
 

Petroleum Geostatistics 
Biarritz, France, 7-11 September 2015 

 

Fr B01
Efficient Neighborhoods for Kriging with
Numerous Data
M. Vigsnes* (Norwegian Computing Center), P. Abrahamsen (Norwegian
Computing Center), V.L. Hauge (Norwegian Computing Center) & O.
Kolbjornsen (Norwegian Computing Center)

SUMMARY
Kriging is a data interpolation method that can be used to populate regular grids from data scattered in
space, and requires the solution of a linear equation system the size of the number of data. When the data
is numerous the speed of the calculation is slow. In this paper we propose to divide the regular grid into
rectangular sub-segments and let all the grid cells in each sub-segment share a common data
neighborhood. The advantage of this approach is that the number of data in the neighborhoods can be
small compared to the complete dataset and it is possible to reuse some of the computations for all grid
cells in each sub-segment. We show that the precision can be controlled through selection of
neighbourhood size, and that the speed of the calculations can be optimized through selection of sub-
segment size. We show that this is an efficient method for kriging when number of data is huge, giving a
significant speed-up even for high data densities and precisions.



Petroleum Geostatistics 
Biarritz, France, 7-11 September 2015 

 Introduction

Kriging is a data interpolation method that can be used to populate regular grids from data scattered

in space. Kriging requires the solution of a linear equation system the size of the number of data. For

numerous data we encounter two problems: The speed of calculations is slow and numerical instabilities

may occur for really large datasets. For this reason many implementations approximate the kriging

system by using subsets of data around each grid node (Chilès and Delfiner, 1999), (Emery, 2009). In

this paper we propose to divide the regular grid into rectangular sub-segments and let all the grid nodes

in each sub-segment share a common data neighborhood. The advantage of this approach is that the

number of data in the neighborhoods can be small compared to the complete dataset and it is possible

to reuse some of the computations for all grid nodes in each sub-segment. We will show that this is

efficient and that we can control the precision of this approximation by choosing the size of the data

neighborhood.

Kriging

Consider a regular grid LD ⊂D where D is a hyperrectangle (orthotope) in R
d . Assume that the grid

LD covers D and contains N grid nodes. The objective is to predict a random field z(x) at each of the N
grid nodes in LD given n observations using kriging.

By organizing the observations of z(x) in a n-dimensional vector z =
[
z(x1),z(x2), . . . ,z(xn)

]
; xi ∈ D,

the (simple) kriging equation reads

z∗(x) = m+k′(x)K−1 (z−m) ∀ x ∈ LD, (1)

where z∗(x) is the predicted value at x, m is the known mean, m is a vector containing m, k(x) =
Cov

{
z(x),z

}
, and K = Var

{
z
}

is the kriging matrix.

Obtaining z∗(x) in (1) is essentially done in four steps. The first step is to establish K, which is an

O(n2) process. Secondly, calculating the Cholesky factorization is an O(n3) process. The third step is

to solve the equation system using the Cholesky factorization. This is done by calculating the location

independent (dual kriging) weights

w = K−1 (z−m). (2)

Solving for the weights is an O(n2) process. The fourth step is inserting the weights in (1):

z∗(x) = m+k′(x) ·w (3)

This is an O(nN) process that is dominated by calculating the n covariances at every grid node.

Data neighborhoods

A common approach to reduce the number of data, n, is to use a moving data neighborhood. This means

that the subset of the data that is closest to a grid node x ∈ LD is chosen when predicting z(x). The

number of data in the neighborhoods is usually chosen quite small (< 100). The downside is that all

four steps in solving (1) must be calculated for every grid node so the CPU time can become long for

large grids.

Instead of looking at grid node specific data neighborhoods we suggest to divide D into sub-segments

where each sub-segment share a common data neighborhood. This has the advantage that the location

independent weights, (2), can be reused for all the grid nodes inside the sub-segment.

For simplicity we propose to use equally sized sub-segments Di that are hyperrectangles in R
d . We

assume that the side lengths of the hyperrectangle D are large compared to the correlation ranges so

that we can ignore boundary effects. Then, the only relevant length scales are the correlation ranges,



Petroleum Geostatistics 
Biarritz, France, 7-11 September 2015 

 {R1,R2, . . . ,Rd}. The side lengths of the sub-segments and the common data neighborhoods are there-

fore chosen proportional to the correlation ranges in each direction. This is illustrated in Fig. 1 for a

two dimensional situation. The size of the sub-segment is SR1 × SR2 and the size of the common data

neighborhood is (2P+ S)R1 × (2P+ S)R2 where S and P are dimensionless proportionality constants.

The constant P tells us how large, in terms of correlation ranges, the data neighborhood extends the

sub-segment.

data neighborhood

sub-segment

�� SR1
�� PR1

�� PR1

�

�

SR2

�

�

PR2

�

�

PR2

Figure 1 Illustration of a sub-segment Di and its corresponding data neighborhood in R2.

CPU time

Consider the data density, ρn = nVR/VD, and grid node density, ρN = NVR/VD, where VD is the volume

of D and VR is the volume defined by the product of the correlation ranges: VR = R1R2 · · ·Rd . The CPU

time per grid node can be approximated by

CPU

N
≈ TK

ρ2
n (2P+S)2d

ρNSd +TChol
ρ3

n (2P+S)3d

ρNSd +TSolve
ρ2

n (2P+S)2d

ρNSd +Tz∗ ρn(2P+S)d , (4)

where the T ’s are time constants that can be estimated, one for each of the four steps in solving (1).

They depend on hardware and implementation.

Choosing the size of common data neighborhoods

The size of the common data neighborhood is determined by P. The choice of P is a compromise

between acceptable error and acceptable CPU time. Let us consider the maximum absolute error (MAE):

MAE = max
x∈LD

∣∣z∗(x)− z∗cdn(x)
∣∣/σ , (5)

where z∗(x) is the kriging predictor obtained using all data, z∗cdn(x) is the kriging predictor obtained using

common data neighborhoods and σ2 = Var
{

z(x)
}

. So the calculated MAE is relative to the standard

error of the random field, z(x).

The relation between P and the MAE can be obtained from simulation experiments. Datasets with 2000

observations are generated on a 1000× 1000 grid at the locations shown in Fig. 2. The data are drawn

at random from a Gaussian distribution with zero expectation, variance one and correlations determined

by the exponential variogram. Data densities of 5, 45 and 80 are obtained using correlation ranges 50,

150 and 200 respectively. A total of 100 samples are drawn for each range, and kriging is performed

for various values of P. Empirical relations between P and the MAE are shown in Fig. 3. We see

an approximate log-linear relation between the MAE and P, and observe that the MAE increases with

smaller data density, ρn.



Petroleum Geostatistics 
Biarritz, France, 7-11 September 2015 

 

Figure 2 Random data locations 
(2000) used in the simulation exper-
iments.

Figure 3 Common data neighborhood size in terms of P 
versus MAE for different data densities, ρn.

Fig. 4 shows the predicted random field and the corresponding error from one simulation experiment for

various P values. We observe that the MAE decreases in the order of one decade when increasing P by

0.5. The edges of the sub-segments are to some extent visible in the predicted random field for P = 0.5,

but not for higher P values.

Minimizing the CPU time by selecting the sub-segment size

For a given P, the sub-segment size S that minimizes the CPU time can be calculated from (4). This is

in principal possible to do analytically but in this case the minimum is unique and more easily found by

a binary search.

The CPU time in seconds versus sub-segment size S is shown in Fig. 5. The figure shows results for the

P value that corresponds to a MAE of 0.01 for data density ρn = 45. Step 4 is only dependent on the

common data neighborhood size; hence the time related to this operation is increasing with increasing S
as P and ρn are fixed. However, for the operations related to the kriging matrix K, i.e. Step 1-3, the time

decreases with increasing S. For a small S, where P � S, the overlap dominates the CPU time for these

steps. We observe that the minimum is found as a compromise between Step 1-3 and Step 4.

As a comparison, for a moving neighbourhood, the sub-segment is the size of a single grid cell. For

a two dimensional case, assuming that R1 = R2 and that the grid cells are square, this corresponds to

S =
√

1/ρN . For a data density of ρn = 45, this gives S = 0.0067. In order to achieve a MAE of 0.01

(P = 1.7) the CPU time is approximately 3.7 hours for this S.

The speed-up for kriging in sub-segments compared to kriging using all data is given in Fig. 6 for MAE

of 0.1 and 0.01. The gain is substantial for small data densities, i.e. up to 40 times more efficient.

However, we observe that also for a higher data density, ρn = 80, the calculation is 2 and 4 times more

efficient for MAE of 0.01 and 0.1 respectively.

Conclusion

Kriging in sub-segments is an efficient method for kriging when number of data is huge. The parametriza-

tion of the problem allows us to compromise between minimizing the CPU time and increasing the

precision. The speed-up of the calculations is significant, even for high data densities and precisions.

References

Chilès, J.P. and Delfiner, P. (1999) Geostatistics; Modeling Spatial Uncertainty. Wiley, New York.
Emery, X. (2009) The kriging update equations and their application to the selection of neighboring

data. Computers & Geosciences, 13:269–280.



Petroleum Geostatistics 
Biarritz, France, 7-11 September 2015 

P = 0.5, S = 0.12 P = 1.0, S = 0.25 P = 1.5, S = 0.39

MAE = 0.34, CPU = 5s MAE = 0.040, CPU = 17s MAE = 0.0088, CPU = 34s

Figure 4 The top row shows the predicted random fields, z(x), for P = 0.5, 1.0 and 1.5. The bottom row
shows the corresponding error, z∗(x)− z∗cdn(x), compared to kriging using all data. The results are from
one simulation experiment for data density ρn = 45. The average numbers of data in the common data
neighborhoods are 53, 198 and 399 respectively.

Figure 5 CPU time for the operations included in
(4) for increasing S. The selected P = 1.7 gives
MAE = 0.01, for data density ρn = 45.

Figure 6 CPU speed-up relative to kriging using
all data for MAE = 0.1 and 0.01, for increasing
data density ρn.


