
Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Information Models for Component
Design, Implementation and Documentation

Egil P.Andersen
Norwegian Computing Center

P.O.Box 114, Blindern, 0314 Oslo, Norway
Tel: +47 22 85 25 94, Fax: +47 22 69 76 60

Egil.Paulin.Andersen@nr.no

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Information Modeling
Motivation

To characterize two kinds of information models (IM's) that play different roles in the design,
implementation and documentation of a set of related software components.

This to avoid that implementation-oriented issues (at least to a lesser degree) "clutters up" the
conceptual view provided to clients working with these components.

Information Modelling
• a well-known topic (ER published '76)

• to model the information in which we are interested for a particular system, i.e., facts,
knowledge, etc, about what we perceive to be objects in the system being modelled, and this
described as structural relationships between the objects involved.

"Traditional" Information Modeling
• In database terminology an IM is a

schema; e.g. consisting of tables,
columns, keys, etc, in a
relational database.

• In logical database design an IM is
expressed as an ER-like model,
consisting of entities, attributes of
entities and relationships
between entities.

DB Schema

employee

employer

member responsible

Project
Member

Person

Project

Company

1 1

1
*

*
*

*

*

implement

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Component Object Models
• In component systems an object model consists of classes, interfaces, functions, etc, typically

specified by an IDL.

• Example: Rational Rose
COM/Automation interfaces
illustrated in VB Object Browser

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Implementation versus Interface Information Models
Two different kinds of IM for component-oriented systems where component implementations are

encapsulated behind interfaces of functions offered to their clients

Interface Information Models (IntIM)

Conveys the common understanding necessary between a client and a set of related components
by describing which objects are made available by the components,
which information must be provided when
invoking a function,
which information will be received,
what is the effect of invoking this function

Implementation Information Models (ImpIM)

A basis for implementing the components
common

understanding

information viewpoint

Interface
Information Model

Student

Grade

Course

Exam

implementation

Implementation
Information Model

Client

computational
viewpoint

components
(IDL specification)

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Example - An Electronic Patient Record (EPR) Server

Based on the results of Synapses - an EU project for the standardization of EPR's

RecordElement
nodeID : string
localID : long
className : string
type : short
logTime : date
logUserID : string

Property
name : string
value : string
logTime : date
logUserID : string

1*
dynamic
attributes

succ pred0..10..1 *
below

0..1

target
0..1

*

above

hyperLink

object class1*

*

RecordElement
recordID : string
localElementID : long
classID : string
logTime : date
logUserID : string

Property
name : string
value : string
logTime : date
logUserID : string

DocumentItem
localClassID : long

HyperLink

Record Folder Document

DataField

below

0..1 abovesucc

pred

0..1

1

0..1
0..1

* 1 *

*
below

1*
dynamic
attributes

1 *

above

succ pred0..10..1

succ

pred0..1
0..1

target0..1*

Implementation Information Model

Interface Information Model

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Implementation-Oriented Information Models
Goals: a) to represent the information of interest, and b) to assure consistency in this information

Assure Consistency - Elementary Associations - Normalization
• Find elementary associations -

associations that are sufficiently small to avoid the "repetition of information" and "the inability to
represent certain information" problems, but not so small that they imply a "loss of information".

• Handled by a normalization process - but the technical details of normalization theory is not a
prerequisite for good modelling.

Avoid Redundancy - Derivable Associations - Pragmatic considerations
• Derivable associations should be "read-only" and computed on demand to avoid redundancy that

can lead to inconsistencies
• In practice not always possible - the essence is to be aware of it

Constraints and Business Rules
• Constraints are equally important to associations in defining which information can be represented
• What are derivable associations depends upon the business rules

Change Control
• Changes in ImpIM are often expensive
• ImpIMs are often made general and generic to better support changes
• It is easier to add, change or remove business rules than to change the association structure.

Performance and Platform Oriented
• ImpIM focuses on achieving an efficient and flexible implementation - thus influenced by

performance issues, e.g. relating to the implementation platform

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Relational vs Object-Oriented Information Models

Relational IM: ER-like diagrams, NIAM
Object-Oriented IM: UML Class Diagram, OMT Object Model

A mistake:
"We do OO so we do not need those traditional ER-based techniques, normalization and all that,
it's irrelevant to us"

Behaviour modelling - Interaction Modelling
A key characteristic of object-oriented modeling; e.g. by collaboration diagrams or role models.

Relational databases has implicit access routes via joins
Object-Oriented implementations requires explicit object access routes

Object Information Associations versus Access Routes
Do not mix the two

- How and which information associations to implement is a modeling decision
- How and which access routes to implement is an implementation decision

The use of information associations is strictly ruled by
the information they represent, and
the constraints that apply to them.

The use of access routes is only concerned with
how to achieve efficient access - they can be added and
removed however it serves the implementation best.

information
association

Customer
owner

ATM

Account
Manager

Account

cashwithdrawal
object
access
routes

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Interface Information Models
Interface Information Models (IntIM) are made to provide a description and documentation of

how to use a set of related software components

A set of related components should always be accompanied by a corresponding IntIM

Change Control
IntIM is part of the contract between the components and their clients
Changing them is a "paper excercise", but clients are affected

IntIM can be more domain specific
There is no benefit in making an IntIM more general or generic, as when defining ImpIM's

Constraints and Business Rules
Does not concern consistency - only how a client can work with the components

Maximize Encapsulation
An IntIM does not concern how component interfaces are implemented - there need not be any
correspondence between the IntIM and the ImpIM

Confine the effects of implementation changes
- The design of component interfaces should not reveal how they are implemented
- Focus on what an object offers to its clients, not how it does this

Documentation
E.g. IntIM may well describe detailed function signatures for documentation purposes

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Interface Information Models (cont.)

Consistency and Redundancy

• Avoiding redundancy and distinguishing derivable versus non-derivable associations is irrelevant to
IntIM.

Redundancy in an IntIM can do no harm as long as consistency is maintained by the implementation

• Avoiding redundancy in an ImpIM implies that every "piece" of information is stored in one place,
not duplicated several places.

For every constraint that apply to an ImpIM there should be as few objects as possible, preferably
just a single object, in charge of testing or maintaining this constraint.

This is not an issue for IntIM where the same information, or the same functionality, can be offered
several places without introducing redundancy, inconsistencies, or hamper maintenance.

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Implementation and Interface Information Models
of Microsoft Repository

RTIM - Repository Type Information Model
• A domain independent information model
• Made to record and retrievemeta-information on a

variety of domains (e.g. UML, DB Schemas,
Components, Datatypes, and more)

• Basic concepts: Class, Interface, Property (attribute
and method), Collection, Relationship

IClass ==
GetRoles()->IAssociationRoleColl

+ [GetAssociations()->IAssociationColl]
IAssociation ==

GetRoles()->IAssociationRoleColl
+ [GetClasses()->IClassColl]

IAssociationRole ==
GetAssociation()->IAssociation
GetClass()->IClass

Repository UML Information Model
• A domain dependent information model
• Made to record and retrieve meta-information on UML

models (e.g. fromRational Rose models)
• Accompanies COM/Automation interfaces
• Implemented by RTIM
• Currently “too normalized” - should allow for

“redundancy”; e.g. Class-Association-Role relationships

<<derived>>

Association
Role

Class Association

1 1

* *

*2

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Interface Information Models (cont.)

Connected Models and Logical Views

• ImpIM are connected models -
or else models of independent systems

• Several IntIM can offer different logical views
to the same system

RecordElement
nodeID : string
localID : long
className : string
type : short
logTime : date
logUserID : string

Property
name : string
value : string
logTime : date
logUserID : string

1*
dynamic
attributes

succ pred0..10..1 *
below

0..1

target
0..1

*

above

hyperLink

object class1*

Implementation
Information Model

Record Class View
Interface Information Model

DocumentItem
Class

HyperLink
Class

Record
Class

Document
Class

DataField
Class

0..1

*
below

RecordElementClass

classID : string
localClassID : long

Property
name : string
value : string
logTime : date
logUserID : string

1*
dynamic
attributes

1 *

above

succ

pred0..1
0..1

0..1
succ

0..1
pred

Template

Record
Template

Folder
Template

Folder
Class

className:stringclassName:string className:string

1

* *

1
1 1

* *

0..1
above

*
below

representative representative

Norsk Regnesentral / Norwegian Computing Center ICSSEA ’99, Paris 8-10.December 1999

Summary
We can distinguish two different kinds of information models for the design, implementation and

documentation of sets of related software components.

Implementation Information Models (ImpIM)
• Used as a basis for implementing components and their interfaces

• Primary concern is to assure consistency, achieve good performance, and being flexible w.r.t. future
changes

Interface Information Models (IntIM)
• An implementation-independent model that describe the components as perceived by clients using

their interfaces

• Primary concern is conceptually simple (more domain specific), easy to use client interfaces with
proper encapsulation such that technical, domain independent implementation changes are confined
without affecting the interfaces and thus clients.

Similarities
They should both be the results of an analysis/design phase
- for ImpIM to understand and design an implementation, and
- for IntIM to understand and design good client interfaces

They can both be described by the same notation, but
- an ImpIM may not be considered a good IntIM since it is too implementation-oriented, too generic,
or too awkward to use, and
- an IntIM may not be considered a good ImpIM by being too specific and thus not good for
handling changes

