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Abstract Fault models are often based on interpretations of seismic data that are
constrained by observations of faults and associated strata in wells. Because of uncer-
tainties in depth migration, seismic interpretations and well data, there often is signif-
icant uncertainty in the geometry and position of the faults. Fault uncertainty impacts
determinations of reservoir volume, flow properties and well planning. Stochastic sim-
ulation of the faults is important for quantifying the uncertainties and minimizing the
impacts. In this paper, a framework for representing and modeling uncertainty in fault
location and geometry is presented. This framework can be used for prediction and
stochastic simulation of fault surfaces, visualization of fault location uncertainty, and
assessments of the sensitivity of fault location on reservoir performance. The uncer-
tainty in fault location is represented by a fault uncertainty envelope and a marginal
probability distribution. To be able to use standard geostatistical methods, quantile
mapping is employed to construct a transformation from the fault surface domain to
a transformed domain. Well conditioning is undertaken in the transformed domain
using kriging or conditional simulations. The final fault surface is obtained by trans-
forming back to the fault surface domain. Fault location uncertainty can be visualized
by transforming the surfaces associated with a given quantile back to the fault surface
domain.
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1 Introduction

In petroleum reservoirs, faults are generally modeled using seismic data, well data
and a knowledge of the local geology. Thore et al. (2002) list several sources of uncer-
tainty when modeling faults based on seismic data, but conclude that the main sources
are uncertainty in the seismic interpretation combined with vertical and lateral uncer-
tainty arising from the time-depth migration of the seismic data. The interpretation
uncertainty is often a consequence of the poor quality of seismic data near faults,
together with the fact that faults are usually represented as surfaces, even though they
are three-dimensional zones of deformation. The interpretation uncertainty encom-
passes both the existence of faults, and the location and local shape of the faults.
The depth migration uncertainty is due to uncertainties in the velocity model and the
actual seismic signal path due to non-horizontal velocity contrasts. The interpretation
error is assumed to be independent for each fault, whereas the error introduced by the
time-depth migration is correlated between nearby faults. Although the fault-sealing
properties and the existence of additional faults are the main sources of uncertainty in
reservoir performance, the fault geometry and position also have significant effects,
especially for wells located near major faults (Irving et al. 2010; Rivenæs et al. 2005).
An uncertainty model for fault position and geometry enables this uncertainty to be
updated based on well production data (Cherpeau et al. 2012; Irving and Robert 2010;
Seiler et al. 2010; Suzuki et al. 2008).

Previous implementations of uncertainty modeling for fault geometries have been
based on a range of fault parameterizations; Lecour et al. (2001) describe an uncertainty
model for faults modeled as triangular surfaces. Local variability is examined with a
P-field simulation, which can also include a global trend such as a shift, a change in dip
or a more general random function. Caumon et al. (2007) use this modeling method to
update the uncertainty of a reservoir simulation grid. Hollund et al. (2002) and Holden
et al. (2003) also define a stochastic model for fault geometry. They parameterize the
fault as a set of fault pillars defining a series of fault segments. However, their Markov
chain Monte Carlo-based algorithm has severe performance problems and does not
produce geologically realistic realizations (Røe et al. 2010). The fault model can also
be parameterized by defining the fault surfaces based on a three-dimensional potential
field. Mallet and Tertois (2010) generate stochastic realizations of faults and horizons
by perturbing the UVT transform associated with the Geochron model (Mallet 2004).
This model enables the conditioning of well data. Wellmann et al. (2010) have a more
data-driven approach, where the fault model is updated by perturbing the input data
set. This approach is well suited for capturing the uncertainty in the input data set, but
underestimates the uncertainty in areas with less data.

The algorithm presented in this paper uses a parameterization where the faults are
represented as tilted, regularly gridded surfaces. This makes it possible to use standard
surface modeling techniques similar to those used for modeling stratigraphic surfaces
as described by Abrahamsen et al. (1991). These techniques include the application
of Gaussian random fields for generating surface realizations and the use of kriging to
condition the surfaces to the well data. In the uncertainty model presented in this paper,
the faults are simulated independently of each other. There is no correlation between
different faults, except in the lengthening or shortening effect a fault has on other faults
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that it might truncate. Similar to Lecour et al. (2001), the algorithm in this paper uses a
p-field based simulation technique where simulations are performed in a standard nor-
mally distributed domain. The well observations are translated into this domain, and
the final realizations are translated back into the real domain using quantile mapping.
The transformation is defined by the fault uncertainty envelope, constrained by a pair
of surfaces that restrict the location of the simulated fault surface realizations. The
smoothness of the simulated fault surface is controlled by the range of the variogram
used. However, where Lecour et al. (2001) use a triangulated representation of the
fault surfaces, the algorithm in this paper is based on a fault representation where each
surface is represented as a function on a regular grid in a rotated coordinate system.
Although this representation is not as flexible with respect to modeling complex fault
surfaces, it does provide a simple parameterization of the fault surface uncertainty. The
use of implicit fault truncations also allows the truncation rules to be updated based on
different fault surface realizations. A consistent framework for conditioning the fault
surface realizations with well picks and well paths is also introduced. The fault location
can optionally be given an uncertainty at the well pick locations. The well paths condi-
tioning points represent positions known to be on a particular side of the fault surface.

This framework provides a flexible and intuitive way to represent fault uncertainty.
The method allows for the inclusion of both seismic and well data, and allows both
visualization of the well-conditioned fault uncertainty and simulations of realistic
fault geometry to honor all the input data. The fault uncertainty model, along with
the methods used for well conditioning and stochastic simulation of fault surfaces,
is presented in Sect. 2, and in Sect. 3 results from the application of the methods
on a simple fault model are shown. Issues that might arise when using the methods
in reservoir modeling workflows are discussed in Sect. 4. The work presented in this
paper is an extension of the work presented in Røe et al. (2010), and describes methods
implemented in the Havana fault modeling tool (Norwegian Computing Center 2013).

2 The Fault Surface Uncertainty Model

2.1 Fault Parameterization

The methods presented in this paper are based on a fault representation where the faults
are modeled as surfaces in a rotated coordinate system (Georgsen et al. 2012; Hoffman
and Neave 2007). The rotation, given by the dip and strike angles of the general fault
trend, defines a reference plane. This reference plane provides a coordinate system
with the x coordinate in the strike direction, the y coordinate in the dip direction, and
the z coordinate in the normal direction, with the positive z direction pointing into the
footwall of the fault. The fault surface is represented as a function f (x, y) denoting the
distance from the reference plane to the fault surface (Fig. 1). Truncations are specified
implicitly through a list of truncation rules defining which fault will be truncated if
two fault surfaces intersect. This fault parameterization is not as flexible as the general
triangulated surfaces representation (Caumon et al. 2009). However, the specification
of a rotated coordinate system makes it possible to use the same methods that are
routinely used for modeling uncertainty in the location of stratigraphic horizons.
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Fig. 1 The fault representation
used, where the fault surface is
defined as a function on the
reference plane

Fig. 2 Seismic cross-section
with interpreted fault surface
fb(x, y) in black. The boundary
surfaces ehw(x, y) and efw(x, y)

of the interpreted fault
uncertainty envelope are shown
in blue

From the seismic interpretation, a base case for the fault surface is attained, denoted
by fb(x, y). The uncertainty in fault location is specified by a fault uncertainty envelope
around this base case, where the fault is allowed to reside within (Caers and Caumon
2011). This envelope is defined by two surfaces, ehw(x, y) and efw(x, y), on either
side of the base case surface, and given in the same coordinate system as the fault
surface (Fig. 2).

2.2 Prior Probability Distribution for Fault Surface Location

Within the volume defined by the fault uncertainty envelope, the location of the fault
surface follows a prior probability distribution with a marginal cumulative density
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function �(z(x, y)) defined from fb(x, y), ehw(x, y) and efw(x, y). A possible shape
for this distribution is triangular, with the mode located at the base case and the
minimum and maximum on the envelope’s boundary surfaces. This results in a model
with a higher probability of the simulated fault residing near the base case, and lower
probabilities for the fault being located near the edges of the envelope. Other possible
distributions are uniform, or piecewise uniform, where the median coincides with the
base case. In general, any bounded probability distribution can be used. To be able
to use standard multi-normal theory, the stochastic simulation and well conditioning
must be undertaken in a transformed domain where the uncertainty for the fault surface
follows a standard normal distribution. Let � be the marginal cumulative density
function for the N (0, 1) distribution. Then,

T (z(x, y)) = �−1 (� (z(x, y))) , (1)

defines a transformation from the fault surface domain into the transformed domain,
and

T −1 (
z∗(x, y)

) = �−1 (
�

(
z∗(x, y)

))
, (2)

is the inverse transformation from the transformed domain back into the fault surface
domain.

2.3 Conditioning to Well Data

Two types of well data are used for conditioning: well picks, which are observations
of the fault surface in the well, and well path points, which are points along a well
path that do not hit the fault. Well picks may optionally be assigned an observation
uncertainty. For each well data point (xi , yi , zi ) a corresponding normal distribution
N (μ∗(xi , yi ), σ

∗(xi , yi )) is created in the transformed domain.

2.3.1 Well Picks with no Uncertainty

For well picks (xi , yi , zi ) with no uncertainty, the mean and standard deviation are

μ∗(xi , yi ) = T (zi (xi , yi )) , (3)

σ ∗(xi , yi ) = 0. (4)

2.3.2 Well Picks with Uncertainty

Well picks can also be given with an uncertainty. This uncertainty is represented by
an interval [l(xi , yi ), u(xi , yi )] within the fault envelope that restricts the distribution
of the fault surface location at the well pick. The moments

μ∗(xi , yi ) = 1

2
(T (u(xi , yi )) + T (l(xi , yi ))) , (5)
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σ ∗(xi , yi ) = 1

4
(T (u(xi , yi )) − T (l(xi , yi ))) , (6)

are then used to approximate a distribution within the transformed domain. With the
given variance σ ∗, the probability of the fault surface lying within [l(xi , yi ), u(xi , yi )]
is about 0.95.

2.3.3 Well Path Points

Well path points are evaluated to be either in the footwall or the hanging wall of the
fault. Only well path points inside the uncertainty envelope affect the distribution of
the fault surface location. The updated uncertainty interval for the fault at the location
of a well path point must be constructed such that it avoids the well path on the side
of the fault where the point is located and coincides with the initial envelope on the
other side. Let (xi , yi , zi ) be the well path point. The interval within which the fault
surface is allowed to lie is then set as

[l(xi , yi ), u(xi , yi )] = [zi , efw(xi , yi ) − δ(xi , yi )] , (7)

with a δ such that �(efw(xi , yi ) − δ(xi , yi )) = 0.995, if the well path point is in the
hanging wall, or

[l(xi , yi ), u(xi , yi )] = [ehw(xi , yi ) + δ(xi , yi ), zi ] , (8)

with a δ such that �(ehw(xi , yi ) + δ(xi , yi )) = 0.005, if the well path point is in the
footwall. δ is added to avoid problems associated with coming too far out into the
tails of the normal distribution. The distribution in the transformed domain is then
approximated by the following moments:

μ∗(xi , yi ) = 1

2
(T (u(xi , yi )) + T (l(xi , yi ))) , (9)

σ ∗(xi , yi ) = 1

6
(T (u(xi , yi )) − T (l(xi , yi ))) . (10)

With this distribution, the probability of the fault surface being on the wrong side of
the well path point is approximately 0.01. An alternative for conditioning the well
path points is the use of inequality conditioning (Abrahamsen and Benth 2001). This
would ensure that the fault surface realizations are on the correct side of the well path
point, and would also ensure that the location of the fault surface inside the well path
point follows the desired distribution, a truncated version of �(z|xi , yi ).

2.3.4 Well Conditioning of Fault Surfaces and Fault Uncertainty Envelopes

From the posterior mean and covariance of the Gaussian field representing the fault
surface in the transformed domain, the fault surface conditioned on the well data can be
predicted using kriging. Let m be the vector of expected transformed well data points
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(μ∗
i ). The kriging vector k(x, y) is a vector of correlations between the position (x, y)

and each of the conditioning points (xi , yi ) as specified by a given variogram. The
kriging matrix K consists of the spatial correlations between all conditioning points.
The well uncertainties are given by �∗ = diag{(σ ∗(xi , yi ))

2}. Standard multi-normal
theory gives

z∗
post(x, y) = k(x, y)(K + �∗)−1m, (11)

σ ∗
post(x, y) =

√
1 − k(x, y)(K + �∗)−1k′(x, y), (12)

where z∗
post is the updated mean surface in the transformed domain, while σ ∗

post is
the updated standard deviation. The predicted fault surface is obtained by transform-

ing back into the fault surface domain: zpost(x, y) = T −1
(

z∗
post(x, y)

)
. To find a

p-prediction band, where p is the probability of the fault surface lying within this
band, let q be the quantile in the standard Gaussian distribution corresponding to the
p-th percentile, q = �−1(

1−p
2 ). An updated fault uncertainty envelope is then found

by transforming the quantile surfaces to the fault surface domain

eu
hw(x, y) = T −1

(
z∗

post(x, y) + q σ ∗
post(x, y)

)
, (13)

eu
f w(x, y) = T −1

(
z∗

post(x, y) − q σ ∗
post(x, y)

)
. (14)

2.4 Unconditional Fault Simulation

The simulation of the fault surface is done in the transformed domain. A simulated
surface, z∗

0(x, y), is generated with zero expectation, a variance of one and covariance
defined by a variogram. The fault surface realization, fs is then given by

fs(x, y) = T −1 (
z∗

0(x, y)
)
. (15)

The variogram describes how data in a surrounding area affect a given point. The
variogram is described with a variogram type and correlation ranges along the fault’s
strike and dip directions. Since the fault surface realizations should be smooth, a
Gaussian variogram is used with a range matching the desired surface smoothness
(Fig. 3).

2.5 Conditional Simulation

Kriging is used in the transformed domain to update the simulated residual surface
z∗

0(x, y) according to well data. For each well data point, a corresponding distribution
is assigned as described in Sect. 2.3. From each of these distributions, a value z∗

i is
drawn, giving a conditioning point (xi , yi , z∗

i ). The residual vector r is the vector of
differences between z∗

0(xi , yi ) and z∗
i in these positions. To populate the whole field,

simple kriging is used as expressed by
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Fig. 3 The effect of different variogram lengths. Variogram ranges of a 100 m, b 500 m, c 1,000 m, and
d 2,000 m in both dip and strike directions. The size of the box surrounding the faults is approximately
7,500 m × 7,500 m × 900 m

z∗(x, y) = z∗
0(x, y) + k(x, y)(K + �∗)−1r, (16)

where k(x, y), K and �∗ are as defined in Sect. 2.3.4. This results in a surface real-
ization that is conditioned to the well data in the transformed domain, and the corre-
sponding fault surface realization fs is found by mapping z∗(x, y) back into the fault
surface domain

fs(x, y) = T −1 (
z∗(x, y)

)
. (17)

3 Results

The algorithm has been tested on the Emerald Field reservoir model, one of the tutorial
examples from the Roxar RMS Suite (Roxar 2012). Figure 4a, b shows the main
fault in this dataset together with a fault uncertainty envelope. The interpreted fault
surface is shown in orange, and has a length of approximately 7,500 m and a height
of approximately 900 m. The fault uncertainty envelope is shown in purple, and has a
variable width of approximately 500 m at the center of the fault, increasing to almost
700 m near the ends of the fault. The given width is several times larger than the typical
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Fig. 4 Original and well conditioned fault data. a The fault surface (orange) together with the fault uncer-
tainty envelope (purple) and two well picks (green). b A horizontal intersection through (a), seen from
above. c, d The well-conditioned fault surface (orange) and fault uncertainty envelope (blue)

fault location uncertainty, but this is done to give a clearer picture of results from the
uncertainty model. In addition, two well points are shown in green.

Figure 4c, d shows the same fault conditioned to the given well points. In this case, a
triangular distribution is used in combination with a Gaussian variogram with ranges of
2,000 m in both the strike and dip direction. As can be seen on the updated fault uncer-
tainty envelope in blue, there is no uncertainty in the well data. According to the input
data and the model, the probability of the fault surface being within the updated uncer-
tainty envelope at any given point is 0.95. This results in an updated uncertainty enve-
lope that will always be within the original uncertainty envelope, even in areas where
there are no well data. Three simulated realizations from the same uncertainty model
as above are shown in Fig. 5. Figure 6 shows an updated model where a well path has
been added with red dots. As can be seen from the updated uncertainty model, an uncer-
tainty of ±50 m has been specified on the well picks. The same variogram is used as in
the previous case, but the triangular distribution is exchanged for a piecewise uniform
distribution with the mean equal to the interpreted base case fault surface. Since a uni-
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Fig. 5 A set of three simulated fault surface realizations (orange lines) together with the unconditioned
envelope (purple), the updated envelope (blue) and the well picks (green)

Fig. 6 Results for an updated fault surface uncertainty model with a well path (red dots) and with uncertainty
added to the well picks. The first figure shows the predicted fault surface, whereas the other two figures
show simulated fault surface realizations

Fig. 7 Posterior distribution for the two cases shown in Figs. 5 and 6. The blue lines are respectively the
1st, 10th, 25th, 50th, 75th and 99th percentiles of the distribution

form distribution is used, the updated fault uncertainty envelope, which still indicates
the P95 interval, is closer to the original fault uncertainty envelope. The fault surface
uncertainty distribution after well conditioning for the two cases is visualized in Fig. 7.
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As can be seen from the results, the method presented gives realistic-looking fault
surface realizations that honor all the input data without showing any bulls-eye effects
near the well picks. As noted in Røe et al. (2010), the stochastic simulation algorithm
is efficient and well suited for use in Monte Carlo methods.

4 Discussion

4.1 Handling of Fault Truncations

The extent of the faults is specified with a fault tip polygon. Depending on how this
polygon is defined near truncations, the faults might be moved so that they do not
touch, eliminating the truncations. Faults might also be moved in such a way that
new truncations are introduced. In the authors’ opinion, this is a desirable attribute
of the model since it allows examination of the uncertainty in reservoir compartmen-
talization, as introduced by the specified fault uncertainties. To be able to obtain the
desired truncations, a set of alternative truncation rules for faults that have intersect-
ing fault uncertainty envelopes must be specified. This specification can either be
done manually by examining all possible intersections and specifying a truncation
rule for each of these, or more automatically based on rules specifying the truncation
hierarchy, by ordering the faults according to fault age. For workflows that rely on
unchanged topology, rejection sampling can be used. If the topology of the simulated
realization does not match the topology of the base case model, the realization is
rejected and an alternative realization is simulated. Another approach is to establish
uncertainty envelopes and fault tips in such a way that no topology-changing realiza-
tions are possible. This can be done by ensuring that the fault uncertainty envelopes
only intersect near existing truncations, and that the truncated parts of the fault tips
are so large that they encompass the whole uncertainty envelope of the truncating
fault.

4.2 Fault Length Uncertainty

There is a significant uncertainty in fault lengths, since parts of faults will not be
visible in the seismic data. Therefore, a fault tip usually is generated based on a fault
displacement gradient. The length of the fault and the resulting fault tip are closely
connected to the displacement field associated with the fault. A realistic stochastic
model for this is important to analyze the impact of faults on reservoir performance.
The fault uncertainty envelopes presented in this paper closely follow the base case
seismic interpretation. However, such envelopes could be extended to also encompass
the uncertainty in fault tip location.

4.3 Updating the Reservoir Simulation Grid

The algorithms listed here update the structural model. However, in most workflows
the reservoir simulation grid must be updated. In general, the only way to accomplish
this is to rebuild the entire grid. As shown in Seiler et al. (2010), it is possible to update
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the gridded fault traces based on the differences between the base case structural model
used to build the reservoir simulation grid and the simulated realization. Based on these
modified fault traces, the rest of the grid then can be updated. This works for grids
with simple fault geometries, and for cases where there are no changes to the topology
of the model.

5 Conclusions

The algorithm presented here enables the rapid stochastic simulation of realistic fault
surfaces. The parameters needed are the fault uncertainty envelope and a variogram
describing the smoothness of the fault surfaces. Critically, the simulated fault surfaces
can be constrained by well observations and along well paths, without any significant
increase in the time needed to generate a realization. Using this fast simulation of
realistic fault surfaces, Monte Carlo methods can be employed to estimate probability
distributions for reservoir volumes or the probability for different fault scenarios. The
method can also be used in well-planning workflows where it is important to estimate
and update the uncertainty of faults bounding geological targets.
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