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Abstract

In this paper we introduce two methods for the efficient and accu-
rate numerical solution of Black-Scholes models of American options;
A penalty method and a front-fixing scheme.

In the penalty approach the free and moving boundary is removed
by adding a small, and continuous penalty term to the Black-Scholes
equation. Then the problem can be solved on a fixed domain and thus
removing the difficulties associated with a moving boundary. To gain
insight in the accuracy of the method, we apply it to similar situa-
tions where the approximate solutions can be compared with analyt-
ical solutions. For explicit, semi-implicit and fully-implicit numerical
schemes, we prove that the numerical option values generated by the
penalty method mimics the basic properties of the analytical solution
of the American option problem.

In the front-fixing method we apply a change of variables to trans-
form the American put problem into a nonlinear parabolic differential
equation posed on a fixed domain. We propose both an implicit and
an explicit scheme for solving this latter equation.

Finally, the performance of the schemes are illustrated through a
series of numerical experiments.

1 Introduction

Analytical solutions of Black-Scholes models of American option problems
are seldom available, and hence such derivatives must be priced by numerical
techniques. The problem of solving the American option problem numerically
has during the last decade been subject for intensive research, cf. e.g. [1, 2, 4].



Elementary introductions to this topic can be found in e.g. [10, 13, 14, 15].
In this paper we introduce two schemes for solving the free and moving
boundary value problem arising in such models; A front-fixing scheme and
a penalty method. In both cases we derive problems, in terms of nonlinear
parabolic differential equations, posed on fixed domains. Thus, significantly
simplifying the numerical solution of the American put problem.

The penalty method for solving option problems was introduced by Zvan,
Forsyth and Vetzal in [19]. Our objective is to derive a refinement of their
approach which is easy to generalize to any American type of option. We do
this by adding a term to the partial differential equation assuring that the
solution will stay in the proper state space but also altering the exact solu-
tion as little as possible. For explicit, semi-implicit a fully implicit numerical
schemes, we derive conditions that assures that the approximate option val-
ues satisfies the basic properties of the analytical solution of the problem.
In addition, the performance of the schemes are illustrated through a series
of numerical experiments. In particular, for a simple model problem, the
examples indicate that the approximations generated by the penalty method
converge towards the correct solution as the penalty term tend towards zero.

The front-fixing method has been applied successfully to a wide range
of problems arising in physics, cf. [5] and references therein. The basic
idea is to remove the moving boundary by a transformation of the involved
variables. In this paper we show how this technique can be applied to the
American put problem. Furthermore, we present an implicit and an explicit
scheme for solving the resulting nonlinear parabolic equation. It should be
mentioned that a similar approach has been studied by Zhu, Ren and Xu in
[17]. They apply a singularity-separating method to derive an equation for
the difference between the value of an American and an European option.
Thereafter, this latter problem is mapped onto a fixed domain. In [18, 16]
this approach is generalized to more advanced pricing problems for various
derivatives. In contrast to their work we focus on the transformation of
the moving boundary onto a stationary domain. Furthermore, we use the
computational results obtained by the front-fixing method as a reference
solution for studying the convergence properties of our penalty schemes.

In addition to penalty, singularity-separating and front-fixing methods
for solving option problems several schemes have been proposed. Among
these are the Brennan and Schwartz algorithm [3, 9], the projected SOR
scheme [15], the binomial method [8] and Monte Carlo simulation techniques
[7, 13, 14].

The outline of the paper is as follows. The next section contains the
Black-Scholes model for American put problems. In Section 3 we define
the Front-Fixing Method and the associated explicit and implicit numerical



schemes. The Penalty Method is introduced in Section 4 for two simple model
problems. More precisely, in this section we present such methods, along with
their convergence properties and numerical experiments, for an ordinary dif-
ferential equation and a two point boundary value problem. Finally, Section
5 contains the derivation of the penalty method, and the resulting numeri-
cal schemes, for solving American put problems. This section also contains
several numerical experiments illustrating the performance of our algorithms.

2 The mathematical model

Suppose that at time ¢ the price of an asset A is S. The American early
exercise constraint leads to the following mathematical model for the value
P = P(S,t) of an American put option to sell A;

P 1 p P &
%t 5 252252 ng—S rP=0 forS>S(t)and 0<t<T,
,T) = max(F — S,0) for S >0,

1

2

(1)
(2)
(3)
P(S(t),t) = E = S(t), (4)
()
(6)
(7)

6

PS,t)=E—-S for0<S<S(t), 7

where S(t) represents the free (and moving) boundary, see e.g. [7], [10] or
[15]. Here, o, r and E are given parameters representing the volatility of
the underlying asset, the interest rate and the exercise price of the option,
respectively. Note that, since early exercise is permitted, the value P of the
option must satisfy

P(S,t) > max(E — S,0) forall S>0and 0<t<T, (8)

cf. [15]. Mathematical models of this kind, involving a moving boundary,
are frequently referred to as moving boundary problems, cf. [5] and Figure
1.

3 A front-fixing method

The basic idea behind the front-fixing method is to remove the moving bound-
ary in the American option problem by a change of variables. It turns out
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Figure 1: The figure shows a typical solution of the American put problem
(1)-(7) at time ¢t < T. Here, E represents the exercise price and S(t) is the
moving boundary.

that this approach leads to a nonlinear problem posed on a fixed domain. In
this latter formulation of the problem the position of the boundary is given
but some of the boundary conditions remain unknown and must consequently
be computed.

We want to solve the problem (1)-(7) using a front-fixing method, i.e. by
a transformation of the involved variables. To this end, define

r=25/S(t) or S=2zS5(t), 9)
and

p(z,t) = P(S,t) = P(zS(t),1). (10)

Notice that we have x € [1,00) for S € [S(t),00). Our goal is to derive, from
(1)-(6), a set of equations for p(z,t) for z > 1 and 0 < ¢ < T. That is, to
obtain a problem posed on a fixed domain.

The final condition (2) for p takes the form

p(z,T) = P(S,T) = P(zS(T),T) = max(E — xS(T),0)
=max(F —zF,0) = Emax(1 —z,0) =0 forz >1, (11)

where we have used (6). Next, we derive the boundary conditions. Differen-
tiating (10) with respect to = gives

g 9PIS . 0P

5z~ a50: " Dag (12)
and thus (3) implies that
P (1,1) = S 9= (S(1),1) = ~S(0). (13)
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From (4), (5) and (9) we find that

p(1,t) = P(S(t),t) = E — S(t), (14)
and
xli_)rgop(:c,t) = :}i)r{)lo P(zS(t),t) = 0. (15)

A partial differential equation for p(z,t) is derived from (1) which governs
P(S,t). In order to do this, we need to express 9P/0t, dP/0S and §*>P/dS?
in terms of p and its derivatives. From (12), we have

oP 1 Op
b 16
oS  S(t) Oz (16)
Differentiating (12) with respect to = gives
op . PPIS _, P
g2 = Wz, =5 g
or
2P 1 2
o°P 0°p (17)

082 S2(t) 022’
By differentiating (10) with respect to ¢, we get

op_opr_ oPosS_opr ob 50
ot ot oS ot ot Tast

so (16) yields

oP 0Op S'(t)0p
or_o_,2Mop 1
ot ot " 3(t) oz (18)

Hence, it follows from (1),(9),(16),(17) and (18) that p(z,t) must satisfy

op  S't)op 1, ,0p  Ip 3
ot S ox 27 T aw oy P

To summarize, it follows from (11), (13), (14) and (15) that the two
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unknowns p and S are governed by the following system

Op 1 5,0 S'(t) op

i - —— — —rp= <

at-i-Qa:vaxQ-i-:E T 3(0) ) oz rp=0 forz>1and0<t<T,
(19)

p(z,T)=0 forz>1, (20)

op 5

5, (1:8) = =5(0) ()

p(L,t) = E = S(1), (22)

lim p(z, ) =0, (23)

S(T)=E. (24)

If p and S are computed by solving (19)-(24), then the value P of the Amer-
ican option is given by

P(S,t) = { p(S/S(t),t) for S/S(t) > 1

E-S for 0'< S/S(t) < 1. (25)

3.1 An implicit scheme

In order to solve the system (19)-(24) numerically, we introduce z, which is
a large value of x where we impose the boundary condition' (5). That is, we
put

P(Too,t) = 0. (26)
Next, for given positive integers M and N, we define

Too — 1 T
Ar="2_— At=——

o M+1’ N+1’
zj=1+jAz forj=0,...,M+1,

t,=nAt forn=0,... ,N+1.

Our goal is to define an implicit method suitable for computing

pj ~ p(xj,t,), forj=0,1,..., M+1landn=N,N~-1,...,0,

1Clearly, by applying a suitable change of variables we can transform the problem
onto a finite domain. Thus avoiding the domain truncation parameter z, in the discrete
system. However, the resulting equation will in this case involve one or more unbounded
coefficients.



and the associated front-position
S"~ S(t,) forn=N,N-1,...,0.
Note that the final conditions (20) and (24) give
pYtt =0, j=0,1,...,M+1, (27)
and
SN+ = F. (28)
The boundary conditions (22) and (26) imply that
py=E—S" forn=N,N—1,...,0, (29)
and
Py =0 forn=N,N-1,...,0. (30)

A finite difference approximation of (21) is given by

b1 — Dy :_Sn fOI‘n:N;N_L"' ,0,
Ax

which by (29) gives

P} =E—-(14+Az)S" forn=N,N-1,...,0 (31)

Note that S'(t) < 0, and consequently an upwind scheme can be applied to
discretize the transport term of (19).

An implicit-upwind finite difference scheme for (19) is given by

A RSO R
At 27T Aoy
an-i—l _ S’n p?—i—l _ p? "
(- N —rp? =0 32
zj (r NTD ) A P =0, (32)

for j=1,...,M and n = N,N —1,...,0. Here, p"*' and S™*' are known
and we want to compute p” and S™. From (32) it follows that

Bi 01 +ai D]+ P =bj, (33)



forj=1,..., Mand n=N,N —1,...,0, where
At 2 9 At.Tj §n+1—§n

Q; +(A$)205E7+ Ar (7“ ALGn )+7‘ ,
n —At 2.2

B; ZQ(AI)QUQ:J"
n —At 02$2_ gm T_Sm-l—l_s_fn

T a2 T A At )’

b =p;

Putting 7 = 1 in (33) we get
Ypy = b — B (E = 8") — of[E — (1 4+ Az)S"],

where we have used (29) and (31). Putting j = 2 in (33) leads to

appy + 3w = by — BB — (1+ Ax)S"].
By putting j = M in (33) and incorporating (30) we find that
BuPy1 + ayPis = Uiy
Finally, for j = 3,4,..., M — 1 we have the equations

B pj 1o+ Pj 1 =b;

(40)

(41)

At each time step ¢, = nAt we now have M unknowns given by py, p3, ... ,
P, and S™, and M equations given by (38), (39), (40) and (41). We want
to write this system on a more compact form. That is, a form more suitable

for applying Newton’s method. Define the matrix A = A(S") €
o

(ag " \
Py o3 73

n n n
Byr1 Q1 Vi

\ By ol )/
and the mapping f = f(S") : R — R by

[ b7 — BR(E — S™) — o [E — (1+ Az)S"] ]
be — BU[E — (1 + Az)S"]
f(sm =%

by

RM,M—I by



and thus the system (38)-(41) can be written on the form

F(p", ") = A(S")p" — f(S") =0, (44)
where p" = (p3,p3, ... ,ph). We will solve this nonlinear problem by New-
ton’s method. To this end, let y = (p§, ..., p%;, S™), and define the iteration

ka1 = Yk — J () F (yr), (45)

where J is the Jacobian of F. Having computed pZ,... ,p%, and S™ by (45)
we apply the formulas (29), (30) and (31) to compute pg, p} and p}, ;.

3.2 An upwind explicit scheme

Now we want to define an upwind explicit scheme for the front-fixing method
discussed above. That is, an upwind explicit numerical method for solving
the problem posed in equations (19)-(24). If we apply the same notation as
in section 3.1 the scheme is defined as follows

A R S Rk Ml AN
At 2 (Azx)?
S’n—l—l _ S_'n n+l _ n+l
x;i|r— = Pt 7P5 rp? T =0, (46)
J AtSntl Az J

forj=1,..., Mandn = N,N—1,...,0. Here, p"*! and S"*! are given and
the goal is to compute p™ and S™. The discrete final condition and boundary
conditions are given in (27)-(31).

Some simple algebraic manipulations show that this problem can be writ-
ten on the form

Py = DS = Apitl + Bipttt + Gt (47)

forj=1,..., Mandn=N,N —1,...,0, where

A= %a%? (AA;)T

B; :1—02x?(AATt)2—xj (T—é) %—T’Ata
Ci= %"Zmi (AA;V M (T - A%) 2_1’

D = Z_yg‘ﬁpﬂgn_pj_



Notice that the coefficient D7*! in (47) only depends on parameters com-
puted at time step ¢,41.

In (47) we can use the boundary condition (31) to find a simple expression
for the front-position S”. Put j = 1 in (47) and we get

Pt — DiTS™ = Aypptt + Bipi ™ + Cupy ™,
and hence it follows from (31) that

S (Aipy™ + Bipt™ + Cipyth)
Dt 4+ (1 + Az)

The derivations given above lead to the following algorithm;
1. for j=0,1,...,M +1dopi*' =0.

2. SN = E.

3. forn=N+1,N,...,0dop},, =0.

4. for j=1,2,... ,M do

1,5, At
A= 57 A
At 1\ At
B]:]_—Ojl'?w—m] (T_Kt)A—x_rAt’
1, At 1\ At
Cj—iaa:j(Ax)Q—l—xJ (r Kt) s

5. forn=N,N—-1,...,0do

n+1 n+1
a) DMt = Zihidih
7 Az Sn+1 )

by §n =BG Bt o)
DML (1+Ax)

c) PP =E—S"and pf = E — (1 + Az)S™

d) for j=2,3,... ,M do
p; = Ajp;?jll 4 ij;;+1 + ijn—H + D;H—lls_vn.

Jj+1
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3.3 A numerical experiment

Now we turn our attention to two simple numerical experiments illustrat-
ing the performance of the implicit and explicit front-fixing schemes derived
above. More precisely, we solved our (transformed) model problem (19)-(24)
with the following set of parameters

r = 0.1,
=02,
E=1,
T=1,
Too = 2.

Figure 2 shows the numerical solution, with discretization parameters
At = Az = 0.001, computed by the implicit method described in Section
3.1. The implementation was done within the Diffpack framework [6, 11].
Notice that the approximate option values generated by this algorithm will
be used as a reference solution for testing the performance of the penalty
method derived below, cf. Section 5.

This figure also shows the results computed by the explicit scheme pre-
sented in Section 3.2. In this case the computations were carried out in
Matlab using the discretization parameters At = 5.0-107% and Az = 0.001.

Clearly, the implicit and explicit front-fixing schemes provide almost
identical results. In particular, the schemes computed the following front-
positions at time ¢ = 0,

implicit; S° = 8.615-107%, explicit; S° = 8.62-107".

Notice that, as expected, the time step for the explicit scheme is much smaller
than for the implicit method.

Finally, we tested the influence of the domain truncation parameter x.,
on the computations. By putting z,, = 3 and running the implicit scheme
we got the front-position

S%=8.616-10""

at time ¢ = 0. Moreover, the approximate option values generated on this
domain were almost identical to the results computed for z,, = 2 above.
Hence, we concluded that zo, = 2 seems to be a sufficiently large domain
truncation parameter for this model problem.
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Figure 2: The figure shows the numerical results computed by the front-
fixing method derived in Section 3. The solid and dashed lines are plots of
the approximate solution of (19)-(24) computed by the explicit and implicit
schemes, respectively.

4 Penalty methods

Now we turn our attention to penalty methods for solving free and moving
boundary problems. In order to explain our approach, we start by giving two
very simple problems chosen to illuminate the key properties of the method.

4.1 An ordinary differential equation

We start by considering a simple ordinary differential equation. Suppose we
want to solve the system

u' = —u, (48)
u(0) =2,
with the additional constraint that
u(t) > 1. (49)

The solution of this problem can be computed analytically and is given by

u(t)z{ 2e for t <In2,

1 for ¢ > In2. (50)
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But suppose we want to solve the initial-value problem (48)-(49) numerically.
Then we would have to check, for each time-step, whether the constraint
is satisfied or not. Let u, be a numerical approximation of wu(¢,) where
t, = nAt, and At > 0 is the time step. We compute a numerical solution of
the initial-value problem (48,49) using an explicit finite difference scheme;

Ups1 = max((1 — At)u,, 1) for n > 0, (51)

where uy = 2. This corresponds to a Brennan-Schwartz type of algorithm
for pricing American put options, cf. [3].

What we would like is to simply solve a differential equation which auto-
matically fulfills the extra requirement. An equation which approximates this
property fairly well can be derived by adding an extra term to the equation
given in (48). Consider the initial-value problem

€

— 92
e (52)

where € > 0 is a small parameter. Note that initially, v = 2, so the penalty
term

€
v+e—1

is of order €. The effect of the penalty term increases as v approaches its
asymptotic solution given by

v =1. (53)

We will show that the solution of the problem (52) satisfies

1<w(t) <2, t>0, (54)
V(1) <0, t>0, (55)
v'(t) >0, t>0 (56)
Note that for
1<wv<2, (57)
we have
viv+e—1)>e (58)
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Hence, by (52) we have
_ 1
S wte—1

Since v' < 0 and v' = 0 for v = v, we have proved that (54) and (55) hold.
Next we note that

!

v (e—vv+e—1))<0. (59)

" =~ (1 + ﬁ) , (60)

and thus

V" > 0. (61)

4.2 A finite difference scheme

Next we consider a finite difference scheme for the initial value problem (52).
Let v, be a numerical approximation of v(¢,) and consider the following
scheme

Ate
i1 = (1= At)o, + ————— forn > 1, 62
s = (1= Ao, + = forn > (62)
where vy = 2. We want to show that for sufficiently small At, the numerical
solution satisfies

7<v,<2 n>0, (63)
Upt1 < v, forn >0, (64)
vy 5 7. (65)
We assume that
At < — (66)
1+e
Define
Ate

=(1-Athv+ ———
fw) ={ J v+e—1
and note that

Upn+1 = f(vn)

14



We assume that

1<y, <2 (68)
Then
Un(vn +€—1) > ¢, (69)
and
Ate Ate
1=l — A+ —— " )<y [l—At+ "] =u,. 70
Unt1 = Un| +vn(vn+e—1)]_v[ + e] v (70)
Note that
At
) =1-Af — — ="
F@) (v+e—1)2
S1oar— At
2
At
=1—-At — —
€
S € 1
- 1+e¢ 1+c¢€
:O,

where we have used the assumption (66). Hence, since f is an increasing
function

vir = f(0n) > f@) =1 AL+ 2 g1,
€

and thus (63) and (64) follows by induction on n. Finally we want to prove
(65). Note first that
v 2 1,
and consider
Ate
v, +e—1

= (vn = 1)(1 = At) + Al

Upt1—1 = v, —1—Atv, +

€

S
v, +e—1
< (1 - At)(vn - 1)'
By induction on n we have
0<v, —1<(1—A) (v —1)=(1-A)" 2%,
hence

v, — 1 as n — oo.
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4.2.1 Experiments
Table 1 contains the discrete L, error,
e lao= ma fu(ts) — v,

associated with the scheme (62) for solving (48)-(49). In these experiments
we have computed the discrete solution in the time interval [0, 2] with time
steps

€

14

see (66). Clearly, these results indicate that the approximations generated
by the penalty method converges towards the correct solution as € (and con-
sequently At) tends to zero. Notice that the error (roughly) is of order e.

At

Table 1: Numerical results generated by the penalty method presented in
sections 4.1 and 4.2.

€ At Ile]loo
1071 [ 9.09-1072 | 6.35- 1072
1072 19.90-1073 | 2.17- 102
10731999-10*|3.79-103
107* | 1.00-107* | 5.81-10~*

4.3 A two point boundary value problem

To provide further insight into the penalty method, we consider the station-
ary problem; Find S € IR and u = u(S) such that

u(S)=1-5, 0<S<8§S, (71)
u'(S)=1, S<S<2, (72)
u(S)=1-25, (73)
u'(S) = -1, (74)
u(2) =0. (75)

This is a free boundary problem of the same flavor as the American put
problem, cf. equations (1)-(7). However, it is a stationary problem, and
hence easier to solve by analytical methods. The solution is given by

S=2-+72, (76)
1-5, 0<S5<8S,
Mﬁ:{@@—nw—n+§w—2ﬁ S<S8<2, (77)



and is plotted in Figure 3. Note that the solution has the property that

u(S) > (1—-S5) forall S e (0,2). (78)
02 u(S)
0 - S
S

Figure 3: The solution of (71)-(75).

4.3.1 A penalty method

We want to derive a two-point boundary value problem with a solution that
approximates the solution of (71) — (75) and in addition satisfies the extra
requirement (78). To this end we consider the problem

v"(S)zl—U+€_€(1_S), 0<S<2, (79)
v(0) =1, (80)
v(2) =0, (81)

where again € > 0 is a small parameter. We refer to this problem as the
penalty formulation of the original problem (71) — (75). We discretize this
equation by a finite difference method

€(AS)?

vi_1 — 20 +v41 = (AS)? — ;
j—1 J j+1 ( ) U]+€—(]_—S])

17



where
vj = v(S;) forj=1,... M,
Vo = ]-:
vm+1 =0,
S; = jAS,

2
AS=—2_
S M+1’

and M represents the number of inner mesh points in the domain [0, 2]. In the
experiments below we solve this system of non-linear equations by Newton’s
method.

4.3.2 A front-fixing method

As for the American put problem we can solve (71) — (75) by front-fixing
method. The change of variable

2-S5

x=5j§,LeS:2—ﬂ2—$
leads to problem
W) = 15)2, 0<z<l, (83)
w(0) =0, (84)
w(l)=1- S’, (85)
w'(l)=2-25, (86)

where w(z) = u(S). Notice that (83)-(86) is posed on a fixed domain and
that computing S is a part of solving the problem. Therefore, a finite differ-
ence discretization of (83)-(86) will lead to a system of non-linear equations.
However, we will not pursue this approach any further in this paper. In-
stead we turn our attention to some experiments with the penalty method
discussed above.

4.3.3 Experiments

We will test the convergence properties of the penalty scheme derived in
Section 4.3.1 using the discrete Lq, Ly and L., norms. More precisely, for a
discrete function g, defined on the mesh

($0,.’L’1... ,.Ij,... ,.’L'M+1),

18



we define the norms

loll = As ‘9°‘+'9M“'+Z\gg|] (87)
2 2 M 1/2
lgll: = (Ax S +;<gj>2]) L (89

gl = max]g;|. (59)

In Table 2 we have measured the error
ej:u(Sj)—vj, ]:0,M+1,

in these norms. Here, u(S) is the analytical solution of (71)-(75), given in
(76) and (77), and {vj}jj‘/i”gl is the approximation computed by the scheme
(82). Clearly, for this problem the penalty method provides satisfactory
results (the error seems to be of order ).

Table 2: Computational results obtained by the penalty method applied to
the two point boundary value problem (71) — (74).

AS € Ly L, Lo
-1073 1 1.0-107t [ 1.24-107' [ 1.01-107" | 1.07- 107!
21073 1 1.0-107%2 ] 2.36-1072 | 2.06- 1072 | 2.34- 1072
-1073 [ 1.0-107% | 3.67-1073 | 3.36-1073 | 3.95-107°
1073 1.0-107* [ 517-10* | 481-10* | 5.77-10*

NN N DN

5 A penalty method for Black-Scholes mod-
els

In this section we will modify the analysis presented above such that it can
be applied to Black-Scholes models of American put options. As in Section
4 the original problem (1)-(7) is approximated by adding a penalty term to
the equation (1). Thereby obtaining a non-linear parabolic partial differential
equation posed on a fixed domain.

More precisely, let 0 < ¢ < 1 be a small regularization parameter and

19



consider the following initial-boundary value problem

V. 1 5, 5,0V, oV,
6t+§05852+r565—ﬂ/} (90)
eC

—— =0, §>0,te|0,T),
+V€+6—q(5) - 0,7)
Ve(S,T) = max(E — S,0), (91)
Ve(0,8) = E, (92)
Ve(S,t) =0 as S — oo, (93)

where C' > rFE is a positive constant? and
a(S) = E-S, (94)
see (8). Note again that the penalty term

eC
Ve +e—q(5)

is of order € if V, = V(S,t) > ¢(S), and that it increases towards C as
Ve = q(9).

Our goal is to define numerical methods for solving (90)-(93) and to prove
that the approximate option values generated by the schemes satisfy a dis-
crete version of (8). We will consider explicit, semi-implicit and fully implicit
schemes.

5.1 An upwind explicit finite difference scheme

Clearly, we can only discretize (90)-(93) on a limited interval for the value
S of the underlying asset. Thus, we introduce a parameter Sy, (preferable a
large number) representing the endpoint of discretization with respect to S.
More precisely, we will discretize (90)-(93) in the domain

0<S5<S,and0<t<T.

2We will show below why C should be larger or equal to rE.
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Let, for given positive integers M and N,

S, T
AS =" At=——
o M+1 N+1
S;=jAS, j=0,...,M+1,
t,=nAt, n=0,..., N+1,
QJZQ(S]), ]ZOaaM+1a
VAT =max(E - S;,0), j=1,...,M,
Vﬁ’fozE, n=0,..., N+1,
Viuia=0, n=0,... N+1

VD= V(Sjta), j=1,...,Mandn=0,...,N.

For the sake of simplicity, we will omit the e subscript in the discrete case
and simply write V" for V.

The discrete equations are derived by applying an upwind differencing of
the transport term and a standard explicit time-stepping scheme for (90)-
(93), i.e.

Vit - an_l + 10252 Vyn+1 2V + Vi

At 2" 7 (AS)?2

Vi, =V eC
S. ]+71 J _ Vn - = O 95
+TJ AS TJ+‘/;'n+€—q]' ’ ( )

forj=1,..., Mandn=N+1,N,...,1. If we define the function
fOV_,V,Vi,q,S) = [a0252] V_

At
+ [1 2008 ASTS rAt] V
At
+ [a0252 + A—STS] vV,
eCAt
—_— 96
V+e—gq (96)

where
1 At

o = I

(AS)?

[\

then (95) can be written on the form

V;-"_l =fV VYV e, S5), j=1,...,Mandn=N+1,...,1.
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With this notation at hand we are ready to start analyzing our explicit
scheme. We start of by showing that the function f is increasing in the
variables V_, V and V.

Lemma 1 For all S,r > 0 the partial derivatives Of /OV_ and 0f /OV, of f
are non-negative,

of 8f>

v o, =

Moreover,

of
—_— > >
3V_0 for allV > gq,

provided that At satisfies

(AS)*
At < S
0252, + 1S (AS) +r(AS)?2 + Z(AS)?

Proof. Clearly,

of 9 2 af 9 At
= = > I = r8 >
£Vl ac“S* >0, v, ac”S* + ASTS >0,
for all S,r > 0.
Next,
af 9 At eC'At
— =1-2a0°S* - —rS—rAt— ——
ETG ao AST‘ r Vie—q?
and for V > ¢ it follows that
of At 5., At eCAt
> _ = _ =" ,q_ _
v 1 (AS)QO S ASTS rAt =
0252 rS

C
+oHr+—| >0,
(AS)2  AS €|l
provided that At satisfies (98). m
As mentioned above, we prove that the approximate option values gen-
erated by our explicit scheme fulfills a discrete analogue to (8).

= 1-At

Theorem 2 For allC > rE, S, > E and all At satisfying (98) the approz-
imate option values {V'} generated by the scheme (97) satisfy

Vi > max(E — Sj,0), (99)
forj=0,... M+1andn=N+1,...,0.
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Proof. By definition, V}NH = max(E — S5;,0) for j = 0,...,M + 1, and
hence (99) holds for n = N + 1. Furthermore, V' = F' = max(E — Sy, 0) and
Vite1 = 0 =max(E — Sp41,0) forn=N+1,...,0, provided that S, > F.

Next, we will prove that if (99) holds for n then it must also be valid for
n — 1. Let ¢(S) be the function defined in (94) and notice that

max(E — S;,0) = max(g;, 0).

If (99) holds for n then it follows from the definition (97) of our scheme
and Lemma 1 that

Vit = f(V Vi Vi, 455.55) 2 £(a5-1, 455 5+, 455 S5)- (100)
Notice that, cf. the definition (94) of g,
gj—1 =¢; + AS and gj;, = ¢q; — AS.
Next, from the definition (96) of f we find that

A A
Al s as 4 —CA

VTt > (g1, 95, 45415 455 S5) = g5 — rAtg — AS g +e—q
J J

= g¢; — rAtg; — rAtS; + CAt.
Recall that ¢; = E = Sj, cf. (94), and consequently

Vj”’1 > q; —TAtE +rAtS; — rAtS; + CAt
= gq; + (C—rE)At > qj,

provided that C > rE.
If (98) holds and {V"} satisfies (99) it follows directly from (97) and (96)
that
n—1
)
Hence,
V}"’l > max(g;, 0),

and we conclude by induction that the theorem must hold. m
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5.2 An implicit and a semi-implicit scheme

We observed above that the explicit scheme puts severe restrictions on the
time steps leading to unacceptable computing times. This is particularly so
in the case of multi-asset options, cf. [12]. In the present section we will
derive an implicit and a semi-implicit scheme. For both schemes we assume
that

C > rE. (101)

Under this mild assumption it turns out that the implicit scheme is stable
whereas the semi-implicit scheme is stable if the additional condition

€
At < — 102

is satisfied. Note that this condition is a significantly milder restriction than
(98). In order to avoid solution of non-linear algebraic systems, we find the
use of a semi-implicit scheme to be an attractive alternative.

Using the notation introduced above, we consider the following scheme,

Vit —vr Vi, =2V VR

25252
A Ta7 % (AS)
v, =Vr eC
e S Sl A —0. (103
J AS J Vn+1/2+€—q] ( )

n+1/2 n+1/2 _ Vn—|—1

Here, we put V; = V/" in the fully implicit scheme, and V;
in the semi- 1mp11c1t scheme The scheme (103) can be rearranged as

" " " eAtC
(1+7At+ 205 + B;)V] = V] + (a4 B)V]'y + V] + nt1/2 ’
j +e—gj
(104)
where
1 At At
= = 105
%= 5asp i Pi=TRgd (105)
Our aim is to show that
V' > max(g;,0), Vj,n. (106)
We do this in two steps; first we show that
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and next we show that
) (108)
In order to prove (107), we introduce

u; = V" — g;. (109)

The scheme for {u}} then reads

(1+rAt + 205 + B)uf =ul™ + (o + Bj)uf
eAtC

+ozju]"-_1 + m — T‘AtE, (110)
where " !/% = 4" in the fully implicit case, and u" /% = 4™*! in the semi-
j J j j
implicit case.
Define
u" = mjinu?, (111)
and let £ be an index such that
up = u". (112)
For j = k, it follows from (110) that
(1 + 1At + 20y + Br)u™ >ut! + (o + Be)u”
AtC
+aku" + 7:-1/72 — T‘AtE, (113)
Uy, +€
or
AtC
(1+rAtu" > upt! + —Z 2 — — rALE. (114)
Uy, +€

Let us now consider the fully implicit case. Then (114) takes the form

A
(14 rAt)u” — s

et rAtE > uptt >yt (115)
u €

If we assume that

u™t >0, (116)
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we have

F(u") >0, (117)
where
F(u) = (1+rAt)u — ZAf_C; + rALE. (118)
Since
F(0)=At(rE—-C) <0, (119)
cf. (101), and
F'(u) =1+ rAt + (;%f)? >0, (120)
it follows from (117) that
u" > 0. (121)

Consequently, by induction on n, it follows from (109) that
V> g, Vi (122)
forn=N+1,N,N—1,...,0.

Next we consider the semi-implicit scheme and we assume that (102) holds.
It follows from (114) that

Ut (u ™ + €) + eAtC — rAtE(upt! +€)

(1+ rAtu" > e (123)
We assume that u"*! > 0, and thus u}™ > 0. Let
G(u) = u(u + €) + eAtC — rAtE(u + €). (124)
Then
G(0) = Ate(C — Er) > 0, (125)
cf. (101), and
G'(u) = 2u+ € —rAtE, (126)
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so G'(u) > 0 for u > 0 provided that (102) holds. Hence we have
ult > 0, (127)
and thus by (109)

forn=N+1,NN—-1,...,0.

Next we consider (108), i.e. we want to show that

V> 0. (128)
As above, we define
Vn = rnjin %4 (129)
and let £ be an index such that
Vit=V" (130)

It follows from (104) that

(1 —+ rAt + QCMk + 5k)V" Z Vn+1 + (ak + ﬁk)V” + akV”
eAtC

: (131)
‘/kn—|—1/2 +e— m
or
AtC
(L+ AV > Vit 4 . (132)
V;c + € — qk
Since we have just seen that
Vit > g, (133)

both in the fully implicit and the semi-implicit case, it follows from (132)
that

(1+rAt)V™ > Vil (134)
and then it follows by induction on n that
Vr>0, v (133)
n=N+1,NN—-1,...,0.
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Theorem 3 Suppose (101) holds, then the numerical solution computed by
the fully implicit scheme (103) satisfies the bound

V> max(E — 8;,0) Vj (136)
n=N+1,N,N—-1,...,0.

Similarly, if (101) and (102) hold, the numerical solution computed by the
semi-implicit version of (103) satisfies the bound (136).

5.3 Numerical experiments

To provide further insight we will test the proposed penalty schemes on the
model problem discussed in section 3.3. The main purpose of these experi-
ments is to study the convergence properties of the method and to illustrate
numerically that the inequality constraint, imposed by the possibility of early
exercise, is fulfilled, i.e. that the discrete analogue to (8) hold.

Consider the discrete Li, L, and L, norms defined in Section 4.3.3.
Clearly, these norms are only capable of measuring the convergence of the
approximate option values generated by the schemes. Assume for a moment
that we are working on a hedging problem for a portfolio. In such cases we
might be interested in computing the Greeks, involving the derivatives of the
option value function, associated with the portfolio, cf. e.g. [15]. Hence,
the convergence properties of the discrete derivatives, implicitly defined by
our methods, are also of interest. Consequently, we will also measure the
convergence properties of our schemes in the discrete first order Sobolev H*
norm, and study whether or not the discrete derivatives converge in L, sense,

1 M+1 1/2
loCota)llae = |Gt B +52 Do (65 — g5 0°|
i=1
o g — g™ -
9(ota)1 = 27] ! Zlgj—g, il
=1

Notice that | - [; only defines a semi-norm on the set of discrete functions
defined on the mesh.

We solve our model problem using the same set of parameters as in Section
3.3 and C =rFE, cf. theorems 2 and 3. For a decreasing sequence of e-values

€o, €15-.- ,€7,

€ = and € = Gt
0= = P = .
10 ’
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we compare the approximate option values generated by (97) (and the ap-
proximate option values generated by the implicit and semi-implicit versions
of (103)) with the results computed by the implicit front-fixing method in
Section 3.3. That is, since no analytical solution of the problem is available,
we use the approximate option values generated by the implicit front-fixing
scheme on a fine mesh as a reference solution. More precisely, let Py represent
the discrete solution obtained by the front-fixing method. Then we compute
the error e (-, ), associated with the scheme (97) (and the error associated
the implicit and semi-implicit versions of (103))
€¢; (.Tj, tn) = 6? = Pf(xj’ tn) - V;?,j

forj=0,1,....M+1land n=0,1,... ,N + 1.

In the tables below we present the Ly, Lo, Ly and H' norms of e, (-, %)
for each value of ¢;. In addition we compute the |- |; semi-norm of e(-, ).
Finally, we also test if Theorem 2 and Theorem 3 hold, i.e. we compute

¢ = min(Ve?,j - 4j)

J,m

for each value of ¢;.

5.3.1 Casel

As mentioned above, we use the same model parameters as in Section 3.3
(replacing zo = 2 with So, = 2). The implementations of the schemes are
based on the C++ class library Diffpack [11].

The results reported in tables 3, 4 and 5 have been computed as follows

Table 3; We used the upwind explicit finite difference scheme (95) with
discretization parameters AS = 1.0-10~% and At computed according
to (98).

Table 4; These are the results generated by the fully implicit version of
the scheme (103). In these computations we applied the discretization
parameters AS = At =1.0-1073.

Table 5; This table contains the numbers generated by the semi-implicit
version of the finite difference scheme (103). We applied the discretiza-
tion parameters AS = 1.0- 1073 and At = 5.0-10~%. Hence, condition
(102) is satisfied for all values of € used in these experiments.

We observe that the three schemes generate results which are consistent with
the approximate option values provided by the implicit front-fixing method.
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More precisely, it seems like the estimated option values provided by the
penalty schemes converge towards the reference solution as ¢ — 0. This is the
case, not only for the L;, Ly, Ly, norms, but also for the H' norm and the |-|;
semi-norm taking the discrete derivatives into consideration. Furthermore,
the constraint imposed by the possibility of early exercise hold, i.e. ¢ = 0
in all three tables (Notice that, due to the final condition Veiv ;L 1 - g, ¢ will
always satisfy ¢ < 0. Consequently, if the conditions of theorems 2 and 3
hold then ¢ must be zero).

Notice that the computational efficiency of the schemes differ significantly.
Due to the severe restriction (98) on the time-steps, the explicit scheme is
much slower than the fully-implicit and semi-implicit methods. Moreover,
the semi-implicit scheme is significantly faster than the fully-implicit method.
Recall that in the fully-implicit case we must solve a system of nonlinear equa-
tions at each time-step whereas for the semi-implicit scheme it is sufficient to
solve a tridiagonal linear system at each time-step. In these experiments the
solution of the nonlinear problems in the fully-implicit case required 3 — 4
Newton-iterations (at an average).

Table 3: The penalty method applied to the American put problem, explicit
time stepping, ¢ = 0.0 for all values of e.

€ Ly L, Lo H, |- |1 CPU-time
10711 250-1072 [ 2.61-1072 | 4.23-1072 [ 1.00- 107! { 9.39- 1073 129.5s
1072 [ 504-10%(6.31-102[1.32-102]4.05-10 2| 1.60-103 129.5s
1073 16.22-107%]9.49-107% | 250-10% | 1.10-1072 | 1.21 - 10~ * 129.6s
10741 1.18-107* [ 1.51-107* | 3.02-10~* | 2.50- 1072 | 6.29 - 10~° 130.2s

Table 4: The penalty method applied to the American put problem, implicit
time stepping, ¢ = 0.0 for all values of e.

€ Ll L2 Loo H1 | : ‘1 CPU-time
1071 [2.50-1072 | 2.61-10"%2 | 4.23-10"2 | 1.00- 10" | 9.38 - 1073 7.8s
10%2]5.03-103|6.30-10 %] 1.32-102|4.05-10 2| 1.60-10° 7.8s
1073 [6.19-107%19.45-107%]2.49-1073 [ 1.10-1072 | 1.21 - 107* 7.8s
107][1.20-107* | 1.54-107* ] 2.99.-107% | 2.50- 1073 | 6.32-10°° 8.4s
5.3.2 Case II

For the upwind explicit finite difference method, presented in Section 5.1, we
showed that if (98) hold then the scheme satisfies a discrete analogue to the
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Table 5: The penalty method applied to the American put problem, semi-
implicit time stepping, ¢ = 0.0 for all values of e.

€ L1 L2 Loo H1 ‘ . ‘1 CPU-time
10711 2.50-1072 [ 2.61-1072 | 4.23-1072 [ 1.00-107* | 9.39-1073 2.8s
1072 |5.03-1072 | 6.31-1073 | 1.32-102 | 4.05-10"2? | 1.60- 103 2.8s
10731 6.21-107% [ 9.48-10"* | 2.49-107% | 1.10-1072? | 1.21 - 10~* 2.8s
1071 1.19-107% [ 1.52-107* | 3.01-10=* | 2.49-1073 | 6.31-10~° 2.8s

early exercise constraint (8), cf. Theorem 2. We tested the necessity of this
condition by increasing the time-step size used in Case I by 1.5%. The scheme
broke down. In particular, for e = 0.1 we observed that ¢ = —3.93 - 105.

The restriction (102) on At for the semi-implicit scheme is milder. How-
ever, by choosing At = 1.0-1072 and € = 5.0-10~°, and hence violating (102),
we observed that ¢ = —2.72 - 1078, Thus leading to unacceptable results.

Recall that we proved theorems 2 and 3 assuming that the constant C in
the penalty term is larger or equal to the product of the interest rate r and the
exercise price E of the option. We tried to replace C =rE by C' =0.9-7F in
the experiments reported in Case I for the fully implicit scheme. This lead to
approximate option values not satisfying the lower bound (136). The scheme
became unstable and ¢ ~ —1.0 - 1075,

Finally, it should be mentioned that all computations reported in this
paper have been carried out on a dual Dell Workstation 410 with two PIII
600 MHz microprocessors and 1GB ram, running the Linux operating system.
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