Generalized Two-Tier Relevance Filtering of Computer
Game Update Events

Lars Aarhus
Norwegian Computing Center
Postboks 114 Blindern
NO-0314 Oslo, Norway

aarhus@nr.no

ABSTRACT

In this work-in-progress paper we present a relevance filtering scheme for a
two-tier server architecture optimized for massive multiplayer online games.
We distinguish between interest management of server tier game state and
bandwidth adaptation of concentrator tier client link thresholds, making
the concentrator tier totally application independent. An initial prototype
has been implemented, demonstrating significant reductions in update event
rate without loss of playability.

1. BACKGROUND

Multiplayer computer games are increasingly popular in the pub-
lic. For a long time they were limited to non-distributed desktop
games, with up to four players in the same room, but in recent
years massive multiplayer online games have caught on. No longer
restricted to military virtual environments in dedicated networks,
e.g., SIMNET and NPSNET [6], distributed real-time computer
games communicating through the Internet is now a fast growing
field, e.g. Ultima Online, Everquest and Anarchy Online. All these
games face the same problem of scalability - how to accommodate
as many users as possible within the same game [3].

1.1 Scalability Challenges

Approaches for scalable server architectures typically involve
distributing the server across several entities. Distributed server ar-
chitectures spread the server load on several machines working in
parallel, usually with separated computing tasks. We use the term
two-tiered for server architectures where network communication
is limited to a dedicated concentrator layer. The architecture out-
lined in this article is both distributed and two-tiered.

The client-server networking also poses the challenges of effi-
cient bandwidth usage between server and clients, typically involv-
ing a combination of different techniques.

— Data Compression of transmitted game updates.

— Relevance Filtering by transmitting only a subset of game
updates based on the interests of each client.

— Multicasting of game updates by group communicating iden-
tical messages to several clients.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NetGames 2002, April 16-17, 2002, Braunschweig, Germany.

Copyright 2002 ACM 1-58113-493-2/02/0004 ...$5.00.

Knut Holmgvist
Norwegian Computing Center
Postboks 114 Blindern
NO-0314 Oslo, Norway

holmqgvist@nr.no

Martin Kirkengen
Norwegian Computing Center
Postboks 114 Blindern
NO-0314 Oslo, Norway

martin@nr.no

Of these techniques, only relevance filtering will be discussed in
this article. Our distributed, two-tiered architecture places certain
demands on the relevance filtering, which again provides interest-
ing new functionalities.

1.2 GISA

GISA (Generic Internet Scalable Architecture) is a 3-year project
(2001-2003) aimed at developing a middleware architecture able to
support massive multiplayer online games. The strong scalability
requirements have lead to the development of a two-tiered server
platform.

The main focus of GISA in its first year is on developing gen-
eralized methods for relevance filtering of game updates between
players.

Gaming networks also face the problem of latency (end-to-end
delay) between the players. The design presented in this article is
optimized to reduce latency. It also includes methods for latency
masquerading, using dead reckoning to predict local client states.
We have developed a method for time synchronization of clients us-
ing TCP, to allow timestamping of events. However, these methods
are not the topic of this article.

2. ARCHITECTURE

The GISA is a scalable client—server architecture in which the
server side is organized in two tiers: the server tier, which contains
the game state logic, and the concentrator tier, whose task it is to
perform connection and bandwidth management.

server tier

concentrator tier

clients

Figure 1: Architecture tiers.

The architecture makes two important assumptions about the char-
acteristics of the network infrastructure:

— The network between servers and concentrators is character-
ized by high bandwidth, low latency, and low packet loss.

— The network between concentrators and clients is in the worst
case characterized by low bandwidth, high latency, and sig-
nificant packet loss.

The architecture was selected to optimize scalability, while al-
lowing the maximum interaction between all players.

2.1 The Server Tier

The server tier is a distributed system that supports distribution
of the game state over a number of physical machines in order to
handle the load. Each server in the server tier communicate with all
the other servers and all the concentrators.

A server is an event based system; it receives events from various
sources, and according to its internal state (called the world model)
it generates new events that are routed to the appropriate recipients.
Since the server tier distributes the game state over several servers,
events generated by the world model of one server may need to be
passed to the world model of another server.

The rationale for the event-based design is that the server tier
must be able to handle massively parallel real-time games. The
event-based system allows asynchronous communication within the
server tier, and is more robust to client-concentrator latency. A
turn-based system would not be able to handle these demands ad-
equately, as waiting for one client will reduce playability for all
the others. In our system, only players in direct interaction with the
high-latency client will be affected.

2.2 The Concentrator Tier

The concentrator tier consists of a set of concentrators, each of
which is connected to all the servers and a large number of clients.
Events received from clients are routed to the servers in the server
tier. Concentrator functions include

— connection and bandwidth management
— event routing between clients and servers
— duplication of events to clients

— filtering of events to clients

A concentrator adapts to the characteristics of the network that con-
nects its clients, so that even players using clients on poor connec-
tions can get a subjectively good perception of the game.

Clients connect to concentrators based on network topology, not
their position in the game world. The concentrators are constructed
to be application independent, allowing multiple games to use the
same concentrators, even simultaneously.

2.3 The Client

The client communicates with the user through a graphical user
interface and maintains a partial model of the game state. This
model is not necessarily accurate; the game state maintained by the
server tier is by definition correct, and the client state may deviate
slightly from this state.

The client game state is updated by events sent from the server
tier via the concentrator tier, and player action events are sent from
the client to the server tier. The client is robust towards varying
network conditions, but the gaming experience may suffer.

Also, the correct operation of the GISA middleware architecture
does not depend on the correct operation of the client; the middle-
ware is not affected if the client should crash or get disconnected
from the concentrator. While in some games, like real time strategy
games, this will lead to a breakdown of the gaming experience, it
matters less in a persistent role-playing game.

3. RELEVANCE FILTERING

The purpose of relevance filtering is to ensure that each client
receives as much information as possible about that subset of the

game world that is relevant to the player. Two principally differ-
ent definitions of relevance can be discerned. One is based on the
server-side game state, and is based on the players interest in the
data. The other considers the transmission process, where data can
become more or less relevant depending on transmission delays or
previous transmission priorities or failures. The following exam-
ples illustrate this:

1. Arock artist enters stage. Everyone in the room will immedi-
ately know. People a block away will not know at all, and in
general, do not care. Relevance is defined by what is visible,
audible or interesting, based on the game state.

2. Fast movements in combat. During fast combat-like inter-
action, the important information is the exact, instantaneous
position. If a packet describing this information has not been
transmitted by the time a new position is estimated, the pre-
vious packet is obsolete and should not be transmitted.

Decisions based on game state have to be made on the server, as
the game rules and state are not known to the concentrator. But the
server has no knowledge of the network conditions a given client
is experiencing at a given time, so decisions based on the transmis-
sion process have to be made by the concentrator. This leads to the
following, important definitions:

— Interest management - server-side relevance filtering based
on game state.

— Bandwidth adaptation - concentrator-side relevance filter-
ing based on networking conditions.

3.1 Related Work

Interest management for update events has a long history, in
particular within the field of large-scale virtual environments and
distributed simulations. Various schemes have been suggested in
conjunction with the High-Level Architecture (HLA) of US mili-
tary simulations. Common to most systems are single-tier filtering,
static IP multicast event distribution and an inherent assumption of
reasonably predictable network conditions. See [5] for a survey.

In [1] a three-tiered approach for interest management is sug-
gested, utilizing dynamic IP multicast group assignment. It oper-
ates with dynamically changing regions, and two levels of fidelity
and update rate, in addition to a protocol dependent third tier.

In [8] the focus is on partitioning and distributing the shared state
in distributed simulation. A hierarchical, multi-level dynamic inter-
est management scheme is suggested, using “spheres of influence”
for load balancing of shared state processing.

In [4], filtering and addressing, two techniques to scope delivery
of content to interested receivers in IP multicast are contrasted. It
is shown that addressing is preferred to filtering given that multiple
multicast groups are easy to create and manage, which is not the sit-
uation in the current Internet architecture. Filtering in this context
is broadcasting of data to all receivers using a common multicast
group followed by receiver filtering prior to passing data to the ap-
plication.

Bandwidth adaptation has to some extent been approached in
two different ways. In first-person-shooters, UDP is used for over-
ridable messages like movement and TCP for critical messages like
killed players or demolished structures. Some military applications
with QoS guarantees, allow graded interest definitions with a run-
time threshold adaptation [6, 7]. We do not know of any attempts to
combine these two approaches, or to perform the threshold adapta-
tion with unpredictable bandwidth.

3.2 Interest Management Generalization

Interest management is often referred to as “area of interest man-
agement”. This is due to the strong connection between spatial rep-
resentation and relevance. Most sensory mechanisms and interac-
tions are based on objects being close to the player in space.

However, many intuitive distinctions of “interesting” are not com-
patible with fixed “areas”, the way these are traditionally defined.

First, different interactions have different ranges, so one should
consider a different “area” for each type of interaction. Some of
these “areas” can be more general parameter spaces, like a radio
frequency band [7]. Similarly, a person you know will stand out in
a crowd, even if you notice no one else, and hearing your name spo-
ken at a party will immediately draw your interest even though you
have heard nothing else of the conversation. Also, as the interaction
is centered on the player, every player will have his own notion on
what is the optimal area definition.

This concept is elaborated and generalized in [2], which intro-
duces a spatial model of interaction for objects (e.g. players), in-
cluding key abstractions such as aura, focus and nimbus.

In addition to the potential interest because of the interaction,
what is perceived through the interaction is of graded importance.
While you may ignore a person walking slowly, you may notice the
same person in the same position making a fast change of direction.
This change will also make any client side prediction being signifi-
cantly poorer, as the client will expect the old behavior to continue
until told otherwise. Thus some state changes are more important
than others, even though the interaction is the same.

Because of this multitude of simultaneous “area” and “impor-
tance” definitions, we have chosen not to limit the interest manage-
ment to the traditional concept of “events in the same area”. A set
of interest metadata is used, describing the criteria for judging the
relevance of a certain event or group of events for a given player or
a group of players, similar to the approach used in the HLA [7].

Another important aspect that is considered in our approach is
that of “graceful degradation”. If the standard interest classifica-
tion leads to too much total data being marked as interesting, be-
cause a room is overcrowded, or if the available bandwidth sud-
denly drops, this should not lead to critical errors in the client game
state. This includes protecting clients from having some data con-
sistently starved, by increasing the priority of messages replacing
discarded messages.

3.3 Selected Approach

Based on the above considerations the relevance filtering is di-
vided into the following separate functionalities:

1. Interest indication and subscription. The process where the
server defines what types of events a certain client is inter-
ested in. This is an arbitrary, game specific process, and can
be linked to the collision detection, or changes in certain pa-
rameters. The results of this process are transmitted to the
concentrator as subscription messages.

2. Metadata marking of events. The server side marking of
events must obviously match the marking used in the sub-
scription process. Events are marked as referring to a given
object, but in addition they are to be filtered by an “interest-
defining-object” (which may be the same as the handling
object), and they are given an objective “importance”. The
event is then transmitted to the concentrator for filtering.

3. Event filtering due to subscriptions. On the concentrator,
events are passed through the subscription list. In this step,
the importance of the event must be determined from the

combined values of the event importance and the client’s in-
terest. This step may also easily be modified to accommodate
multicast groups.

4. Individual bandwidth adaptation. Finally, the concentrator
transmits events as fast as possible, always picking the most
important event to be sent next. If a new event arrives that
refers to the same information as a previous unsent event, the
old event is discarded, and the priority of the new event is
increased, up to a maximum. Different algorithms, e.g. loga-
rithmic increase, may be used for the priority calculation.

| > individual client

2
event generation <
4

[~ individual client

1b M 3 M
interest tables . .

la

interest filter

server concentrator

Figure 2: Relevance filtering functionalities.

Two important issues must be noted. First, we require the changes
in potential relevance to occur much less frequently than the actual
number of events. This is necessary to justify the proposed archi-
tecture.

Second, the concentrator side functionality can be made totally
application independent. The concentrator only regards the abstract
“interest-defining-objects”, the client connections and the “impor-
tance”, the rest being totally encapsulated in the event packets. All
game specific logic is restricted to the server. This also allows run-
time updating of the server without affecting the client connections.

4. MULTI-TAG: AN IMPLEMENTATION

In order to demonstrate the GISA middleware architecture we
developed a net-based version of the children’s game Tag, only with
multiple “tagged” players, hence Multi-Tag. The “tag” is trans-
ferred from one player to the next in collisions. The game was se-
lected because it is intuitive, with simple objectives and interface,
while being very vulnerable to latency or game state inconsisten-
cies. The game is implemented in Java, using only TCP connections
so far.

The user interface of the game has two panels. The largest panel,
called the “main view”, represents a relatively small area around
the player on the playground. A smaller panel, called the “min-
imap” shows the whole playground, with an indicator of where in
the playground the “main view” is located.

Multi-Tag let us demonstrate several aspects of interest manage-
ment. “Standard” area of interest management is used by transmit-
ting all events occurring inside the “main view”, and only impor-
tant messages outside the “main view”. Normal movement (minor
changes) are marked as unimportant, and collisions (major changes)
are sufficiently important to be transmitted. Other relevance filter-
ing concepts are used to mark all the tagged players as interesting to
everyone else, without even changing the interest tables as players
are tagged/un-tagged. The “minimap” gives a good visualization
of the relevance filtering, as un-tagged players outside the “main
view” move jerkily, or not at all, while the tagged players move in
real time.

Figure 3: Multi-Tag user interface and playground.

From the clients, each player keystroke is transmitted, with the
time and position when it was pressed. “l-am-alive” events are reg-
ularly sent to avoid uncertainty in whether packets have been lost.
The server interpolates between these discrete positions and sends a
confirmed position back to the players, or a new position and speed
if a collision has occurred.

For demonstrational purposes the different interest management
schemes can be turned on and off.

4.1 Results

So far, significant reductions in update event rate (up to 90% un-
der some conditions) have been demonstrated, without introducing
any observable extra latency or reducing playability of Multi-Tag.
The effect of the relevance filtering will obviously depend on the
size of the “area of interest”relative to the full game world, avail-
able bandwidth, and the tuning of the different interest definitions.

We do not include proper statistics as all testing has not yet been
completed. The proposed relevance filtering approach has been
tested in lab environments with server and concentrator tier on dif-
ferent physical machines, as well as clients connected over fast Eth-
ernet links. However, the real interest is to observe the effect in
home environments with low-bandwidth, high-latency clients e.g.
connected through traditional modems.

Also, any reduction numbers are game dependent and difficult
to compare. A 60% reduction in update event rate for Multi-Tag as
typically observed, does not reduce the playability of that particular
game. Whereas a lower, e.g. 40%, reduction for another type of
game might do, since the playability threshold is lower.

5. DISCUSSION

This work-in-progress paper presented a generalized two-tier
server approach for relevance filtering of computer game update
events. Server scalability was the main motivation for the architec-
ture, but the constraints posed by the architecture helped structuring
the relevance filtering properly, and led to the distinction between
interest management and bandwidth adaptation.

The architectural separation of interest management and band-
width adaptation offers easy balancing between the two concerns,
as well as concentrator independence when the application game
logic is modified. Changing the game on the server does not influ-
ence the concentrator, which is advantageous for real-world game
providers.

Our approach is two-tiered, but the tiering is server architectural,

not protocol focused as in [1]. However, support for multicast can
easily be included in the concentrator tier by assigning different
subscription groups to multicast addresses at protocol layer. The
need for shared state distribution and processing is reduced by dead
reckoning methods at the clients and our choice that game state is
residing on server.

Since our relevance filtering is performed in the two-tier server,
and not in the receivers (clients), the findings in [4] concerning re-
source inefficiency of filtering in network and clients are less valid.
On the other hand, sufficient server and concentrator processing
resources are more critical because of necessary subscription man-
agement.

The time synchronization of our approach tries to account for the
varying latency between entities (clients). The event-based server
ensures robustness to communication failures with clients, only the
players interacting directly with the failing client will be affected.

The total design aims at relatively massive number of players, in
the hundreds or thousands, but we have only been able to perform
a limited testing so far.

In the next two years the relevance filtering subscription methods
will be further enhanced and tested in the GISA project. More real-
world experience and concrete update event reduction numbers will
be gained as the approach will be evaluated in other demonstrator
applications besides Multi-Tag.

6. ACKNOWLEDGMENTS

Thanks to Syncrotec A/S and Norwegian Research Council for
funding the GISA project.

7. ADDITIONAL AUTHORS

Additional authors: Thor Kristoffersen (Norwegian Computing
Center).

8. REFERENCES

[1] H. Abrams, K. Watsen, and M. Zyda. Three-tiered interest
management for large-scale virtual environments. In
Proceedings of 1998 ACM Symposium on Virtual Reality
Software and Technology (VRST’98), Nov. 1998.

[2] S. Benford, J. Bowers, L. E. Fahlen, and C. Greenhalgh.
Managing mutual awareness in collaborative virtual
environments. In Proceedings of 1994 ACM Symposium on
Virtual Reality Software and Technology (VRST’94), Aug.
1994,

[3] C. Fitch. Cyberspace in the 21st century: Scalability with a
big ’s’. Gamasutra.com, Feb. 2001.

[4] B. N. Levine, J. Crowcroft, C. Diot, J. Garcia-Luna-Aceves,
and J. F. Kurose. Consideration of receiver interest for ip
multicast delivery. In Proceedings of 2000 IEEE Infocom,
Mar. 2000.

[5] K. L. Morse. Interest management in large-scale distributed
applications. Technical report, Department of Information &
Computer Science, University of California, Irvine, 1996.

[6] S. Singhal and M. Zyda. Networked Virtual Environments.
Addison-Wesley, 1999.

[7] R. Smith. Cutting-edge techniques for modeling and
simulation. Tutorial, Game Developers Conference 2001, Mar.
2001.

[8] G. Theodoropoulos and B. Logan. An approach to interest
management and dynamic load balancing in distributed
simulation. In Proceedings of the 2001 European Simulation
Interoperability Workshop (ESIW’01), pages 565-571, June
2001.

