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Abstract— Semantic mapping of land cover is a key, but
challenging, problem in remote sensing. Recent advances in
deep learning, especially deep convolutional neural networks
(CNNs), have shown outstanding performance in this task. In
order to develop refined deep learning pipeline for meeting the
rising need for accurate semantic mapping in remote sensing
images, this paper study and compare a number of advanced
deep learning segmentation architectures, which have obtained
state-of-the-art results on computer vision contests like the
Pascal VOC. To further analyze and compare the effectiveness
of some elaborate layers and underlying structures introduced
by these architectures, we evaluate them by re-implementing,
train and test them on ISPRS Potsdam dataset. Our results
show that a promising performance with overall F1 score above
87% and mIoU of 79% can be obtained by only using the RGB
images, without any post-processing such as conditional random
field (CRF) smoothing. At last, we propose several possible
approaches to further enhance the deep learning architectures
to better deal with high-resolution aerial images. We therefore
consider this work to be helpful for the remote sensing research
community.

I. INTRODUCTION

Semantic mapping has been one of the most active re-
search topics in remote sensing in the past decades, and is
the key problem for land cover mapping, object detection and
change detection in high resolution aerial or satellite images.
In recent years, deep learning techniques have emerged as
the dominating methods for image classification and segmen-
tation [1], and have also gained increasing interest in remote
sensing [2], [3]. Many deep architectures, such as Fully
Convolutional Networks (FCN) [4] , UNet[5] and SegNet
[6], have been adapted in the ISPRS semantic segmentation
challenge [7] and achieved outstanding performance [8], [9],
[10].

In 2017, significant progress was made in the Pascal
VOC[11] scene segmentation challenge. A number of new
deep architectures, such as Pyramid Scene Parsing (PSP)
network [12], Global Convolutional Network (GCN)[13] and
Dense Upsampling Convolution (DUC) network[14], have
achieved the best state of the art performance and, by far,
surpassed the best scores produced by the previous FCN,
UNet or SegNet based methods. Although these new network
architectures have shown very impressive results on natural
image datasets (VOC 2012), they have not been directly
applied to remote sensing images.
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In this work, we analyze and compare the effectiveness
of some elaborate layers and underlying structures newly in-
troduced by these architectures. Our main contributions are:
1) We present how to implement and refine the latest deep
learning architectures with PSP, GCN and DUC for the task
of semantic mapping in high-resolution (6000×6000 pixels)
aerial images. 2) We show how to effectively address highly
imbalanced classes by utilizing median frequency balancing
(MFB) weights [8] in the cross-entropy loss functions. 3) We
evaluate and compare the presented models on the ISPRS
Semantic Labeling Challenge datasets of Potsdam using the
exact same subsets of train, evaluation and test. 4) We
present discussions of the experiment results by comparing
them with previous state-of-the-art models (FCN, UNet and
SegNet ). A number of practical approaches are proposed to
further enhance the deep learning pipeline in remote sensing
images.

II. METHODS
A. Architectures

In this work, we mainly make use of the most recent deep
learning architectures, PSPNet[12], GCN[13] and DUC[14],
which have been proven to provide outstanding results on
the Pascal VOC contest.

The PSP network introduces a pyramid pooling module
to aggregate the context that captures global scene cat-
egories by applying large kernel pooling layers. Dilated
convolutions[15] are used to modify an inherent ResNet[16],
and a pyramid pooling module is added to it. The feature
maps from the ResNet are concatenated with upsampled
output of the parallel pooling layers with kernels covering
the whole, half of and small portions of image as shown in
Figure 1.

Fig. 1. PSP-ResNet architecture [12].

For the GCN architecture, a module called global con-
volutional network (GCN) that are based on convolutions
with very larger kernels and a block called boundary re-
finement (BR), as shown in Figure 2, are adopted into to
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a encoder-decoder pipeline. BR module utilizes a simple
residual structure to refine the predictions near the object
boundaries. A ResNet (without dilated convolutions) forms
the encoder part, while CGNs and deconvolutions form the
decoder linked with BRs as shown in Figure 3 .

Fig. 2. The structures of GCN and BR modules [13].

Fig. 3. Pipeline of GCN-ResNet.

For the DUC architecture, a hybrid dilated convolution
(HDC) framework is adopted in the encoding stage as shown
in Figure 4. HDC is used to alleviate the ”gridding issue”
caused by the standard dilated convolution operation [14].
The DUC module is learnable and performed on the features
provided by a ResNet, which is able to capture and recover
detailed information in the leaning pipeline.

Fig. 4. DUC-ResNet architecture [14].

In addition to the three architectures described above, we
also conduct primary study on the previous appealing deep
learning frameworks covering FCN, U-Net and SegNet. All
these network models are trained end-to-end on the same
dataset (ISPRS Potsdam).

B. Data augmentation and normalization

We extract the image patches (of size 512 × 512) from
the high resolution aerial RGB images (of size 6000×6000)
with 50% overlap. We then conduct augmentation by flipping
left to right and up down, rotating 90, 180 and 270 degrees
which yields 8 times augmented image patches. In addition,
we utilize random rotation of +10 to -10 degree and then
randomly crop small patches of 256× 256 for each training
epoch.

We also normalize image patches with mean and standard
deviation. Given mean: (R, G, B) and std: (R, G, B),
we normalize each channel of the input images by the
following formula, where ch corresponds to each channel
(ch ∈ (R,G,B))

normch =
pixelch −meanch

stdch
(1)

C. Optimizer and weighted loss function

In our work, we choose AdaDelta [17] as the optimizer of
the model, since in practical, AdaDelta seems to be ”safer”
because it doesn’t depend so strongly on setting of learning
rates, and base on our own experiments as well, it always
provided the quickest convergence. In addition, Our goal is to
evaluate and compare each model’s performance, rather than
further push the state-of-the-art results, so we perform all
experiments based on the same optimizer and loss function
instead of trying different ones.

As loss function, we apply a 2D cross-entropy loss func-
tion with median frequency balancing (MFB) weights as
defined in the equations 2 and 3 [8]

Wc =
median({fc|c ∈ C})

fc
, (2)

Loss = − 1

N

N∑
i=1

C∑
c=1

lc
(n) log (pc

(n))Wc (3)

where Wc is the weight for class c, fc the pixel- frequency
of class c, pc(n) is the probability of sample belonging to
class c, lc(n) denotes the class label of sample n in class c.

III. EXPERIMENTS

To train and compare the presented deep architec-
tures, we implement six different models, including U-Net,
FCN8s-VGG16[18], SegNet-VGG19, GCN-ResNet50, PSP-
ResNet50, and DUC-ResNet50. We train and test them on
the same ISPRS Potsdam dataset.

A. Dataset

ISPRS released a benchmark dataset covering the city of
Potsdam that contains 24 6000 × 6000 RGB images anno-
tated by hand with six labels including impervious surfaces,
buildings, tree, low vegetation, car and clutter/background.
To evaluate our models, the labeled part of the dataset is
divided into training validation, and test set. The training set
consists of 19 images (areas: 2 10, 2 12, 3 10, 3 11, 3 12,
4 10, 4 12, 5 10, 5 12, 6 7, 6 8, 6 10, 6 11, 6 12,7 7, 7 8,
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7 9, 7 10 and 7 12), the validation set of 2 images (areas:
2 11 and 4 11), and the test set contains 3 images (areas:
5 11, 6 9 and 7 11).

B. Evaluation methods

The performance is measured by both mean Intersection
over Union (mIoU), and the F1-score defined by the ISPRS
as the following.

F1 score = 2 · Precision · Recall
Precision + Recall

where Precision = TP
TP+FP and Recall = TP

TP+FN , TP stands for
True Positive, FN- False Negative, TN- True Negative and
FP- False Positive.

We train and validate these networks with 256x256 win-
dows of data as input and batch size of 12 as well as other
hyper-parameters settings, except the learning rates that we
use different settings for different models. We test the trained
models over a sliding window (with 33% overlapping of
windows) on a high resolution aerial image and stitched the
predictions together to form the whole semantic mapping
picture.

C. Results

Table I shows our experiment results. The individual
scores are F1-scores and the mean F1-score (mF1) is the
average for the scores corresponding to all labels, except
the clutter/background class. We observe that the DUC-
ResNet50 model achieved the best mF1 of 88.2% and mIoU
of 79.3%, though it was just slightly better than PSP-
ResNet50 (mF1:87.9%, mIoU:78.9%) and SegNet-VGG19
(mF1:87.4%, mIoU:78.1%) (TableI). The PSP-ResNet50 is
more accurate on small objects (car: 81.9% IoU and tree:
73.8% IoU) than other models (Table I), while DUC-
ResNet50 has better predictions on big objects (building:
92.1% IoU, surface: 82.4% IoU and 68.7% IoU). Figure
5 shows a qualitative comparison of the semantic mapping
results for the DUC, PSP, GCN, SegNet, FCN and UNet
models on one of the test images.

We therefore believe that the use of HDC in DUC-ResNet
model enlarges the receptive fields of the network, which is
helpful for better recognizing multi-scale and relatively big
objects (such as buildings, low-vegetation, and surfaces). As
for small objects in remote sensing images such as vehicles,
the PSP module seems to be an effective method to decode
their global context information for better predictions, but it
also leads to expensive computation cost caused by the 3x3
convolutions used to fuse different global pooling results,
which could be an issue in a resource restricted environment.
Comparably, GCN requires considerable less computational
cost among these models and achieved good performance on
most objects except on cars (IoU of 76.4%). The possible
reason is that the default large kernel size (15 used in our
experiments) of GCN is too big to be suitable for detecting
small objects in remote sensing images.

TABLE I
SEMANTIC MAPPING RESULTS ON POTSDAM RGB TEST IMAGES

(F1 SCORE AND IOU FOR EACH CLASS AND AVERAGE F1 SCORE AND

MIOU FOR ALL CLASS EXCEPT THE CLUTTER CLASS ). NOTE THAT FOR

VGG16/19 AND RESTNET50 DEEP NETWORKS EMPLOYED IN THE

PRESENTED MODELS, THEY ARE INITIALIZED BY PRE-TRAINED

WEIGHTS FROM IMAGENET[19].

Models mF1 Building Tree Low-veg Surface Car Clutter
U-Net 0.830 0.930 0.776 0.755 0.860 0.828 0.173

FCN8s-VGG16 0.839 0.937 0.821 0.770 0.870 0.796 0.222
SegNet-VGG19 0.874 0.952 0.825 0.800 0.895 0.897 0.341
GCN-ResNet50 0.870 0.953 0.840 0.799 0.890 0.866 0.297
PSP-ResNet50 0.879 0.953 0.848 0.803 0.893 0.900 0.346
DUC-ResNet50 0.882 0.959 0.842 0.814 0.903 0.891 0.327

Models mIoU Building Tree Low-veg Surface Car Clutter
U-Net 0.715 0.870 0.635 0.607 0.756 0.707 0.095

FCN8s-VGG16 0.728 0.883 0.698 0.626 0.771 0.662 0.125
SegNet-VGG19 0.781 0.909 0.702 0.668 0.810 0.814 0.206
GCN-ResNet50 0.774 0.911 0.725 0.666 0.802 0.764 0.175
PSP-ResNet50 0.789 0.910 0.738 0.671 0.807 0.819 0.209
DUC-ResNet50 0.793 0.921 0.728 0.687 0.824 0.804 0.195

IV. CONCLUSIONS

In this paper, we presented a comparative study of state of
the art deep learning architectures for semantic mapping in
very high-resolution aerial images. We selected and trained
six different cutting-edge deep learning algorithms and eval-
uated and compared the performance of the models on the
ISPRS Potsdam dataset. Based on the results, we conclude
that the DUC model (with mF1 of 88.2% and mIou of 79.3%)
is the best architecture, and we also consider that the use
of HDC in DUC model is helpful for better recognizing
relatively big objects (such as buildings, low-vegetation, and
surfaces). We thus believe that dilated convolution based
algorithms (such as HDC) are promising research direc-
tion to obtain improved results on multi-scale, variable and
ambiguous objects in very high-resolution images. While
global average pooling based methods (such as PSP) could
be helpful for the detection of smaller objects.

We also find from the results that deeper/larger archi-
tectures (such as GCN-ResNet50) may not produce bet-
ter segmentation performance than ”shallower/smaller” deep
networks (such as SegNet-VGG19). It may be related to that
some deeper architectures are more suitable for interpreting
natural imagery than parsing remote sensing images, or
that we need fine-tune some key parameters (such as the
kernel size) and more data to train such networks. Therefore,
when using deep learning networks in remote sensing, it is
important to carefully evaluate the models being applied.

It is also worth noticing that the clutter/background class
got a very low score for each model, while small object such
as the car and tree classes achieved much better performance.
One reason for this may be that the MFB loss function
re-weights each class in the cross-entropy loss according
to the class-weights we set before training the networks.
Thus, we consider MFB an effective method for dealing with
imbalanced datasets in remote sensing. To the best of our
knowledge, this is the first comparison study that focuses
on remote sensing semantic mapping by using a number
of leading deep learning architectures from the latest Pascal
VOC contest.
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Fig. 5. The mapping results on the test image of 5 11 by using sliding window method with trained models. A. a test RBG image (6000 × 6000) of
an example patch (1200 × 1200), B. ground truth, C. predictions from DUC model, D. predictions from PSP model, E. predictions from GCN model, F.
predictions from SegNet model, G. prediction from FCN model, H. predictions from UNet model.
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