coefficients. The functions ¢, (t) and 1,(t) are the father and mother
wavelet functions. Except for special cases there is no analytic formula for computing a
wavelet function.

Another part of the wavelet tool-box that might prove useful for data squashing is wavelet
shrinkage. Assume that a signal (or function) f(t) is observed at discrete locations
x1,-..,xy and denote the corresponding signal values by fi,..., fy. The discrete wavelet
transform (DWT) maps the discrete signals to a vector of wavelet coefficients wy, ..., wy.
By using a wavelet shrinkage procedure, it is possible to determine the coefficients that
represent the main features of the signal. This may be regarded as de-noising or data
compression. Assume that the wavelet shrinkage determines K < N coefficients that
represent the main features. By the inverse discrete wavelet transform (IDWT) the cor-
responding signal, J?l, e ,fK can be reconstructed. Under certain assumptions on f it is
also possible to find locations y,...,yx so that f; = f(y;), 7 = 1,..., K. Hence, with
scalar data Xi,..., Xy and with a fixed distribution f, this approach can be used to
generate squashed points. However, we have not yet fully considered the computational
aspects of this approach. The DWT is faster than the fast Fourier transform (FFT) and
should be applicable also to massive data sets. The shrinkage procedure seems more prob-
lematic for a massive dataset. Wavelet shrinkage is available in S-Plus WAVELETS and
possibly also from free software. We have not seen examples of applications to massive
data sets.

In contrast to the other DS techniques we consider, the wavelet approach automatically
determines not only the location of the squashed points, but also the number of points.
Of course the wavelet shrinkage method requires some input (a threshold value that
determines the smoothness of the wavelet approximation and an estimate of the scale of
the noise), but is nevertheless more data driven.

4.3 Regression and Density Estimation for Function Approxima-
tion

4.3.1 Polynomial Regression

Assume that our original data set consists of scalars Xi,...,Xy. If the data follows a
distribution f(z) the log-likelihood can be written L(X) = }_.log(f(X;)) = >_; 9(X;)-
Suppose that g is unknown, but that we have measurements 7; = ¢g(X;), j =1,...,N
and that we want to use these to estimate g (or the full log-likelihood).

With polynomial regression, we would minimize

SN2 =3 bpel X)) (16)

j=1 k=1

with respect to the coefficients by, ...,bx for polynomials (or functions) pg. Using the
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resulting approximation, the estimated log-likelihood is

- Zg(Xj) =) bi(x,2)pu(X;).

=1 k=1

Applying the above approximation to squashing yields the following equations:

Zszbkxzpk Zzbkxzpk )

i=1 k=1 j=1 k=1

Changing the order of summation and requiring term by term equality, the coefficients
cancel (and hence, need not be found) and the equations to solve in order to obtain the
squashed points Y7, ..., Y, are

Z wzpk Zpk

With polynomials py(x) = z* this is exactly the equations obtained from Taylor expansion
of L(X) about zero in one dimension, see (4). An an example, approximating the density
by a linear regression (K = 1) is equivalent to a Taylor expansion of order 1. Observe
also the similarity with the argument of Section 3.2.

4.3.2 Density Estimation Methods

We now consider applying ideas from density estimation to data squashing. Assume
that we want to approximate a density g(x). The standard way of doing this is kernel
smoothing. The estimated density is

for a kernel function K (-) and a smoothing parameter h.

A technique that combines ideas from density estimation and regression, is local polyno-
mial regression. Rather than the minimizing (16), we minimize

Z; Zbk "2 K (z — X;) (17)

for a kernel K} and smoothing parameter h. With h = 0 we get interpolation while h = oo
(Fan and Gijbels, 1996) amounts to linear regression.

Unfortunately, there are fundamental problems that prevent applying these ideas to data
squashing in practice. First of all, kernel methods are used to estimate the density itself,
and not the log-density. Most kernels are developed for positive functions only, whereas
log-densities generally take on negative values as well. In data squashing it is the log-
density that is expanded. Secondly, in contrast to the previously considered “expansion-
like” techniques, the estimation above provide no ordering of the terms and the “outer
sum” is over all terms in the original dataset. With Taylor (and Fourier) the number
of terms determines the degree of approximation, and we simply include the number of
terms needed to solve for wy,...,wy, Y1, ..., Y.
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4.4 Moment Matching vs. Histogram Matching

An alternative approach to data squashing by moment matching is histogram matching.
Consider for simplicity a massive data set of scalars Xi,..., Xy and assume that we are
able to produce a frequency histogram based on the data set by dividing the data in
regions or bins. A reasonable requirement for a squashed data set is that its histogram
should resemble that of the original data. The straightforward way of doing this is to
have one squashed point per bin in the histogram. The squashed point is taken as the
bin center and the corresponding weight is the bin frequency (bar height).

However, with the squashed points taken as the empirical mean of the original data in
the bin, we obtain the same data set as by doing moment matching with one squashed
point per region and the regions equal to the histogram bins. For multidimensional data
Xy, ...,Xy the argument is similar. With moment matching the squashed point in region
r is equal to the element-wise mean Y, = (3 ., Xj1,.--, D jc, Xj@)/N;. This is also a
reasonable measure for the center in each histogram “bar”.

With histogram matching, the number of squashed points is increased by dividing the
data into more regions, but still with one squashed point per region. However, Taylor
expansion is a tool for determining more than one point in each region.

4.5 Unidentically Distributed Data

Data squashing as proposed in DuMouchel et al. (1999) does not apply to data sets in
which the records are not identically distributed. When the records of the data set follow
individual distributions the log-likelihood of the massive data set is

N
lo(x1,...,xN;0) = Zlogfj(xi;ej),
=1

where f; denotes the distribution of record j. Taylor expanding we get

K Q
(

N
lw(Xl, <o XN, 0) I~ Z Zgjk H qu _ aq)qu

j=1 k=1  g¢=1

and it is no longer possible to do the trick of changing the order of summation as g
depends on j through f; and ;. Hence, moment matching can not be derived as a result
of matching log-likelihoods. Technically it is of course still possible to calculate and match
moments, but the matched quantities are not interpretable as means, variances etc.

Nevertheless, massive data sets will often consist of records that are not i.i.d. Currently
there are no available methods that deal with this other than ad hoc solutions such as
splitting the data sets to subsets of data that are approximately identically distributed.
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4.6 Moment Matching for Finding SRS Weights

Compared to data squashing, sampling techniques have the property that the reduced
data set is a subset of the original data set. In some applications, this will be desired or
even required.

For instance, if each data record of the massive data set is a time series, selecting a
subset of the original data would secure that each pseudo point itself is a time series.
With data squashing this is not the case. However, depending on the size of the sample
and the characteristics of the massive data set, a simple random sample might be less
representative than a squashed data set in the sense that features like moments and
percentiles may be quite different from the same features in the full data set.

An appealing approach is to combine the ideas of sub-sampling and moment matching
to determine weights for a SRS. First the points of the reduced data set Yq,...,Y s are
determined using SRS from the full data set. Then the weights wy, ..., wys are found by
minimizing (6) with respect to the weights, keeping the points fixed.

Owen (1999) suggests a slightly different approach and determine the weights by mini-
mizing [ [, w; and requiring (4) and that the weights should be positive and sum to M.
The approach is a special case of what is called empirical likelihood squashing.

4.7 Transformation Prior to Squashing

Transforming the original data before doing data squashing can secure that all data points
are within a certain bounded region, or that all moments of a certain order exists (see
Section 4.9). For each data point X;, one may find X, = hy(X,), for some transformation
function h,(-) that could be specific to each column g or equal for all of them. In principle,
the transformation could be any function, or & could in some sense be based on the data.

It is of interest to try several such transformations on original data, and compare the
squashed points (transformed back) with squashed points obtained without the transfor-
mation procedure. It is also not clear how transformation would affect the weights.

4.8 Links to Experimental Design

There are parallels between data squashing as considered in this note and in DuMouchel
et al. (1999) and the general field of experimental design (Box et al., 1978). In exper-
imental design one typically has K variables or covariates Vi, ..., Vk that influence the
outcome of a certain experiment. These covariates are used as explanatory variables in
the model fitting that follows the actual experiment. If each variable Vj has nj possible
levels K = 1,..., K, the total number of possible covariate patterns is p = [[, nx. With
many covariates or many levels within each covariate, p can be considerable. Typically
it is to expensive to do one experiment or obtain one measure for each of the p covariate

The Norwegian Computing Center, Gaustadalléen 23, P.O. Box 114 Blindern, N-0314 Oslo, Norway.



Report no. 961 Squashing Massive Data Sets 26

settings. In such situations m < p settings are selected so that the range of covariates are
covered in a way that makes it possible to determine the main effects, and with increas-
ing m also second and third order effects. Roughly speaking, the aim is that the chosen
covariate patterns are spread in such a way that they cover the “covariate space”.

The similarity with a data set that requires squashing is clear. The number of data records
exceeds the capacity of the available computing power and statistical methods we want
to apply, so we do not use all the records but find a smaller data set. While the aim
in experimental design is to pick covariate patterns or records so that it is possible to
estimate certain effects, the idea of data squashing is that moments are matched. Also,
in experimental design the chosen covariate patterns often needs to be a subset of the full
range of patterns, while DS produces pseudo points that are not a subset of the original
points.

We think that is would be interesting to consider applying ideas from experimental design
for data reduction and compare it to data squashing.

4.9 Instabilities of Moment Estimation

For many probability densities, some or all theoretical moments do not exist. However,
the density may be infinitely many times differentiable and its Taylor expansion exist.
Of course, empircal moments may still be calculated and matched and interpreted as
quantities that describe the full data set.

Dimakos (2000a) applies data squashing to generalized Pareto distribution. Depending
on the model parameters, this distribution can have finite or infinite moments. The
results indicate that data squashing outperforms stratified random sampling for the less
heavy tailed distributions, but is associated with a larger bias for the more heavy tailed
distributions. However, the experiments show that squashing works even if the underlying
theoretical higher order moments are infinite.

It is possible to correct for infinite moments in the optimization by adjusting the opti-
mization weights. If the weights are very small, the effect of instabilities are probably
minimal. On the other hand, assigning large weights to moments that do not exist might
cause problems. Further work is required to understand these issues.

4.10 The Importance of Regionalization

The categorical variables define regions in a unique way. But the continuous variables may
be used to regionalize the data further. This may influence both the computation speed
and the squashed points and weights. Also, to construct a certain number of squashed
points, one may either use few regions and match moments of a high order, or many
regions and lower order moments.

This is clearly an important aspect of the moment-based DS algorithm, but DuMouchel
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et al. (1999) do not say much about it.

4.11 Bayesian Ideas

Several extensions of DS to Bayesian settings seem interesting. Similarly, one could imag-
ine matching expansion of posterior distributions rather than likelihoods.

Also, it should be possible to explore the effect of putting a prior on the squashed points.
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A Taylor Series Expansion

The nth degree Taylor polynomial of f(x) about z = a is

n k(g
Pn(.’b) _ Zf ()(:Z:—G,)k

= f@+ f@e-a+ @0+

o
/ ()(x—a)“.

n!

The smoother the function f, the lower order n one needs to approximate it well. If f(-) is
infinitely many times differentiable, then (under some conditions) there is a neighborhood
of z around a for which

)T, and writing f; = 2L, the mth-

Introducing x = (z1,... ,79)" and a = (ay,... ,aq o
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degree Taylor polynomial for a function f : R® — R around a is

Pn(x) = f(a)
Q
+ Z fa(@)(zq — aq)

1 Q
+E Z fqr(a)(xq - aq)(x’“ B a’“) LR

’ q7T:1
1 Q
+% Z fargam (@) (Tqy — g, )(Tg, — ag,) - -+ (T4, — aq,,)-

) q1,925--- 7qm:1

The ith sum in this polynomial has @ terms. In total, then, P, (x) has Y ;" Q* terms.
We see that the polynomial is a weighted sum of all possible products the form [[(z,—a,)
of order < m. Hence we may write

K Q
Pu(x) =Y g | [ (&g — ag)™s (18)
k=1 g=1
for suitable constants g; and exponent vectors py, = (pg1,--. ,Prg) - The set of vectors

Pk in the polynomial P, (x) are all possible Q-dimensional vectors of non-negative integer
elements that sum to a number < m. The number of terms in the polynomial,

k=3 (°77),

will be the number of possible such vectors. To each vector pg, there is a corresponding
constant g involving only factorials and evaluations of differentials.

B Likelihood-based Data Squashing

This section summarizes the basic idea of Madigan et al. (2000).

Suppose that a density f(y;0) is specified up to 6 and that we have a massive data
set y1,...,yn of observations from f(-). Let I(f;y;) be the likelihood of & given the
observation y;, and let § be the maximum likelihood estimator of 6 given yy,... ,yn.

The idea behind the paper is as follows: Imagine that two data points y;, y2 have similar
likelihood functions,

l(ea yl) ~ l(e, y?)a

at least in a reasonable neighborhood of 6. Consider finding an artificial “intermediate
point” y* such that

l(ea y*)2 ~ l(ev yl)l(ea y2)

for reasonable . Then the idea is to “squash” y; and y, into y* and assigning double expo-
nential weight to y*. The authors suggest clustering original data with similar likelihoods.
The procedure is as follows.
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1. Find a crude estimate 6 of § based on a single pass through the data. Select k values
of 6,

01,...,0k,
around and including 6, using e.g. a central composite design.
2. Evaluate
10, v:)
foreachz=1,... ,nand j=1,... k.

3. Select n’ < n data points as initial cluster centers. Pass through the remaining
n — n/ points and assign them to the cluster that minimizes

Z{l(ejﬂ yz) - l_c(ej)}27

i=1

where [.(6;) is the mean of [(6;,-) evaluated in all points previously assigned to
cluster c.

4. When all points have been assigned to a cluster, select the squashed data points to
be

1 &
y; = E;yz’j,

the means of each cluster. Choose the weights to be m., the number of original data
points assigned to the corresponding cluster.

5. Optionally, refine y; by an iteration procedure to make the squashed data point
represent the mean likelithood of each cluster instead of the data mean.

Logistic regression is used in the examples: Regression coefficients from analyzing squashed
data sets is compared to results from analyzing SRS data sets, and the true coefficients.

Quality of neural network models trained on squashed data is compared to models trained
on all data and SRS data.

LDS consistently outperformed SRS in quality of output. But the paper contains little
information about the computational properties of LDS compared to SRS.
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