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Summary

Markov Chain Monte Carlo (MCMC) methods are used to sample from com-
plicated multivariate distributions with normalizing constants that may not be
computable and from which direct sampling is not feasible. A fundamental
problem is to determine convergence of the chains. Propp & Wilson (1996) de-
vised a Markov chain algorithm called Coupling From The Past (CFTP) that
solves this problem, as it produces exact samples from the target distribution
and determines automatically how long it needs to run. Exact sampling by
CFTP and other methods is currently a thriving research topic. This paper
gives a review of some of these ideas, with emphasis on the CFTP algorithm.
The concepts of coupling and monotone CFTP are introduced, and results on
the running time of the algorithm presented. The interruptible method of
Fill (1998) and the method of Murdoch & Green (1998) for exact sampling
for continuous distributions are presented. Novel simulation experiments are
reported for exact sampling from the Ising model in the setting of Bayesian im-
age restoration, and the results are compared to standard MCMC. The results
show that CFTP works at least as well as standard MCMC, with convergence
monitored by the method of Raftery & Lewis (1992, 1996).

Key words: Coupling from the past; Efficient sampling; Exact simulation; Fill’s algorithm;
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1 Introduction

Markov Chain Monte Carlo (MCMC) is an iterative algorithm used when direct sampling
from the distribution of interest 7 is not feasible. This is typically the case in image
analysis, spatial statistics and graphical and Bayesian hierarchical modeling where models
are often complex, multivariate and difficult to normalize. Instead, an ergodic Markov
chain with the target distribution 7 as stationary distribution is devised. Starting from an
arbitrary initial state, the chain is run until it is believed to be close to equilibrium and the
final state considered as a sample from 7. Assisted by methods for convergence diagnostics
(Cowles & Carlin, 1996; Brooks & Roberts, 1999), the MCMC user has to determine how
long to run the simulation. However, as the chain is simulated in finite time and can not
be started in 7, the method always produces an approximate sample.

This paper assumes the reader to be familiar with the idea of MCMC simulation and
the most common samplers such as the Metropolis-Hastings algorithm (Metropolis et al.,
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1953; Hastings, 1970) and the Gibbs sampler (Geman & Geman, 1984). We will focus on
the recently developed methods for exact simulation, which organize MCMC simulations
cleverly to produce exact samples from the distribution of interest. The purpose of this
paper is to serve as an introduction with pointers to further reading. We also report on
our experiments with exact simulation and comparisons with standard MCMC.

Exact simulation is not new. For simple distributions exact samples are obtained by
inversion, tabulation, transformation and composition methods (Ripley, 1987, Chapter 3).
Rejection sampling (Ripley, 1987, pp. 60-63) is in principle possible for any distribution
and does not demand computation of complicated normalizing constants. For practical
purposes, rejection sampling is fast enough if we are able to sample easily from a proposal
envelope distribution that is reasonably close to the target distribution, something which
is difficult to design in multivariate settings.

Asmussen et al. (1992) were the first to show that it is possible to obtain exact samples
from a finite chain, provided the chain is irreducible, the state space is finite and the
number of states known. Lovéasz & Winkler (1995) showed that this was computationally
feasible, but that the running time was enormous for chains with more than a few states.
In contrast, the methods that we present in this paper works for complicated distributions
and are fast enough to be often useful in practice.

In Section 2 we introduce the idea of coupling and show how forward coupling produces
biased samples. Section 3 is devoted to the original CFTP algorithm of Propp & Wilson
(1996) and the simpler monotone CFTP that works under certain monotonicity require-
ments and Section 4 gives some results on the running time of the CFTP algorithm. An iid
sample from the target distribution may be obtained by running independent CFTP runs,
but this is computationally expensive. Section 5 includes a presentation of several sam-
pling schemes that are more efficient, in the sense that they utilize more of the generated
values. In Section 6 we present a simulation experiment for the Ising model, in which the
running time of the CFTP algorithm is compared to standard MCMC with convergence
determined by the method of Raftery & Lewis (1992, 1996). We conclude that CFTP is
the faster method. Section 7 presents an extension of CF'TP to continuous state spaces
by Murdoch & Green (1998) and Green & Murdoch (1998), while Section 8 introduces the
algorithm of Fill (1998) that is based on rejection sampling and has a different structure
than CF'TP. The paper ends with a discussion and a guide to sources of information on
exact simulation available on the Internet.

2 Forward Coupling

Consider a Markov chain defined on a discrete finite state space &, and suppose that
two copies of the chain {X'}2°, and {Y'}$°,are started from two different initial states.
Assume that the chains are coupled. Coupling is described as a tool in probability theory
in Lindvall (1992). For MCMC it was introduced by Johnson (1996), see also Frigessi &
Den Hollander (1993). In the current context, we say that two chains are coupled if they
use the same sequence of random numbers for the transitions. If the trajectories of the
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chains meet at time 7', the chains will merge and proceed together or coalesce, that is
x! = y*Vt > T, due to the coupling. If we similarly couple chains started from all states
of §, and wait until all the chains have coalesced, then the initialization bias has worn off.
However, when the chains coalesce, they need not have reached the stationary distribution
as the following two examples show. The first example, taken from Kendall (1998) and
Fill (1998), involves a simple two state Markov chain, while the second example, from
Héggstrom & Nelander (n.d.b), fits in the Gibbs sampler framework. For both examples it
is convenient to consider the transitions of the chains via an update function. The update
function is simply an expression for the transition mechanism that given the previous value
of the chain and the necessary random numbers, produces the new state of the chain.

DEFINITION 1 The transitions of a Markov chain {X'}$°, with transition matrix P can
be described by a deterministic update function ¢ by X' = ¢(x!, U if P(x,y) =
P(¢(x,U) =y) Vx,y € S for a vector of random numbers U, or in the simplest case a
single uniform random number.

EXAMPLE 1 (A 1-DIMENSIONAL TARGET T)

Assume that we have a Markov Chain on § = {0,1} that from state 0 moves to 0 or 1
with probability 1/2 each, and from state 1 always moves to state 0. The transitions of
the chain may be written in terms of the update function ¢ as X' = ¢(z¢, U**!), where

0 ifU<1/2

d 1,U%) =0,
1 iU > 1/2 o #(1,U7)

¢(0,U") = {

for uniform random numbers U’. The stationary distribution of this chain is 7(0) = 2/3
and 7(1) = 1/3. Starting one chain in each of the two states and applying the same ran-
dom numbers, it is easy to see that the chains always coalesce in state 0 (see Figure 1, left
panel), and hence the distribution at the time of coalescence is not correct. <&

[Figure 1 about here.]

EXAMPLE 2 (A 2-DIMENSIONAL TARGET 7)

Let X = (X1,X9) and § = {(i,7) : ¢ = 0,1,2;5 = 0,1,2} and take 7 to be uniformly
distributed on the subset {(0, 0), (0, 1), (2, 1), (2, 2) } for which the values of the two elements
differ by at most 1. For this distribution 7 a Gibbs sampler that updates the elements in
random order is expressed by the update function

(X!,2) if Vi < 1/2

Xt—}-l’Xt—I—l — t’ Vt+1,Ut+1 —
(X7, X, ) = olx )=V @xy i v s 12,
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where

max{i € {0,2} : w(s,25) > 0} if U™ >1/2
X - {xtl if Ut <1/2

v {min{i €{0,2} : (i, zt) > 0} if U <1/2
-

1 if Ut >1/2

and V't U are independent uniform random numbers that determine which element that
is updated and the new value for this element.

Assume that chains are started from {(0,0),(0,1),(2,1),(2,2)}. Figure 2 shows how
the chains coalesce according to which element is updated. Careful inspection of the figure
reveals that the 4 chains only coalesce in the states (0,1) and (2,1) with probability 1/2
each. The reasoning is as follows.

(i) If X, is updated in the first iteration the chains always reduce to three chains, since
the chains started in (0,1) and (2, 1) coalesce with probability 1.

(ii) As long as X; is updated, these three chains never coalesce. The chains in (0,0) and
(2,2) remain in these states, while the third chain moves between state (0,1) and
(2,1) depending on the value of U.

(iii) The three chains reduce to two chains when for the first time X5 is updated.

(iv) If X, is updated in the first iteration the number of chains always reduces to two
chains, either in state (0,0) and (2,2) or in (0,1) and (2, 1), depending on the value
of U.

(v) Thus, either we start by updating X; or Xs, the chains reduce to two chains in (0, 0)
and (2,2) orin (0,1) and (2,1). After this, coalescence may only happen by updating
X, when the chains are in (0,1) and (2, 1).

&

These examples show that coalescence of two forward coupled Gibbs sampler chains
fails to identify when the chains reach stationarity.

[Figure 2 about here.]

3 Propp and Wilson’s Coupling from the Past

3.1 Coupling from the Past

Propp & Wilson (1996) devised a surprisingly simple algorithm which uses coupling from
the past, also called backward coupling, to produce exact samples from a stationary dis-
tribution. Consider a finite state space & with M states and an ergodic Markov chain
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with limit distribution 7 that can be described by a deterministic update function ¢ as in
Definition 1.

Instead of running the chain from the present and into the future, we will run it from
the past to the present, that is, we assume that at time —oo one chain is started in each of
the states of S and run to time 0. Also, we use the same sequence of random numbers for
all these chains. Since the state space is finite and the chains are ergodic with the same
unique stationary distribution 7, all the chains will coalesce a.s. and be stationary by time
0. Of course, starting a chain in the infinite past is not possible, and the following strategy
is applied instead. One chain is started in each state of & at time —1. For each such chain
the same random vector UV is applied. If the chains are not all coalesced at time 0, we
repeat, but now the chains are started from —2. New random numbers U~ ! determine
the transitions from time —2 to —1. In the transitions from —1 to 0, the same random
numbers are used as in the preceding trial. We continue going back in time in this manner,
reusing the random numbers generated in the previous steps of the procedure, until the
chains have all coalesced by time 0. Note that even if we only check for coalescence at time
0, the chains may have merged before this time point.

Let the mth state of S be denoted x,,, m = 1,..., M and denote by X*2(¢;,x,,) the
state at time ¢, of a chain started in state x,, at time ¢; < t5. The algorithm can then be
expressed as follows.

ArvcoriTam 1 (CFTP)
1. Set the starting value for the time to go back, 7y «+— —1.

2. Generate a random vector UZot+!,

3. Start a chain in each state x,,, m =1,..., M, of § at time Ty, and run the chains
XA Ty, %) = ¢(xHTh, X,m), U to time 0, t = T, Ty + 1,...,—1.

4. Check for coalescence at time 0, that is check if X°(Ty,x,,) occupy the same state
Vm. If so, this common value X° is returned. Otherwise let Ty < (T — 1) and
continue from step 2.

The following theorem from Propp & Wilson (1996) guarantees that the value X°
returned by Algorithm 1 is distributed according to the stationary distribution. We give
our own version of the proof, other versions are found in Propp & Wilson (1996) and
Higgstrom & Nelander (n.d.b).

THEOREM 1

(i) With probability 1 the CFTP algorithm (Algorithm 1) returns a value, and (i) this value
s a realization of a random variable distributed according to the stationary distribution of
the Markov chain.

Proof:
(i) Since the chain is irreducible, there exists a time L such that there is a positive proba-
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bility of going from state x, to x,, in L steps, that is
P(X't—L,x,) =%;,) >0 (1)

V states X,,X,,. Let Al ; be the event that the chains started from all states in S at time
t — L have all coalesced by time ¢ and let the common state at time ¢ be x’. Then

M

ALy = () (Xt = L, %) = %), 2)

m=1
and because the events in (2) are not disjoint and by (1) then P(A! ;) > 0 V¢. Since
the events A% L,Ang, ... are independent and have the same positive probability of oc-

currence, the algorithm terminates with probability 1. (ii) We then have that there ex-
ists a time —7, so that when starting from this time all trajectories have coalesced by
time 0. If the event AQT* is true, then also AQT is true for —T < —T,, and moreover
XO(~Te %) = XO(=T,x%,) V states x,,%,, because the same random numbers are ap-
plied. Since this holds for any —T < —T,, also A®  is true, and thus X°(~T,,x,,) ~ 7
since it is the state visited by an infinitely long trajectory of an ergodic Markov chain with
stationary distribution 7. The CFTP algorithm finds 7}, and the returned value has the
correct distribution. O

Kendall & Thonnes (1998) described the CFTP algorithm as a virtual simulation from
time —o0, since it allows us to sample an infinitely long simulation by reconstructing it over
a finite time interval. We may regard the method as a search algorithm that reconstructs
the part of the infinite sequence it needs to obtain a correctly distributed sample.

Care must be taken when implementing the CFTP algorithm, so that when the chains
are started from —t, < —t; the same realizations of the random numbers U~2+! T
are used for the steps from —t; to time 0. In a practice this is done by either saving the
random numbers as they are generated, or in order to save storage space, resetting the
seed for the random number generator so that the same random numbers are produced.

In Algorithm 1 the times —1,—2, —3, ... are successively tried as starting points for the
chains. From the proof it is evident that Theorem 1 holds for any decreasing sequence of
starting points and also for any value of T in step 1. In many situations it would be highly
inefficient to try all integer time points ¢ < 0. Propp & Wilson (1996) recommended to take
simulation start times —7; = —2¢, so that in each iteration the starting time is doubled.
Propp & Wilson (1996) showed that this choice minimizes the worst-case number of steps
and is close to minimizing the expected number of steps in the search. The argument
is as follows. A natural choice for the sequence of starting points (all start times are of
course negative, but we omit the sign in this discussion about the number of steps) is
T, = rTy, Ty = rTi,... for an initial value Ty and ratio r. If M chains are started each
time, the number of required steps is

See = MTy + MrTy + - - -+ Mr*T,
rktl 1 r? r?

= MT, < r*IMT, <
r—1 r—1 r—

Mﬂftp = Sup7
1
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where T, is the smallest time so that all the chains have coalesced by time 0, and where
we assume that Ty < T, and k is such that r*T; > T.,. The smallest number of
steps possible, S, = MT,, would emerge if we were able to guess exactly right and let
Ty = T.4,- The ratio of the upper bound S,, and S, is 72/(r — 1) which is minimized by
r = 2, and hence the doubling. Similar arguments show that to minimize the expected
number of steps, we should let » = e. With this ratio, the expected number of steps is
bounded above by MeT,,, while the similar bound with r = 2 is M2.897,,. Thus, in this
respect very little is lost by applying the simpler doubling of time.

An important feature of the CFTP algorithm is that the running time is a random
variable that is typically difficult to predict prior to the run. Also, the coalescence time
T.., and the returned value X° are dependent. In fact, a CFTP run is determined by
the sequence of random numbers only and the algorithm stops when it has reached T,
steps into the past, and then outputs the value at time 0. Thus, both the coalescence time
and the sampled value are functions of the same random numbers. This means that an
impatient user who aborts long runs will produce a biased sample, sampled from something
like 7 (- | short runs only). The problem is similar in classic MCMC sampling where there
is a tendency to restart long runs that do not meet a chosen convergence criteria after a
certain number of “unlucky” iterations. The method of Fill, reviewed in Section 8, like
classical rejection sampling, is interruptible, so that runs may be aborted without biasing
the samples.

Figure 1 illustrates the difference of forward coupling and CFTP in Example 1. An-
other nice illustration is provided by Kendall & Thénnes (1998) who compared forward
simulation and CFTP for the Dead Leaves process. The two approaches are illustrated in
an animated simulation on the website http://www.warwick.ac.uk/statsdept/Staff/
WSK/dead.html.

3.2 Monotone CFTP

An unappealing feature of Algorithm 1 is the need to start a chain from every state for a
possibly huge state space S. However, if the state space and the sampler possess certain
monotonicity properties, this can be avoided and the CFTP algorithm may be simplified
considerably.

We first assume a partial order of the statespace S. We say that S admits the natural
componentwise partial order x <y ifz; <y;forj=1,...,N forx,y € S.

DEFINITION 2 A transition rule expressed by a deterministic update function ¢ as in
Definition 1 is monotone with respect to the componentwise partial order if ¢(x,u) <
¢(y,u) Vu when x <y.

PROPOSITION 1

Denote by X,.., and X,,.. the minimum and mazimum elements of S with the componentwise
partial order, so that X, < X < X,... VX. Assume that the update function ¢ of the Markov
chain is monotone in the sense of Definition 2. Then we only need to consider the two
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chains started in x,,,, and X,,,. in the CFTP algorithm, since all the other trajectories will

be kept within these.

maz

When the CFTP algorithm can be modified so that only two chains need to be run, we
shall call it monotone CFTP. Several models 7 and algorithms ¢ have been shown to fulfill
these monotonicity requirements. Propp & Wilson (1996) considered the class of attractive
spin systems from statistical physics. This is a subclass of MRF models that includes the
random cluster model introduced by Fortuin & Kasteleyn (1972) which generalizes the
Ising model and the Potts model. These models are difficult to sample from and MCMC
algorithms must be used for this.

DEFINITION 3 Consider a finite set V of vertices or sites. A spin system is a configuration
X = {X,;v € V} where each element assigns a spin X, to each site v. The spin X, takes
as value either +1 (up) or —1 (down).

The set of all possible spin configurations & then admits the componentwise partial
order. The conditional distribution of assigning spin up to X, in site v given the spins x_,
at all other sites is

W(Xv = _lax—v) -1
(X, =1x_,) ={1+ .
(0= 1) = {14+ Do s
DEFINITION 4 When 7(X, = 1|x_,) is an increasing function in x_,, or equivalently in x,
in the componentwise partial order, the spin system 7 is called attractive.

Attractiveness implies that configurations where neighbouring sites tend to have the same
spin are preferred.

The Gibbs sampler is particularly useful for sampling from spin models. As Theorem 2
states, the Gibbs sampler is monotone for attractive models, and hence monotone CFTP
is possible.

THEOREM 2
The Gibbs sampler is monotone according to the componentwise partial order for attractive
spin systems .

Proof:
For spin systems, the Gibbs sampler may be defined through the update function ¢ given
by

X' = g(x', v, U)
B {(X,, =1,xt,) if U <nm(X,=1]xt,)

3

(X, =—-1,x",) otherwise. 3)
The site to be updated, v, is either chosen at random or found from a deterministic scan-
ning rule. If the system is attractive then 7 (X, = 1]x*,) < n(Y, = 1|y*,) for x* < y’.
Thus if v < 7(X, = 1]x%,) for a realization u of the random variable U™ then also
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u < 7(Y, = 1]yt,) and hence X!*' = V! = 1. If n(X, = 1]x%,) <u < n(Y, = 1]y',)
then X!*' = —1 and V™' = 1. Finally if n(V, = 1|y*,) < u then X! = V! = —1.
In conclusion, ¢(x*,u) < ¢(y"', u)Vu when x* < y* which is the definition of monotonicity. O

ExAMPLE 3 (MONOTONICITY OF THE GIBBS SAMPLER FOR THE ISING MODEL)
The Ising model was introduced in statistical physics as a model for spontaneous mag-
netization of ferromagnetic materials. The model describes a set of interacting magnets,
sometimes in the presence of an external magnetic field.

We consider an Ising model on a finite two dimensional rectangular grid V, where
X ={X,;v € V}, X, € {—1,1} is a configuration of the spins. The interaction between
sites (called pixels in image analysis applications that we will come back to in Section 6)
is described by a first order neighbour system, so that the neighbours of a site are the
sites above and below, and those to the right and to the left. (We assume free boundary
conditions. For instance, in Figure 3 the central site has 4 neigbhour sites, the sites in
the corners have 2, and the remaining sites have 3.) The distribution of the Ising model
without external field and with a constant interaction (3 is

n(x) = exp{B Y aiz;}/ 2,

where 7 ~ j indicates that ¢ and j is a neighbouring pair and Zj3 is the normalizing constant.
For this model we have that

T(X, = 1]x_,) ={1+ exp(—2ﬂ2xj)}’1.

This quantity is increasing in x_,, i.e. attractive, only for # > 0 which induces clustering of
sites with the same spin value. This model is called ferromagnetic, while the opposite case,
B < 0, is referred to as the anti-ferromagnetic, anti-monotone or repulsive Ising model.
Under the influence of an sitevarying external field a, the model admits the form

7(x) = exp{S Z zx; + Z a;ri}/Zs - (4)
i~ J
Since
(X, = 1x_,) ={1+ exp(—Qﬂij - 204,,)}’1,
jr~v

is increasing in x_,, the Gibbs sampler is also monotone for the Ising model with an
external field. <

When consulting the literature on exact simulation, the reader will find that most
attention is given to the Gibbs sampler, which is a result of the important monotonicity
property of this sampler. There is however nothing in the CF'TP algorithm that says that
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the chain has to be a Gibbs sampler. A popular alternative is the Metropolis-Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970) and the MCMC literature contains a
lot of discussion on what chain is most suitable in various settings, see Tierney (1994) for a
discussion. The Metropolis-Hastings algorithm is however not generally monotone for the
componentwise partial order. As Theorem 3 shows, the Ising model is an exception when
one site only is updated in each iteration.

THEOREM 3

The Metropolis-Hastings algorithm with uniform proposals that updates one site in each
iteration 1s monotone with respect to the componentwise partial order for the ferromagnetic
Ising model on a two-dimensional grid with or without a sitevarying external field.

Proof:
Let Z, be a candidate value for site v in the Metropolis-Hastings algorithm, drawn uni-
formly from {—1,1}. The update function is

Xt+1 — ¢(Xt,Zv, Ut—l—l)
_ {(Z,,,xt_v) it U <r(xhz,)

x! otherwise,

where 7(x', z,) = (2, xL,) /7 (x") = exp{(2, — 7}) (8., T + &) }. For realizations z,

and u of Z, and U the algorithm is monotone if ¢(x’, z,,u) < ¢(y?, 25, u) for x* < y'.
When z, =1 (z, = —1) this is equivalent to 7(x%, z,) < r(y’, z,) (r(x!, z,) > (¥, 2,)).
We first consider the case when z! = y!. If 2, = 1 then z, — 2t = 2z, — ! > 0. Since
> jew Th < D0 0, Yj, this implies that r(x', z,) < r(y*, z,). Similarly if z, = —1 we have
that z, — 2t = 2z, — ¢! <0, and 7(x*,2,) > r(y% 2,). We then consider the case when

zt <yl If z, = 1, then 2, —y! = 0, and r(y*, z,) = 1, and the proposal is always accepted.

If z, = —1, then 2, — 2! =0, and r(x’, z,) = 1. In both cases the order is preserved. This
proof holds for all values of o, and thus monotonicity for the Ising model with and without
a sitevarying external field is proved. O

A componentwise partial ordering does not represent a full ordering of a state space
S. Given two arbitrary elements of S, it will often not be possible to say which is the
largest. For multivariate models like the Ising model, this means that samplers that update
blocks (more than one element per iteration) can not be monotone with respect to the
componentwise partial order. The following example gives two illustrations.

EXAMPLE 4 (NON-MONOTONICITY OF THE METROPOLIS-HASTINGS SAMPLER)

(a) Consider the three configurations of the Ising model in Figure 3 (a) for which z < x' <
y! in the partial order. Assume that each site is numbered from the top left to bottom
right, and that an external field is present. We find that 7 (z)/7(x") = exp{45 — 2y} and
7(z)/7(y") = exp{128 — 2(as + ag)}. Thus for several realizations u and values of 3, as
and ag we have 7(z)/7(x") < u < 7(z)/7(y") (try 8 =1/3, a5 = a9 = 1, u = 0.8), and
thus ¢(x!,z,u) > ¢(y*,z,u), and the order is reversed.
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(b) For the configurations in Figure 3 (b) we have that 7(z) /7 (x") = exp{125} > n(z)/7(y") =
exp{—24} for an Ising model without external field. Thus for > 0 we may find realiza-
tions u € (exp{—283}, exp{12/3}] so that ¢(x',z,u) = z and ¢(y’,z,u) = y*, which can not
be ordered with respect to the componentwise partial order. <&

[Figure 3 about here.]

The componentwise partial order is not the only possible ordering of the state space.
Proposition 1 is stated for this ordering, but it is easy to realize that monotone CFTP
is valid for any other ordering of the state space with a minimum and maximum element
and an update function that is monotone with respect to that ordering. Here is an exam-
ple: Assume that candidate values z in the Metropolis-Hastings algorithm are drawn from
a distribution ¢ independent on the current state of the chain and accepted with prob-
ability a(x*,z) = min{1, (7(z)q(x"))/(r(x")q(z))}. According to the ordering < ,where
x Xy & 7(x)q(y) > m(y)q(x) the Metropolis-Hastings algorithm is monotone for all tar-
get distributions. This ordering was suggested and its monotonicity proved by Corcoran
& Tweedie (1998). In most situations this ordering is not directly applicable, since one
would need to know the minimum and maximum of the target distribution to implement
CFTP.

4 Results on Coalescence Time

As in Section 3.1 we let X*2(¢1,x,,) be the state at time ¢, of a Markov chain started from
state x,, at time ¢, t; < t5 and we let X? (t1,%) denote the jth element of this vector,
j=1,..., N. We will need some definitions in order to make precise statements.

DEFINITION 5 Let the forward coalescence time T;, be defined as the time to coalescence
in a forward simulation where chains are started at time 0. If the sampler is monotone with
minimum and maximum elements, X,.;, and x then T;, = min{t > 0 : X;(O,xmin) =

XE (0, Xoner) V5 }-

max )

DEFINITION 6 Let the backward coalescence time T, be the smallest value of ¢ so that
chains started at time —t have coalesced by time 0 in CFTP. For monotone CFTP it is
Tty = min{t > 0 : X(—t, X)) = X} (—t, Xpna) V5 }-

In Example 1 it is not difficult to see that the distribution of both 7i, and 7., is
geometric with parameter 1/2. This is not a coincidence since by the nature of the two
algorithms T, and T4, will always be governed by the same probability distribution. Many
of the results on the coalescence time of the CFTP algorithm are derived by focusing on
the conceptually simpler forward coalescence time.

THEOREM 4
The distributions of the forward and backward coalescence times T}, and T.,, are identical.
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Proof:
The proof is straightforward with the observation that chains started in —¢ and run to
time 0 yield the same result as if the chains were shifted in time to start at 0 and end at
time ¢.

I

P(T., > t) P(X?(—t, Xomin) 7 X?(—t, Xmax) TOT at least one j)
(X5(0, Xpmin) # X5(0, Xpnor) for at least one j)

P
P(T, > 1).

I

O

In practical situations it would be of great interest to have knowledge about the dis-
tribution of the coalescence time prior to initiating a CF'TP run. Apart from providing
us with information about probable running times, this could allow us to construct a
more efficient search for T,,. General results on the distribution of the running time
are not easily obtained except for very simple Markov chains. However, Propp & Wilson
(1996) provided an upper bound for the expected coalescence time. Let 7 = min{¢t > 0 :

d(t) < 1/e} be the variation threshold of a Markov chain with transition matrix P, where
d(t) = max,yes ||PU(x,-) — P!(y,)|| is the maximum variation distance. For a sampler
that preserves the order of a partially ordered state space and that updates one of the N
components of X at a time (such as the Gibbs sampler or Metropolis-Hastings algorithm

for an attractive spin model), Propp & Wilson (1996) show that
F(T,) < 27(1+ log V). 5)

Roughly speaking the expected time to coalescence will be small if the underlying sampler
converges quickly in total variation distance. In a certain sense this inequality says that
the time to coalescence in CFTP will not be much larger than the time to convergence
for standard forward MCMC. Note that for more complicated models, N is replaced by
the length of the largest totally ordered subset of the partially ordered state space S. In
Propp & Wilson (1998) other results on the running times for different CFTP algorithms
are given.

5 Exact Sampling for Inference

In the previous sections we have been concerned with the problem of generating a single
sample from a target distribution 7. We now investigate how CFTP may be used for
statistical inference which often requires repeated samples from 7 or the calculation of
expectations £ = E {f(X)} for a computable function f and X ~ 7. When iid samples
X!,...,X® from 7 are available, the standard estimate is £ = K f(X*)/K. When
MCMC is used to obtain the K samples, these are both dependent and only asymptotically
7 distributed. A common procedure is to run a long MCMC chain, discard the first part
of the trajectories (the burn-in) and take the average of the remaining samples.
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It is possible to obtain an iid sample from 7 by repeating independent CFTP runs. We
call this approach Independent CF'TP. The approach requires a large computational effort,
and uses only the last value in each CFTP run. Other alternatives make more use of the
generated values. All the methods produce exact samples, but the samples are dependent
to various degrees. We will not argue as to which method is to be preferred, as this will
depend on the sampler and on f.

LoNGg CFTP: Run CFTP to obtain a sample X° ~ 7. Run the chain forward in time from
X0 for T steps. The sampled values X!, ..., X are then all distributed according to
7, but are dependent.

RanpoMm CFTP: Run CFTP to obtain a sample X° ~ 7. Run the chain forward in time
from X° for T steps to produce X', ..., X", Draw K values at random from these
T samples and use these correctly 7 distributed variables as starting values for K
forward simulations of length T,. The resulting values X** ... X%k k=1 ... K
are then 7 distributed, and possibly less dependent than the values obtained by Long
CFTP.

REPEATED CFTP: Run CFTP to obtain a sample X%!' ~ 7. Run the chain forwards
in time for T} steps, to produce X'! ... X0l Repeat independently to produce
XUk o XTok | =1,... K. This gives KT, samples from 7, where the T, values
from one CFTP run are dependent, but different runs are independent.

CoNCATENATED CFTP: Run CFTP to obtain a sample X%° ~ 7. Run another indepen-
dent CFTP to obtain X%!, and let 7} be the time to coalescence for this run. Look
at the trajectory of this last run started in X°° at time —7} and take it as the first
Ty sampled values, i.e. the path from X%° to X%! that we denote X!, ... X7t
counting X%!' = X7 but not X§. Continue with an independent CFTP run, taking
the next T, values to be the path from X%!' to X%2 etc. This produces samples
XUk XTek of random size Ty, k=1,..., K

GUARANTEE TIME CFTP: Fix a time T} to use as initial guess for coalescence time in
CFTP. Follow the scheme of Concatenated CF'TP, but for each CF'TP run, collect
only the T, last values in each path. Thus, the procedure is the same as for Con-
catenated CFTP, but each run generates a fixed number T), =T, k=1,..., K of
samples.

The methods Repeated CFTP, Concatenated CEF'TP and Guarantee Time CFTP were
proposed by Murdoch & Rosenthal (1998b). Murdoch & Rosenthal (1998b) also consider
forward coupling as well as a modification of Concatenated CE'TP where the resulting value
of a CF'TP run is used as starting point to pick a path in the same run. This approach may
look appealing, but due to the dependency between the output value and the coalescence
time it will yield a biased sample and the distribution 7 may be lost.

For all methods except for Concatenated CFTP, the estimator £ = Sr, 3%, f(X5*) /Ty,
(with T}, = T, or T,) is unbiased and consistent. Because of the randomness of the sample
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sizes in Concatenated CFTP, the estimator &* = Y1 Sk f(X5)/ 375 | Tj, must be
used instead to assure consistency. Murdoch & Rosenthal (1998b) approximate the com-
putational cost for Repeated CFTP, Concatenated CFTP and Guarantee Time CFTP (as
well as forward coupling), and compared these strategies for a random walk on the integers
from 0 to 20 with equal probability of stepping up and down a unit, and steps outside the
range being rejected. It would be interesting to compare the various approaches in other
practical problems.

6 CFTP vs. Standard MCMC: Simulation Experiments

Our aim is to do Bayesian image restoration by applying the CF'TP algorithm with Gibbs
sampling to sample the exact posterior distribution. We study a two dimensional binary
image with sites or pizels that are either black (+1) or white (-1). We assume that our true
image is degraded by noise, and that we only observe the noisy image. We will compare the
results on overall running time and misclassification rates of CFTP and classical forward
Gibbs sampling. Convergence of the Gibbs sampler is here determined by the method of
Raftery & Lewis, see Raftery & Lewis (1992, 1996). Such a comparison will give us an
impression of what prize we pay (if any), in terms of running time, to obtain exact samples.

Let X be the true image, and assume apriori that X is distributed according to the
Ising model (Example 3). Let y be the observed image. We assume that the noise is
Bernoulli, i.e. with probability € the color of a pixel is changed, and with probability 1 — €
we observe the true color, independently of the other pixels. The probability of observing
y when x is the true image is

f(ylx) = Hef(mﬁéyj)(l — ¢)l(@i=vi)
J
= (1 ) ey ),

where [ is the indicator function and the pixels are numbered j = 1,..., N. Thus, the
posterior is

7(xly) = F(y/x)n(x)
o exp{ Y aiz; + log((1 - /)23 0},

invj

which may also be regarded as an Ising model with an sitevarying external field (see (4)).
The Gibbs sampler for this model can be expressed by an update function as in (3), with

m(Xo =1L, y) = {1 +exp(=28 ) xj — log((1 - ) /)y.)} .

In our simulation study the true image is a 40x40 realization of the Ising model with
parameter 3 = 0.45 (that we obtained by CFTP, see Figure 5). Noise is added for ¢ =
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{0.1,0.2,0.3,0.4}, and for each noisy image restorations are done for 3 = 0.45 only. Note
that for 8 = 0.45 restoration is quite difficult, due to the occasional single pixels that are
surrounded by pixels of the other color. In a situation with unknown [ one would have to
simulate over grid of € and (3 values or estimate € and [ in some way.

Since the Gibbs sampler is monotone with respect to the componentwise partial order
for an Ising model with external field (see Definition 2 and Example 3), we can apply
monotone CFTP with the upper chain started from the image with only black pixels and
the lower chain from the image with only white pixels. In the Gibbs sampler one pixel
is updated at a time, but we define one time step to be a full sweep where all pixels are
updated in random permutation order, and we only check for coalescence after full sweeps.
As an estimate of the true image we choose the Marginal Posterior Mode (MPM), see
Winkler (1995, p. 219). To approximate it we use 500 Independent CFTP restorations
of the same noisy image. The misclassification rate is the fraction of pixels of the MPM
image that are different from the true image.

In order to compare standard forward Gibbs sampling with CF'TP, we need to estimate
the speed of convergence of the Gibbs sampler chain. The method of Raftery & Lewis is
widely applied, with computer code being available on the Internet. We used gibbsit from
Statlib (http://1lib.stat.cmu.edu/), but an implementation in CODA (Best et al., 1995)
is also available. As for most practical convergence diagnostics, several arguments have
been raised against this method, see for instance Mengersen et al. (1998). For the purpose
of obtaining estimates of the time to convergence in a simple comparison study, we find the
method suitable because this is typically what would be done in practice. We choose to

monitor the magnetization, 4 = >, X;/N, the interaction statistics p = >, ; X;X;/2N
and the fraction of black pixels w = . I(X; = 1)/N, estimated by
1o, 1
CURED SRS 385
t=1 "~ j=1
AT) = - zT:{L S XX
T — 2N = v
1~ 1w
w(T) = TZ{N > I(X; =1},
t=1 ' j=1
where X!, X2, ... X" is the Gibbs sampler chain. In addition we monitor some single

pixels. The method of Raftery & Lewis provides several diagnostics. However, we will
use only the estimated burn-in (the number of sweeps necessary to eliminate the effect
of the starting value) and the estimated thinning parameter (if £ is the thinning, only
every kth iteration is kept after the burn-in). The method is designed for estimation of
posterior quantiles of the statistics of interest. To do this, the method needs as input
a pilot sample, the quantile g of interest, and a precision parameter § (for the allowed
distance between estimated transition probabilities and estimated stationary distribution
in a two-state chain constructed from the input, for details see Raftery & Lewis (1992,
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1996)). Raftery & Lewis (1996) recommended that gibbsit is run for several values of
g, and we have chosen to run with ¢ = {0.025,0.5,0.975} for all the monitored statistics.
We choose as precision 6 = 0.01, which is a weaker requirement than the default which
is 0.001, and pilot samples of length 3000. To our experience the method can be quite
sensitive to the input parameters, and occasionally the estimated burn-ins are very large.
To remove a dominating effect of such instabilities and to exhibit some of the characteristics
of the method, we estimate the burn-in of one run by the 0.75 and 0.90 quantiles of the
estimated burn-ins over all the monitored statistics and over all the values of ¢. Our final
estimates are the mean and standard deviation of 500 independent posterior simulations
with different initial images. Since the estimated thinning turn out to be on average 1, an
estimate of the MPM approximated using 500 simulations following the most conservative
(0.90 quantile) burn-in estimate. The misclassification rates where found for this MPM
estimate.

Table 1 (a) shows the mean and the standard deviation of the time to coalescence based
on the 500 independent CF'TP runs. The numbers are based on the exact coalescence
times, in the sense that the simulations are done by going back in time in steps of size
one. Figure 4 shows density estimates of the distribution of 7., for the different noise
levels. The distributions are all heavily skewed with a tail that increases exponentially in
the noise. In Table 1 (b) the mean and standard deviation of the number of full sweeps
required for CFTP and MCMC convergence are compared. In this comparison we have
used the “doubling of time” approach for CFTP. According to our convergence criteria,
CFTP does not require more computation time than MCMC. In light of (5) this is not
surprizing and we emphasize that we have not manipulated the results in order to favour
CFTP. We have tried to make the comparison fair, and the presented MCMC results are
indeed similar to results we got from inspecting plots of the monitored statistics. The true
and noisy images and the MPM restorations and their misclassification rates are shown
in Figure 5. We see that the misclassification rates are very similar, the largest difference
being for ¢ = 0.4 for which both estimates are quite far from the true image. This is
an indication that standard Gibbs sampling with Raftery & Lewis diagnostics works well.
We conclude that CFTP is an appealing algorithm for simple problems in Bayesian image
restoration, despite requiring more work in implementation.

[Table 1 about here.]
[Figure 4 about here.]

[Figure 5 about here.]

7 Exact Sampling for Continuous State Spaces

For a continuous state space the idea of coupling from the past is not directly applicable
since trajectories from different initial states will not coalesce. Methods that deal with
this problem have been constructed, and exact sampling for some continuous state space



A Guide to Ezxact Simulation 17

distributions is possible. The range of models that can be handled is still limited, but
ongoing research might lead to extensions.

Murdoch & Green (1998) and Green & Murdoch (1998) have developed several exact
sampling algorithms which introduce a discreteness into the state space by updating sets of
states into one single state. We present the simplest of their algorithms, the multigamma
coupler, to illustrate the general idea, and refer to their papers for other algorithms and
detailed pseudo-codes.

For notational simplicity we will in the following description assume & = R, and we let
{X*'} be a Markov chain on § with a stationary density m. The transition kernel of the
chain, f(-|z) > 0, is defined by

/ 7(2) f (y]z)dz = n(y).

As in the discrete case the transitions of the chain are described by the update function ¢
defined so that

P(é(, U) <y) = /_ ’ f(v|z)dv

Two chains {X?} and {X1} started in two different initial states will coalesce at time ¢
if p(z'7!,U) = ¢(25 1, U). The idea is to construct an algorithm that with probability 1
makes a transition, at some random time point, such that ¢(z, U) = ¢(U) and all chains
coalesce into a single state independently of where they originate.

In the multigamma coupler the transition kernel is assumed to be bounded below so
that f(y|z) > r(y) Vz,y € S, for some nonnegative function r. Define p = [ r(y)dy and

R(y) = / " (o)

Qia) = (1= [ {f0i) = r(o)}a.
Define the update function

Rfl(UQ) if U < P

QS(IL',U) = {Q_l(U2|£E) if U1 2 3

where U = (Uy,Us) are independent uniform random numbers. To see that this update
function provides draws from the right transition kernel, note that

P(¢(z,U) <y) = pR(y) + (1 - p)Q(ylz)

ff|:c

If R; denotes the set of states occupied by the Markov chains at time ¢, the multigamma
coupler may be outlined as follows. As for CFTP we start at a time —7" with R_r = S and
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run to time 0. At each time point random numbers U* are drawn. If U} < p the updating
is done via R™!(U%) and the first time this happens R; will shrink to a single state. Then
from this state a single chain is run forward to time 0 using R=! or Q! for the update
according to whether U} is smaller or greater than p. Until U} < p (before R; is reduced
to a single state), R; is set to be S. If the number of states at time 0 is 1, this state is the
returned sample and the algorithm terminates. Otherwise, the algorithm is restarted from
time —27 (or any other timepoint —7" < —T') reusing the previously generated random
numbers from time —7" to 0.

The other algorithms of Murdoch & Green (1998) are called the partitioned multi-
gamma coupler, the rejection coupler and the Metropolis-Hastings coupler. As with the
multigamma coupler these algorithms are based on the idea of updating sets to a single
value, but the assumptions on which the algorithms are based differ from the multigamma
coupler. The couplers are applied to a dataset on pump reliability.

Mgller (n.d.) presented another approach to exact sampling for continuous distribu-
tions, where the user specifies an ¢, and the algorithm returns a simulation with accuracy
within € of 7. If € is the machine precision, we can consider this algorithm as returning an
exact sample. The method is applied to the auto-Gamma distribution for the same pump
reliability data as in Murdoch & Green (1998).

8 Fill’s Interruptible Algorithm

When applying CFTP it may sometimes be tempting to abort long runs that have not
coalesced in favour of a new run with a new sequence of random numbers. Because of the
dependency between the length of the run and the returned value in CFTP, the impatient
user who aborts long runs may introduce a bias in the sense that the finally obtained
sample will not be distributed according to 7. Examples are given by Fill (1998) and
Thonnes (1997). There are some chains that protect against this bias, and Thénnes (1997)
showed that the chain of Example 1 is such a chain.

Fill (1998) introduced an alternative exact simulation for finite state spaces with a
maximal and minimal state based on rejection sampling, which in contrast to CFTP is
unbiased for user impatience, because the output is independent of the running time. Fill’s
algorithm is harder to implement than CF'TP and has received somewhat less attention. In
Fill’s algorithm a Markov chain is started in the minimal state of a partially ordered state
space, and run forward for 7" transitions, where 7" is fixed in advance. The output is then
proposed as a sample, and this sample is accepted if and only if a second chain started in
the maximal state and coupled to the reversed trajectory of the first chain arrives at the
minimal state after T transitions. If it does not, the sample is rejected, and the procedure
is repeated independently of the previous run, with 27" transitions, until acceptance. We
shall now describe the how the forward and reversed chains are coupled.

As with CFTP, Fill’s algorithm assumes that we can construct an ergodic Markov
chain, X% X!, ... with stationary distribution 7 expressed by an update function ¢ and
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iid random numbers U as
Xt—|—1 — ¢(Xt Ut+1).

The state space is assumed to be finite and partially ordered with minimal and maximal
states, X, and X,,.. Let P denote the transition matrix of X. The time-reversal X of X
is defined through the transition matrix P by

5 (y)

P(x = —P(x,y).

(x,¥) 7T(X)(,Y)

In our presentation of Fill’s algorithm we will assume that there exits an monotone update
function for the time reversed chain such that

it+1 _ (Z(it’ Ut+1)_

(Note that this is not required, and a sufficient condition for the algorithm is that P is
stochastically monotone, see Fill (1998) for details.) Fill’s algorithm for exact simulation
is then as follows.

ALGORITHM 2 (FILL’S ALGORITHM)
1. Choose the number of transitions 7" > 0.

2. Generate iid random numbers for the update function, U, U2, ... U7,

3. Use the random number vectors to generate X'*! = ¢(x!, U*!) with X° = x,,,, for
t=0,...T—1.

4. Draw random T numbers U* fort =1,...,T, where Ul is a sample from the con-
ditional distribution of U given ¢(x?~**! U) = x?~*. This is the conditional distri-
bution of U given that it caused the transition from x”~**! to x”~! in the reversed
Markov chain.

5. Start in Y° = x,,, and generate a second chain ?1, e ,XN(‘T according to Yt =

(3", U,

6. If Y? = x,,, accept X7 as a sample from 7, else double T and start from (2), with
new random numbers in step 2 and 4 independently from the previous runs.

max

The proof of convergence of this algorithm is found in Mgller & Schladitz (1998). A
proof of Fill’s algorithm in the general setting is found in Fill (1998). Fill’s algorithm in
the general case, with the only restriction begin that P is stochastically monotone, differs
from Algorithm 2 only in step 4, see Fill (1998) for details. The doubling of the number
of transitions in Algorithm 2 is suggested by Fill (1998). However, the correctness of the
algorithm holds for any non-decreasing sequence of values for 7" > 0.

Fill (1998) compared his algorithm and CFTP for an attractive spin system with a
total of N sites and a random site updating Gibbs sampler. The two algorithms run in
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time of the same order in N. Fill’'s algorithm uses logarithmically more space, as the
space requirement is O(N log N) vs. O(N) for CFTP. However, for this “price” we get an
algorithm that protects against user imposed bias.

Thonnes (1997) extended Fill’s algorithm to situations where the state space is not finite
and does not have a minimal and maximal state. This was done by defining a particular
partial order of the state space as well as states that serve as unique minimal and maximal
states.

Mgller & Schladitz (1998) presented Fill’s algorithm for general repulsive (anti-monotone)
systems which can not be transformed to the monotone case simply by defining a suitable
partial order. To solve this problem sandwiching by having an upper and lower bounding
chain was introduced.

In Murdoch & Rosenthal (1998a)’s extension of Fill’s algorithm, no assumption on
order, monotonicity or discreteness of the state space is required. In their algorithm a
chain is started from any chosen state of S and run forward for 7" steps, and the output is
the proposed sample. Then the direction is reversed and chains are run from all states of S
conditioned on the first chain as in Fill’s algorithm. If the resulting values (at time 0) are
all equal, the proposed sample is accepted. For most sample spaces, running chains from
all states of S and checking them for equality will require methods as those of Murdoch &
Green (1998).

9 Discussion

In this paper we have outlined some of the recently developed methods for exact simulation.
We have focussed on the CFTP algorithm for samplers that are monotone with respect to
discrete and partially ordered state spaces. We have outlined how CFTP can be adapted
to a continuous state space, and we have presented the interruptible method of Fill.

The research and development of exact simulation following the papers of Propp &
Wilson (1996) and Fill (1998) have been extensive. Only a small sample of the quickly
growing literature on exact sampling is mentioned in this paper. We emphasize that
many successful extensions and applications of the basic algorithms have been done for
spatial point processes. Kendall (1998) extended monotone CFTP to the area-interaction
point process where the state space is infinite and does note have a maximal state by
introducing a dominating process. The same paper shows how to apply CFTP to repulsive
point processes, which are anti-monotone. In a follow up article, Kendall (1997), CFTP is
applied to attractive birth and death processes and exclusion processes. The anti-monotone
case is also treated in Haggstrom & Nelander (n.d.a), where simulation results are given
for the hard-core gas model and the random cluster model with ¢ < 1. Haggstrom et al.
(1996) showed how to apply CFTP to the Widom-Rowlinson point process, where there
is no minimal or maximal state, by using two other states in the state space for testing
coalescence. The Widom-Rowlinson point process is also treated by Thonnes (1997) who
extended Fill’s algorithm to this model. Mgller (n.d.) extended CFTP to a class of Markov
random fields (locally specified exponential family distributions) by using Gibbs sampling
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in combination with sandwiching properties. Markov random fields are also treated in
Héggstrom & Nelander (n.d.a). Also, it should be mentioned that the CETP algorithm
has been extended to the Swendsen-Wang algorithm, see Huber (1998a) and Huber (n.d.b).
Propp & Wilson (1998) included several versions of CFTP particularly suited for simulation
of spanning trees on directed graphs.

In conclusion, exact simulation is feasible for sampling from a collection of models.
However, as exact simulation will be difficult to extend and implement for more general
models, it is important that statisticians do not compromise unreasonably with respect to
model choice in order to be able to do exact simulation. The revolution of MCMC that
freed Bayesian users from conjugate priors would otherwise be betrayed.

10 Literature and Software on the Internet

D.B. Wilson’s web-page on exact simulation, http://dimacs.rutgers.edu/~dbwilson/
exact.html/ is continuously updated and is an excellent source of information. The site
includes links to most papers and preprints in the field and has a full annotated bibliogra-
phy available in BIBTEX format. Most preprints are also available on the MCMC preprint
service at http://www.stats.bris.ac.uk/MCMC/. At the present there is no professional
software available for exact simulation. Some authors have made their implementations
available on the web. See for instance Geoff Nicholls page  http://matul.math.auckland
.ac.nz/~nicholls/ for a C code for CFTP with the Metropolis Hasting algorithm. Java-
applets that illustrate CFTP are available at http://markov.utstat.toronto.edu/jeff/
java/ and http://www.warwick.ac.uk/statsdept/Staff/WSK/dead.html.
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Résumé

Cet article présente certains des derniers travaux sur la simulation exacte, et en particulier
I’algorithme CFTP. Les concepts de couplage et de monotone CFTP sont présentés, et
des résultats concernant les temps de calcul de ’algorithme sont décrites. Des nouvelles
expériences de simulation pour le modele d’Ising sont données, et les résultats sont com-
parés a ceux du MCMC classique. La méthode interruptible de Fill (1998) et de Murdoch
& Green (1998) pour ’échantillonage exacte d’une distribution continue sont présentées.
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Table 1

The left table (a) displays the mean and standard deviation of the time to coalescence
based on 500 independent CFTP runs for the noisy images in Figure 5. The right table
(b) shows the number of full sweeps required by the CETP algorithm and standard MCMC.
For MCMC the estimates are based on the 0.75 and 0.90 quantiles over all the monitored
statistics and values of q, and for CFTP the numbers are based on a “doubling of the
time” approach.

(a) (b)

MCMC CFTP
0.75 0.90
€ E(chtp) sa(chtp) € | mean sd mean sd | mean  sd
0.1 10 2 0.1 309 684 548 994 26 8
0.2 26 7 0.2 340 656 744 1853 71 25
0.3 63 17 0.3 385 402 978 2128 175 65
0.4 300 110 0.4 716 1072 2397 3494 860 357
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Figure 1. The left panel illustrates forward coupling for Example 1, and the right panel
tllustrates CFTP for the same example. In both erxamples the same sequence of random
numbers is used, and we see how forward coupling always will happen in state 0, while with
CFTP the chains coalesce in state 0, but the state at time 0 may be either 0 or 1. For
instance, for U=2 < 0.5 then X° would be 0. To understand the right panel, the reader
should try startingfrom times t = —1,—2, ... etc. The solid line indicates the final path.
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Figure 2. Illustration of coalescence in Fxample 2. The left and right panel show the
updating of the first and second element of X respectively. The dotted lines show the
updating for U < 1/2 and the solid lines for U > 1/2. The same random numbers are
applied for all 4 chains, and thus for each update we only get dotted or solid lines.
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Figure 3. Configurations from the 2D Ising model on a 3 x 3. In (a) z < x' < y' with
respect to the componentwise partial order. In (b) x* <y', while z can not be ordered.
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Figure 4. Density estimates of the time to coalescence for the Ising 0.45 prior degraded
by different amounts of noise.
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Figure 5. The top image shows a simulation of the Ising model with = 0.45 using
CFTP with the Gibbs sampler. The second row of images shows the top image degraded
by various levels of noise. The third row shows the modes of 500 simulations from the
posterior using CFTP and the Gibbs sampler with 3 = 0.45. The misclassification rates
are shown in the headings. The bottom row shows the modes and misclassification of 500
MCMC simulations following the conservative burn-in estimates of Table 1 (b).



