
 
 

 

 

 

The two subset recurrent 
property of Markov 
chains 

 

[Subject] 
 

 

 

 

 

 

 

 

 

 

 

 

Note no.  ADMIN/01/2016 

 Authors  Lars Holden 

Date  23. feb. 2016 



2 

 



 

 

 

 

Authors 
 Lars Holden 

Norsk Regnesentral 
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, 
non-profit foundation established in 1952. NR carries out contract research and 
development projects in information and communication technology and applied 
statistical-mathematical modelling. The clients include a broad range of industrial, 
commercial and public service organisations in the national as well as the international 
market. Our scientific and technical capabilities are further developed in co-operation 
with The Research Council of Norway and key customers. The results of our projects 
may take the form of reports, software, prototypes, and short courses. A proof of the 
confidence and appreciation our clients have in us is given by the fact that most of our 
new contracts are signed with previous customers. 

 

 



 

4 The two subset recurrent property of Markov chains  

Title The two subset recurrent property of 
Markov chains 

Authors Lars Holden 

Date 23. feb. 2016 

Year 2016  

Publication number ADMIN/01/2016 

 
Abstract 
This paper proposes a new type of recurrence where we divide the Markov chains into intervals that 
start when the chain enters into a subset A, then sample another subset B far away from A and end 
when the chain again return to A. The length of these intervals have the same distribution and if A and 
B are far apart, almost independent of each other. A and B may be any subsets of the state space 
that are far apart of each other and such that the movement between the subsets is repeated several 
times in a long Markov chain. The expected length of the intervals is used in a function that describes 
the mixing properties of the chain and improves our understanding of Markov chains.  
The paper proves a theorem that gives a bound on the variance of the estimate for π(A), the 
probability for A under the limiting density of the Markov chain. This may be used to find the length of 
the Markov chain that is needed to explore the state space sufficiently. It is shown that the length of 
the periods between each time A is entered by the Markov chain, has a heavy tailed distribution. This 
increases the upper bound for the variance of the estimate π(A). 
The paper gives a general guideline on how to find the optimal scaling of parameters in the 
Metropolis-Hastings simulation algorithm that implicit determine the acceptance rate. We find 
examples where it is optimal to have a much smaller acceptance rate than what is generally 
recommended in the literature and also examples where the optimal acceptance rate vanishes in the 
limit. 

Keywords Markov chain, limiting density, recurrence intervals, Metropolis-
Hastings algorithm, acceptance rate, mixing. 

Target group Mathematicians, Statisticians  

Availability Open 

Project number 220718, Big Insight, a Centre for Research Based Innovation  

Number of pages 25 

© Copyright Norsk Regnesentral 

 



 

  The two subset recurrent property of Markov chains 5 

Table of Content 

1 Introduction .......................................................................................................... 7 

2 Mixing of Markov chains and recurrence periods. ............................................ 8 

3 Probability estimate ........................................................................................... 10 

4 Acceptance rates ............................................................................................... 12 

Example 1, The multi-normal case ............................................................ 12 

5 Analyzing the chain between A and 𝑩𝑩 .............................................................. 13 

Example 2. Two modes: ............................................................................. 14 

Example 3. Problem of scale ...................................................................... 15 

6 Statistical properties of the chain between A and B ....................................... 17 

Example 1, The multi-normal case, continued .......................................... 17 

Example 5, Two modes, discrete ................................................................ 22 

Example 6, Cauchy distribution ................................................................. 22 

7 Closing remarks ................................................................................................. 22 

Appendix ................................................................................................................... 23 

A. Proof of the Proposition............................................................................... 23 

B. Proof of the Theorem .................................................................................. 23 

C. Example where 𝑯𝑯𝑯𝑯,𝑩𝑩 < 𝟏𝟏 .......................................................................... 24 

Acknowledgement .................................................................................................... 24 

References ................................................................................................................ 24 

 

 





 

  The two subset recurrent property of Markov chains 7 

1 Introduction 

In Markov chains a state is recurrent if the probability is 1 for coming back to the same state. 
The recurrence periods between each time the state is visited are identically, independently 
distributed (Meyn and Tweedie, 1993).  For continuous state Markov chains it is more useful to 
define a subset 𝐴𝐴 such that a long chain visits the subset many times. In order to utilize a 
repetition, we define the start of a new period each time the chain enters 𝐴𝐴. Since we are not 
interested in short periods where the chain moves at the border of the subset, we define 
another subset 𝐵𝐵 far apart from 𝐴𝐴 and require that 𝐵𝐵 is visited in each period. Each period, 
denoted recurrence interval, have length from the same distribution and the lengths will be 
almost independent. Then the correlation between lengths from different recurrence intervals 
is negligible. Analyzing these lengths improves the understanding of the mixing of the Markov 
chain, finds optimal simulation parameters and bounds the variance of the estimate for the 
probability 𝜋𝜋(𝐴𝐴).  We focus on stationary Markov chains that define a limiting density 𝜋𝜋(. ), 
where the probability for a subset in the limiting density is equal to the probability that a state 
is inside the subset.  

In Section two we define recurrence intervals. Here we also propose a function of the 
expected length of the recurrence intervals and the probability of the subset 𝐴𝐴. This function 
describes the mixing of the Markov chain. When the subset becomes more extreme, then the 
length of the recurrence intervals increases. The recurrence interval is related to the path 
between states in a finite state space defined in Diaconis and Stroock, 1991. By using the 
Poincaré inequality this was used as a bound for the second largest eigenvalue that is 
important for the convergence of the Markov chain.  

In Section three, the recurrence intervals are used to give a bound on the variance of an 
estimate of the probability of 𝐴𝐴 for the limiting density. The bound depends on the expected 
length of the recurrence intervals but also the distribution of the length. The authors 
experience is that the length typically has a heavy tailed distribution, but this depends of 
course on the Markov chain and the states 𝐴𝐴 and 𝐵𝐵. In Section six we make a statistical 
analysis of the recurrence intervals in four models. The length of the recurrence intervals is 
modelled with a Weibull distribution. Except for an “extreme” model, the shape parameter 
𝑘𝑘 > 1, giving a distribution with lighter tail than the exponential distribution. The ratio 
between the fraction of states inside 𝐴𝐴 in the recurrence interval and the probability for 𝐴𝐴 is 
best modelled with the exponential distribution with parameter 1.  

In this paper we use the Metropolis-Hastings algorithm, but the results are valid for more 
general Markov chains. The Metropolis-Hastings algorithm generates an ergodic Markov chain 
{𝑥𝑥𝑖𝑖} converging to a target density 𝜋𝜋(𝑥𝑥). In each iteration 𝑖𝑖, a new state 𝑦𝑦𝑖𝑖+1 is proposed 
depending on the previous state 𝑥𝑥𝑖𝑖 according to a proposal density 𝑞𝑞(𝑦𝑦𝑖𝑖+1; 𝑥𝑥𝑖𝑖). We focus in 
this paper on symmetric random walk Metropolis-Hastings where 𝑦𝑦𝑖𝑖 =  𝑥𝑥𝑖𝑖 + 𝑧𝑧𝑖𝑖   and 𝑧𝑧𝑖𝑖  is i.i.d 
from a symmetric distribution. This means that 𝑞𝑞(𝑦𝑦; 𝑥𝑥) = 𝑞𝑞(𝑥𝑥;𝑦𝑦). The acceptance rate is the 
fraction of iterations when 𝑥𝑥𝑖𝑖+1 =  𝑦𝑦𝑖𝑖+1.  
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Previously, it is proved under quite general assumptions that we obtain the fastest 
convergence of the Metropolis-Hastings algorithm when the acceptance rate is 0.234. Hence, 
it has become customary to scale the proposal function in order to obtain an acceptance rate 
close to this number quite generally also in the cases where we don’t know whether this is 
optimal or not. In Section four we give a general advice on how to find the optimal acceptance 
rates based on recurrence intervals. In Section five we analyze the chain between A and B. We 
illustrate some problems in two toy examples and from a large complex climate model.   

There are alternatives to Markov chains where it is possible increase convergence and mixing 
by use of adaption. This is a huge area with many promising techniques presented by e.g. 
Giordani and Kohn 2006. Other alternatives are state dependent scaling, jumping between 
parallel chains or Langevin (MALA) algorithms, see Roberts and Rosenthal (1998). However, 
many problems may not use these techniques particularly in large complex models. For many 
non-linear processes Markov chain is the only alternative. These problems are typically very 
computer intensive and it is necessary to tune the simulation parameters in order to make the 
algorithm as efficient as possible. Still, it may only be possible to run one or a few chains within 
the available computer and time resources making it necessary to evaluate convergence from 
one or a few chains. This paper focuses on problems where it is necessary to use Markov 
chains. Markov chain is still an active research area, e.g. Rosenthal and Rosenthal 2015. 

2 Mixing of Markov chains and recurrence periods. 

The two most important properties of Markov chains are convergence, i.e. how fast the chain 
converges to the target distribution from an initial state and mixing i.e. how fast element 𝑥𝑥𝑖𝑖+𝑑𝑑 
in the chain becomes independent of the previous element 𝑥𝑥𝑖𝑖. Convergence is important 
because it allows us to determine the length of the burn in period and mixing is important to 
estimate how many elements in the chain are necessary in order to get at good representation 
of the limiting distribution. Both these properties are connected to how fast the norm 
𝑠𝑠𝑠𝑠𝑠𝑠𝐴𝐴|𝑃𝑃𝑛𝑛(𝑥𝑥,𝐴𝐴) − 𝜋𝜋(𝐴𝐴)| vanishes when 𝑛𝑛 increases. Here 𝑃𝑃𝑛𝑛(𝑥𝑥,𝐴𝐴) is the n-step Markov chain 
kernel, i.e. the probability for 𝑥𝑥𝑛𝑛 ∈ 𝐴𝐴 when starting in initial state, i.e. 𝑥𝑥 = 𝑥𝑥0. It is usual to use 
the total variation norm, but also other norms are used and of interest. For convergence we 
are interested in the expression for 𝑥𝑥 = 𝑥𝑥0, the start position of the chain. For mixing, the 
expression is important for all values of 𝑥𝑥 in the state space. In this paper we are focusing on 
mixing. 

There are few papers on mixing of Markov chains and no established quantitative measures. 
This is in contrast convergence where there are many papers on convergence and several 
possible norms are discussed, e.g. Meyn and Tweedie, (1993) and Holden, (1998).  It is usual to 
check the autocorrelation and other convergence characteristics, see f.ex. Cowles and Carlin, 
(1996). However, they also conclude that there are few methods of practical use and these do 
not identify or solve all problems. For example minimizing autocorrelation may result in small 
step length that makes it very difficult to find other modes. Then the number of iterations 
needed in order to sample the target density properly increases dramatically. The authors 
experience based on many years of using Markov chains is that one should use many different 
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measures in order to understand the chain and the limiting distribution as good as possible. 
This is discussed in several papers e.g.  (Rosenthal, 2010) and in other parts of this Handbook.  
Regeneration is another approach, see Roberts and Tweedie, (1999). 

It is not easy to quantify numerically the total variation or most other used norms. Therefore, 
these norms are not well suited for comparing the convergence and mixing of different 
proposal functions. We therefore propose to use recurrence intervals for comparing the 
mixing properties of different proposal functions.  Define two disjoint subsets 𝐴𝐴 and 𝐵𝐵 of the 
state space that are far apart from each other and estimate the expected number of iterations 
needed to move between these two subsets. The Markov chain is split into recurrence 
intervals characterized by when the chain enters into 𝐴𝐴, then enters into 𝐵𝐵 and the interval is 
ended when the chain again returns to 𝐴𝐴. More formally, we define the indices 𝑖𝑖1 < 𝑖𝑖2 < 𝑖𝑖3 <
⋯  where 𝑖𝑖𝑘𝑘 is the first time the chain enters into 𝐴𝐴 after the chain has been in 𝐵𝐵 and the 
subindex  𝑘𝑘 is used the k’th time this happens. Define the non-overlapping intervals, 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, … 
where 𝐼𝐼𝑘𝑘 is the interval (𝑖𝑖𝑘𝑘 , 𝑖𝑖𝑘𝑘+1 − 1). The intervals 𝐼𝐼𝑘𝑘 satisfy the following properties:  (i)  
𝑥𝑥𝑖𝑖𝑘𝑘 ∈ 𝐴𝐴  (ii) there is at least on state 𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵 with 𝑖𝑖𝑘𝑘 < 𝑖𝑖 < 𝑖𝑖𝑘𝑘+1 (iii) for all 𝑥𝑥𝑖𝑖 ∈ 𝐵𝐵 we have   
𝑥𝑥𝑗𝑗 ∉ 𝐴𝐴  for 𝑖𝑖𝑘𝑘 < 𝑖𝑖 < 𝑗𝑗 < 𝑖𝑖𝑘𝑘+1 and (iv)  𝑥𝑥𝑖𝑖𝑘𝑘+1 ∈ 𝐴𝐴. From the definition it is easy to see that the 
length of all the recurrence intervals are from the same distribution. We define 𝐿𝐿𝑘𝑘 =  𝑖𝑖𝑘𝑘+1 −
𝑖𝑖𝑘𝑘,  the length of k’th interval 𝐼𝐼𝑘𝑘 and 𝑀𝑀𝐴𝐴,𝐵𝐵 = 𝐸𝐸 𝐿𝐿𝑘𝑘, the expected length of the interval.  

It is most interesting to choose 𝐴𝐴 and 𝐵𝐵 far apart from each other where we expect it is 
difficult to move between the two subsets. If we don’t know about particular problems in the 
mixing, we may choose two arbitrary subsets 𝐴𝐴 and 𝐵𝐵 that far apart from each other. For 
example, we may select the first component 𝑥𝑥.,1, and choose 𝐴𝐴 = {𝑥𝑥| 𝑥𝑥.,1 < 𝑎𝑎} and 𝐵𝐵 = {𝑥𝑥| 
𝑥𝑥.,1 > 𝑏𝑏} for 𝑎𝑎 < 𝑏𝑏.  Alternatively, we may include all components in the definition of 𝐴𝐴 and 𝐵𝐵 
choosing  𝐴𝐴 = {𝑥𝑥| 𝑥𝑥.,𝑖𝑖 < 𝑎𝑎𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 } and = {𝑥𝑥| 𝑥𝑥.,𝑖𝑖 > 𝑏𝑏𝑖𝑖  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖}. It is easier to argue for 
negligible correlation between parameters from different recurrence intervals if all 
components have a large change in value. We estimate 𝑀𝑀𝐴𝐴,𝐵𝐵� = 𝑛𝑛/𝑚𝑚𝐴𝐴,𝐵𝐵,𝑛𝑛  from a (long) 
Markov chain of length 𝑛𝑛   where 𝑚𝑚𝐴𝐴,𝐵𝐵,𝑛𝑛 = 𝑘𝑘  is the number of times the chain has entered 𝐴𝐴 
then moved to 𝐵𝐵 then returned to 𝐴𝐴. Using the indexes in the definition of the recurrence 
intervals, we have 𝑖𝑖𝑘𝑘 is the largest index such that 𝑖𝑖𝑘𝑘 ≤ 𝑚𝑚𝐴𝐴,𝐵𝐵,𝑛𝑛. This may also be described as 
the longest sequence of indices 𝑖𝑖1 < 𝑗𝑗1 < 𝑖𝑖2 < 𝑗𝑗2 … < 𝑖𝑖𝑘𝑘  that satisfy 𝑥𝑥𝑖𝑖1 ∈ 𝐴𝐴,  𝑥𝑥𝑗𝑗1 ∈ 𝐵𝐵, 𝑥𝑥𝑖𝑖2 ∈ 𝐴𝐴, 
𝑥𝑥𝑗𝑗2 ∈ 𝐵𝐵,…  , 𝑥𝑥𝑖𝑖𝑘𝑘 ∈ 𝐴𝐴. In this paper we have chosen 𝐴𝐴 and 𝐵𝐵 in opposite parts of the state space 
and with 𝜋𝜋(𝐴𝐴) ≈ 𝜋𝜋(𝐵𝐵) making it easier to argue that recurrence periods are close to 
independent of each other. We could also choose 𝐴𝐴 far from the center of the limiting density 
with 𝜋𝜋(𝐴𝐴) small,  𝐴𝐴 ∩ 𝐵𝐵 = ∅ and 𝐵𝐵 such that  𝜋𝜋(𝐵𝐵) = 0.5. 

Below we show some properties of  𝑀𝑀𝐴𝐴,𝐵𝐵. It is well suited to identify the areas that it is difficult 
to sample from. 

Proposition 

If the proposal function is 𝜋𝜋(𝐴𝐴) in each iteration, then 𝑀𝑀𝐴𝐴,𝐵𝐵 = 1
𝜋𝜋(𝐴𝐴) + 1

𝜋𝜋(𝐵𝐵). 

The proof is given in the Appendix.  
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Notice that it is possible to make 𝑀𝑀𝐴𝐴,𝐵𝐵 arbitrary large by choosing 𝜋𝜋(𝐴𝐴)  or 𝜋𝜋(𝐵𝐵) sufficient 
small. We are interested in the situation where it is difficult to move between 𝐴𝐴 and 𝐵𝐵 but 
without 𝜋𝜋(𝐴𝐴)  and 𝜋𝜋(𝐵𝐵) being too small making it necessary with a very long Markov chain to 
estimate 𝑀𝑀𝐴𝐴,𝐵𝐵. If there are subsets 𝐴𝐴 and 𝐵𝐵 where we are particular interested in knowing  
𝜋𝜋(𝐴𝐴)  and 𝜋𝜋(𝐵𝐵), this may be a good choice since the Theorem in the next Section gives a 

bound on the variance of the estimate of  𝜋𝜋(𝐴𝐴)  and 𝜋𝜋(𝐵𝐵). We expect 𝐻𝐻𝐴𝐴,𝐵𝐵 =  𝑀𝑀𝐴𝐴,𝐵𝐵
1

𝜋𝜋(𝐴𝐴)+
1

𝜋𝜋(𝐵𝐵)
> 1 

since other proposal functions does not sample the state space as efficient as the limiting 
density. However, it is possible to find artificial examples where 𝐻𝐻𝐴𝐴,𝐵𝐵 < 1. See appendix. If we 
find a pair 𝐴𝐴, 𝐵𝐵 where 𝐻𝐻𝐴𝐴,𝐵𝐵 ≫ 1, we may conclude that the mixing is poor. It is easy to 
estimate 𝐻𝐻𝐴𝐴,𝐵𝐵 for a given 𝐴𝐴 and 𝐵𝐵 from a long Markov chain, but to find 𝐴𝐴 and 𝐵𝐵 that make 
𝐻𝐻𝐴𝐴,𝐵𝐵 large may be more challenging.  

3 Probability estimate 

The obvious probability estimated from a Markov chain is 𝜋𝜋𝑛𝑛(𝐴𝐴)� = 1
𝑛𝑛

{# 𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴,𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑖𝑖 ≤

𝑛𝑛}, the number of states in 𝐴𝐴 after 𝑛𝑛 iterations divided by 𝑛𝑛. It is well-known that  𝐸𝐸𝜋𝜋𝑛𝑛(𝐴𝐴)� =
 𝜋𝜋(𝐴𝐴), assuming we have already reached convergence. We will estimate the variance of 
𝜋𝜋𝑛𝑛(𝐴𝐴)�  based on  𝑚𝑚𝐴𝐴,𝐵𝐵,𝑛𝑛,  defined above as the number of times a Markov chain has moved 
between 𝐴𝐴 and 𝐵𝐵 in 𝑛𝑛 iterations. We will show that this is a good measure on how good the 𝑛𝑛 
elements of the Markov chain represent the limiting distribution. We will use the non-
overlapping recurrence intervals, 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, … where 𝐼𝐼𝑘𝑘 has the indices (𝑖𝑖𝑘𝑘 , 𝑖𝑖𝑘𝑘+1 − 1) defined 
above. Further, define  𝑃𝑃𝑘𝑘 = {# 𝑥𝑥𝑖𝑖 ∈ 𝐼𝐼𝑘𝑘 ∩ 𝐴𝐴},  the number of states in 𝐴𝐴 in the period 𝐼𝐼𝑘𝑘, 

and 𝑅𝑅𝑘𝑘 =  𝑃𝑃𝑘𝑘 
 𝐿𝐿𝑘𝑘 𝜋𝜋(𝐴𝐴)

  such that we expect  𝑅𝑅𝑘𝑘 ≈ 1. This is the fraction of states in 𝐼𝐼𝑘𝑘 that is inside 

𝐴𝐴 divided by 𝜋𝜋(𝐴𝐴). For  𝑛𝑛 = 𝑖𝑖𝑘𝑘, i.e. after exactly 𝑘𝑘 intervals, then 𝜋𝜋𝑛𝑛(𝐴𝐴)� =

 𝜋𝜋(𝐴𝐴)∑ 𝑅𝑅𝑗𝑗𝑘𝑘
𝑗𝑗=1

𝐿𝐿𝑗𝑗
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

. Notice that 𝜋𝜋(𝐴𝐴) is in the nominator of 𝑅𝑅𝑠𝑠 making the expression 

independent of  𝜋𝜋(𝐴𝐴).  We may formulate the following Theorem. 

Theorem 
Assume that: 

(i) there is a 𝑗𝑗 < 0 such that 𝑥𝑥𝑗𝑗 ∈ 𝐵𝐵 is from the target density 𝜋𝜋(𝑥𝑥) restricted to 
subset 𝐵𝐵; 

(ii) 𝑥𝑥𝑠𝑠 ∉ 𝐴𝐴 for  𝑗𝑗 < 𝑠𝑠 < 0 and 𝑥𝑥0 ∈ 𝐴𝐴  and 

(iii) 𝐶𝐶𝐶𝐶𝐶𝐶 �( 1
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

)2, �∑ (𝑃𝑃𝑗𝑗 −𝑘𝑘
𝑗𝑗=1 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗�

2� < 0,  

then for 𝑛𝑛 = 𝑖𝑖𝑘𝑘 

𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐴𝐴)� �≤ 𝜋𝜋2(𝐴𝐴) 𝐸𝐸(𝑘𝑘 𝑀𝑀𝐴𝐴,𝐵𝐵
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

)2𝑉𝑉𝑉𝑉𝑉𝑉 �∑ (𝑅𝑅𝑗𝑗 − 1) 𝐿𝐿𝑗𝑗
 𝑘𝑘𝑘𝑘𝐴𝐴,𝐵𝐵

𝑘𝑘
𝑗𝑗=1 �.  

If in addition the covariance  𝐶𝐶𝐶𝐶𝐶𝐶 � 𝑃𝑃𝑖𝑖
𝜋𝜋(𝐴𝐴) − 𝐿𝐿𝑖𝑖 ,

𝑃𝑃𝑗𝑗
𝜋𝜋(𝐴𝐴) − 𝐿𝐿𝑗𝑗� ≤ 𝑐𝑐2−|𝑖𝑖−𝑗𝑗|−1𝑉𝑉𝑉𝑉𝑉𝑉 � 𝑃𝑃1

𝜋𝜋(𝐴𝐴) − 𝐿𝐿1�  

for a constant 𝑐𝑐 ≥ 0 and all indices 𝑖𝑖 ≠ 𝑗𝑗, then 
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𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐴𝐴)� �≤    𝜋𝜋2(𝐴𝐴) 
1 + 𝑐𝑐
𝑘𝑘

𝐸𝐸 �
𝑘𝑘 𝑀𝑀𝐴𝐴,𝐵𝐵

∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

�
2

𝑉𝑉𝑉𝑉𝑉𝑉 �(𝑅𝑅1 − 1)
𝐿𝐿1

 𝑀𝑀𝐴𝐴,𝐵𝐵
� 

 

The proof is given in the Appendix. The Theorem is a generalization of the trivial result 

𝑉𝑉𝑉𝑉𝑉𝑉 �1
𝑘𝑘
∑ 𝑋𝑋𝑖𝑖𝑘𝑘
𝑖𝑖=1 � =  (𝐸𝐸𝑋𝑋1)2

𝑘𝑘
 𝑉𝑉𝑉𝑉𝑉𝑉 � 𝑋𝑋1

𝐸𝐸𝑋𝑋1
�  

for i.i.d. variables  𝑋𝑋𝑖𝑖. We have divided by 𝐸𝐸𝑋𝑋1 in the variance in order to show the 
dependency on  𝐸𝐸𝑋𝑋1 when this vanish. Here  𝑋𝑋𝑖𝑖  is our estimate on 𝜋𝜋(𝐴𝐴) based on the interval 
𝐼𝐼𝑖𝑖.    

We have the same bound for 𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐵𝐵)� �. The two first requirements is satisfied if 𝑥𝑥𝑗𝑗 is from 
the target density 𝜋𝜋(𝑥𝑥), then the chain enters into 𝐵𝐵, and  𝑥𝑥0 is the first state in the Markov 
chain in 𝐴𝐴 after it has been in 𝐵𝐵. This is the same as 𝑖𝑖1 = 0 according to the notation in the 
previous section. This assumption is made in order to have the same statistical properties for 
all the intervals 𝐼𝐼𝑘𝑘. 

The assumption that 𝐶𝐶𝐶𝐶𝐶𝐶 �( 1
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

)2, �∑ (𝑃𝑃𝑗𝑗 −𝑘𝑘
𝑗𝑗=1 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗�

2� < 0 is reasonable, particularly if 

the subsets 𝐴𝐴 and 𝐵𝐵 are far from each other in the state space.  We have 𝐸𝐸(𝑃𝑃𝑗𝑗 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗) = 0. 
As we illustrate later, the distribution of 𝐿𝐿𝑗𝑗 has a heavy tail. The heavy tail dominates the 
distribution of (𝑃𝑃𝑗𝑗 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗)2. Then we have 𝐶𝐶𝐶𝐶𝐶𝐶�𝐿𝐿𝑗𝑗2, (𝑃𝑃𝑗𝑗 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗)2� > 0 and 

𝐶𝐶𝐶𝐶𝐶𝐶 � 1
𝐿𝐿𝑗𝑗2

, (𝑃𝑃𝑗𝑗 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗)2� < 0. The intervals 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, … are almost independent making 

𝐶𝐶𝐶𝐶𝐶𝐶 �( 1
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

)2, �∑ (𝑃𝑃𝑗𝑗 −𝑘𝑘
𝑗𝑗=1 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗�

2� small and negative. If 

𝐶𝐶𝐶𝐶𝐶𝐶 �( 1
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

)2, �∑ (𝑃𝑃𝑗𝑗 −𝑘𝑘
𝑗𝑗=1 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑗𝑗�

2� = 0 then 

   𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐴𝐴)� � = 𝜋𝜋2(𝐴𝐴)
𝑘𝑘2

 𝐸𝐸(𝑘𝑘 𝑀𝑀𝐴𝐴,𝐵𝐵
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

)2𝑉𝑉𝑉𝑉𝑉𝑉 �∑ (𝑅𝑅𝑗𝑗 − 1) 𝐿𝐿𝑗𝑗
𝑀𝑀𝐴𝐴,𝐵𝐵

𝑘𝑘
𝑗𝑗=1 �.  

If the covariance expression had been positive, this would only make the upper bound in the 

Theorem slightly larger. It is reasonable that the covariance  𝐶𝐶𝐶𝐶𝐶𝐶 �(𝑅𝑅𝑖𝑖 − 1)𝐿𝐿𝑖𝑖, �𝑅𝑅𝑗𝑗 − 1�𝐿𝐿𝑗𝑗� ≈ 0 

and decreasing exponentially with −| 𝑖𝑖 − 𝑗𝑗| since the intervals are almost independent and the 
correlation in a Markov chain decreases exponentially with the distance. This gives the second 
bound in the theorem.  

We expect 𝐸𝐸(𝑘𝑘 𝑀𝑀𝐴𝐴,𝐵𝐵
∑ 𝐿𝐿𝑠𝑠𝑘𝑘
𝑠𝑠=1

)2 is close to 1 and 𝑉𝑉𝑉𝑉𝑉𝑉 �(𝑅𝑅1 − 1) 𝐿𝐿1
𝑀𝑀𝐴𝐴,𝐵𝐵

� is reasonable small, implying that 

we expect 𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐴𝐴)� � to be at the order 𝜋𝜋2(𝐴𝐴)/𝑘𝑘. For the multi-normal model in Example 1 
and the climate model in Example 4, we have 𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐴𝐴)� � < 4𝜋𝜋2(𝐴𝐴)/k, see Figure 3 and 5. 
The Theorem shows that  𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋(𝐴𝐴)� ) is proportional with 𝑀𝑀𝐴𝐴,𝐵𝐵 and 𝐻𝐻𝐴𝐴,𝐵𝐵 since 𝑘𝑘 ≈ 𝑛𝑛/𝑀𝑀𝐴𝐴,𝐵𝐵.  
This shows the importance of adjusting the simulation parameters in order to minimize 𝑀𝑀𝐴𝐴,𝐵𝐵 
and 𝐻𝐻𝐴𝐴,𝐵𝐵.  
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4 Acceptance rates 

Roberts et al. (1997) proved the remarkable result that if the target density is on the form 

𝜋𝜋�𝑥𝑥.,1,𝑥𝑥.,2, … , 𝑥𝑥.,𝑑𝑑� = 𝑓𝑓� 𝑥𝑥.,1�𝑓𝑓� 𝑥𝑥.,2�…𝑓𝑓( 𝑥𝑥.,𝑑𝑑)  

then as 𝑑𝑑 → ∞ the optimal acceptance rate is 0.234 and in fact the optimal acceptance rate is 
close to 0.234 already for 𝑑𝑑 > 5. Here 𝑥𝑥 ∈ ℛ𝑑𝑑 and we use the notation 𝑥𝑥 = �𝑥𝑥.,1,𝑥𝑥.,2, … , 𝑥𝑥.,𝑑𝑑� 
to describe the different components. For 𝑑𝑑 = 1, the optimal acceptance rate for the normal 
distribution is 0.44. Numerical studies (e.g. Gelman et al (1996)) show that the algorithm is 
reasonable efficient for acceptance rate in the range (0.1,0.6). Roberts and Rosenthal (2001) 
generalize the result also to inhomogeneous target densities on the form  

𝜋𝜋�𝑥𝑥.,1,𝑥𝑥.,2, … , 𝑥𝑥.,𝑑𝑑� = � 𝐶𝐶𝑖𝑖𝑓𝑓(𝐶𝐶𝑖𝑖𝑥𝑥.,𝑖𝑖)
𝑑𝑑

𝑖𝑖=1
 

under some additional conditions. See also Neal and Roberts (2006) for generalization 
regarding the dimensionality of the updating rule. Rosenthal (2010) gives the general advice to 
target an acceptance rate in the range specified above. This advice also includes multi-modal 
target densities.  

We give examples where the optimal acceptance rate is much smaller and in fact vanishes in 
the limits. Instead of the very general advice to have the acceptance rate in the range (0.1,0.6), 
our advice is to 

use simulation parameters, typically the step length in the proposal function, that make 
𝐻𝐻𝐴𝐴,𝐵𝐵 small for fixed 𝐴𝐴 and 𝐵𝐵. 

It is equivalent to make 𝐻𝐻𝐴𝐴,𝐵𝐵 and 𝑀𝑀𝐴𝐴,𝐵𝐵 small for fixed 𝐴𝐴 and 𝐵𝐵. 𝐻𝐻𝐴𝐴,𝐵𝐵 depends on 𝐴𝐴 and 𝐵𝐵 and it 
is not critical to minimize 𝐻𝐻𝐴𝐴,𝐵𝐵, only to find values that make 𝐻𝐻𝐴𝐴,𝐵𝐵 reasonable close to the 
minimum.  Our experience, however from a limited number of models, is that the simulation 
parameters that minimize 𝐻𝐻𝐴𝐴,𝐵𝐵, fortunately do not critically depend on the choice of 𝐴𝐴 and 𝐵𝐵. 
See Figure 1 as an example.   This advice is closely connected to increase the mixing of the 
chain and to reduce 𝑉𝑉𝐴𝐴𝑅𝑅�𝜋𝜋𝑛𝑛(𝐴𝐴)� �. 

Example 1, The multi-normal case 
Here the state space is in d-dimensions and the target density is the product of 𝑑𝑑 normal 
densities �(𝑥𝑥.,1,𝑥𝑥.,2, … , 𝑥𝑥.,𝑑𝑑)� = (𝜑𝜑�𝑥𝑥.,1/𝜎𝜎1�/𝜎𝜎1)  ∏ 𝜑𝜑�𝑥𝑥.,𝑖𝑖�𝑑𝑑

𝑖𝑖=2  .  When 𝜎𝜎1  is small, the target 
density has very different scale in the first dimension compared to the other dimensions. We 
assume this difference in scale is not known and the proposal function is 

𝑞𝑞 ��𝑦𝑦.,1,𝑦𝑦.,2, … ,𝑦𝑦.,𝑑𝑑�, (𝑥𝑥.,1,𝑥𝑥.,2, … , 𝑥𝑥.,𝑑𝑑)� =   � (𝜑𝜑�(𝑦𝑦.,𝑖𝑖 − 𝑥𝑥.,𝑖𝑖)/𝜎𝜎2�/𝜎𝜎2)
𝑑𝑑

𝑖𝑖=1
 

If we chose 𝜎𝜎1 small, then the scale is very different in the different directions of the state 
space making it difficult for the Markov chain to converge to the limiting distribution. Figure 2, 
left panel shows 𝐻𝐻𝐴𝐴,𝐵𝐵 when varying the boundaries  𝐴𝐴 and 𝐵𝐵 and 𝜎𝜎2. Notice that the same 
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value of  𝜎𝜎2 minimize 𝐻𝐻𝐴𝐴,𝐵𝐵 for all values of 𝐴𝐴 and 𝐵𝐵 and that 𝐻𝐻𝐴𝐴,𝐵𝐵 is decreasing when the 
subset 𝐴𝐴 and 𝐵𝐵 becomes more extreme. Right panel shows how  𝑀𝑀𝐴𝐴,𝐵𝐵 depends on 𝜎𝜎1 and 𝜎𝜎2.  

 

Figure 1. Example 1 with multi-normal limiting density. Left panel shows 𝐻𝐻𝐴𝐴,𝐵𝐵 when varying 𝜎𝜎2  
and 𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖. Each curve is for different subset areas 𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖  with threshold for 0.75, 1, 
1.25, 1.5, 1.75, 2, 2.25. 𝐻𝐻𝐴𝐴,𝐵𝐵 is decreasing for more extreme threshold. Right panel shows 𝑀𝑀𝐴𝐴,𝐵𝐵 

when varying 𝜎𝜎2 and  𝜎𝜎1. Each curve is for  𝜎𝜎1 = 1, 1
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 in the limiting 

density. 𝑀𝑀𝐴𝐴,𝐵𝐵 is increasing when 𝜎𝜎1 decreases. Curves are based on 300.000 iterations in the 
Markov chain. 

5 Analyzing the chain between A and 𝑩𝑩 

This section discusses the challenges for the Markov chain to move between the areas 𝐴𝐴 and 
𝐵𝐵. We have shown that a large 𝐻𝐻𝐴𝐴,𝐵𝐵  value indicates poor mixing and makes it necessary with a 
large number of iterations in order to reduce 𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐴𝐴)� �.  

We need some notation in order to study the case when there is poor mixing. Given a state 
𝑥𝑥0 ∈ 𝐴𝐴, it is possible to define a sequence of subsets 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛−1}  such that the 
probability for a Markov chain starting in 𝑥𝑥0 ∈ 𝐴𝐴 with 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑖𝑖  and 𝑥𝑥𝑛𝑛 ∈ 𝐵𝐵 is not too low. In 
order to make this a likely Markov chain 𝐶𝐶 must depend on the proposal function. If the 
movement from 𝐴𝐴 to 𝐵𝐵 requires a gradual change along the 𝑥𝑥.,1-axis (see Example 3 later), we 
may choose 𝐶𝐶𝑖𝑖 = {𝑥𝑥|𝑥𝑥1,𝑎𝑎 + (𝑖𝑖 − 1)𝜎𝜎2 < 𝑥𝑥.,1 < 𝑥𝑥1,𝑎𝑎 + 𝑖𝑖𝜎𝜎2}.  This requires an average increase 
with  𝜎𝜎2 in the first component in each iteration of the Markov chain. If 𝐻𝐻𝐴𝐴,𝐵𝐵 ≫ 1, then either 
the chain 𝐶𝐶 is very long (𝑛𝑛 large) and/or some of the steps have very small probability. We 
discuss each of these cases separately.   

If there are several modes in the target density, then usually the challenge is to move between 
the modes. This may require that some states in the Markov chain have very small target 
density or it is necessary with long jumps in order to avoid these areas. A combination of the 
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two alternatives is also possible. This is illustrated in Example 2 below where the limiting 
density has two modes. In this example it is optimal to choose long jumps making the 
acceptance rate very small when the distance between the modes is large. 

Example 3 below with difference in scale illustrates the situation where it is necessary with 
very small acceptance rate and many steps in order to move between the two subsets in the 
state space. However, for a huge state space with many variables it may be reasonable with 
large values of 𝐻𝐻𝐴𝐴,𝐵𝐵 and this is not necessarily a sign on poor mixing. As an illustration, the 
distance in the unit-box in 𝑅𝑅𝑑𝑑 between (0,0,…,0) and (1,1,…,1) is 𝑑𝑑0.5 while the distance 
between (0,0,0,…,0) and (1,0,0,…,0) is 1. This is a major difference for 𝑑𝑑 large. When we judge 
whether a Markov chain has poor mixing, it is not sufficient to only consider the value of 𝐻𝐻𝐴𝐴,𝐵𝐵, 
we must also take into consideration the size of the state space.  

Below we show two toy examples with a continuous target distribution where it is optimal to 
have very small acceptance rate. Then it is given a large climate model documented in other 
papers illustrating the use of the technique presented in this paper.  We also compare 
𝑆𝑆1 = 𝐸𝐸|𝑥𝑥𝑖𝑖+𝑠𝑠 − 𝑥𝑥𝑖𝑖| for the different models. 

Example 2. Two modes:  
This example is in one dimension and with target density 𝜋𝜋(𝑥𝑥) = ( 𝜑𝜑(𝑥𝑥) + 𝜑𝜑(𝑥𝑥 + 𝑎𝑎))/2   
where 𝜑𝜑(𝑥𝑥) is the normal density N(0,1). This target density has two modes 𝑥𝑥 = 0  and 𝑥𝑥 = 𝑎𝑎  
and it is increasingly difficult for the Markov chain to move between the two modes for 
increasing values of 𝑎𝑎. Let the proposal function be 𝑞𝑞(𝑦𝑦, 𝑥𝑥) =  𝜑𝜑((𝑥𝑥 − 𝑦𝑦)/𝜎𝜎)/𝜎𝜎.  If 𝑎𝑎 is large 
compared to 𝜎𝜎, the Metropolis-Hastings algorithm uses many iterations in order to move 
between the two modes. The properties of this model are shown in Table 1. Each line shows 
the result for 𝜎𝜎 that minimizes 𝑀𝑀𝐴𝐴,𝐵𝐵 for the specified target distribution (i.e. the chosen 𝑎𝑎). A 
large value of 𝜎𝜎 reduces the acceptance rate but increases the probability for a move between 
the two modes. Hence, it is possible to find arbitrary small optimal acceptance rates by setting 
the constant 𝑎𝑎 large enough.  For one dimension minimizing 𝑀𝑀𝐴𝐴,𝐵𝐵 is almost the same as 
optimizing  𝑆𝑆1. However, if we generalize to d-dimensions then there may be a major 
difference. We may obtain the optimal 𝑆𝑆1 within one of the modes with steps such that the 
problem of moving to the other mode is minimal.  

𝑎𝑎 Optimal 𝜎𝜎 Acceptance 
rate 

𝑆𝑆1 𝑀𝑀𝐴𝐴,𝐵𝐵 𝐻𝐻𝐴𝐴,𝐵𝐵 

2 3.25 0.62 1.01 9.0 2.3 
4 5.5 0.35 1.51 16.8 3.9 
6 7.5 0.24 1.84 24.6 5.7 
8 9.5 0.18 2.12 32.8 7.5 

10 12.3 0.14 2.36 40.4 9.3 
12 14.3 0.12 2.60 47.8 11 
14 14.0 0.11 2.80 56.0 13 

Table 1. Example 2 with two modes. The Table shows for each value 𝑎𝑎, the value of 𝜎𝜎 that 
minimize 𝑀𝑀𝐴𝐴,𝐵𝐵 and the corresponding acceptance rate and mean jump i.e. 𝑆𝑆1. Here 𝐴𝐴 = {𝑥𝑥| 
𝑥𝑥 < 1}  and   𝐵𝐵 = {𝑥𝑥| 𝑥𝑥 > 𝑎𝑎 − 1}.  Data is based on 100.000 simulations, but this may not be 
large enough that the last digit is correct.    
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Example 3. Problem of scale 
Here the state space is in two dimensions and the target density 
𝜋𝜋�(𝑥𝑥.,1,𝑥𝑥.,2)� = 𝜑𝜑�𝑥𝑥.,1�𝜑𝜑�𝑥𝑥.,2/𝜎𝜎1�/𝜎𝜎1  for 𝑥𝑥.,1 > 𝑥𝑥.,2  and 𝜋𝜋�(𝑥𝑥.,1, 𝑥𝑥.,2)� = 𝜑𝜑�𝑥𝑥.,1/𝜎𝜎1�𝜑𝜑�𝑥𝑥.,2�/𝜎𝜎1  
otherwise. When 𝜎𝜎1  is small, the target density has very different scale in the two dimensions. 
The target density is continuous and varies fast with 𝑥𝑥.,2  for 𝑥𝑥.,1 > 𝑥𝑥.,2 and varies fast with 
𝑥𝑥.,1otherwise. Since the scale varies in the state space, it is not easy to handle this in a random 
walk proposal function. Let the proposal function be 𝑞𝑞�(𝑦𝑦.,1,𝑦𝑦.,2)(𝑥𝑥.,1,𝑥𝑥.,2)� = 𝜑𝜑�(𝑥𝑥.,1 −
𝑦𝑦.,1)/𝜎𝜎2�𝜑𝜑�(𝑥𝑥.,2 − 𝑦𝑦.,2)/𝜎𝜎2�/𝜎𝜎22.  If we chose 𝜎𝜎1 small, then the scale is very different in 
different parts of the state space making it difficult for the Markov chain to converge to the 
limiting distribution. The properties of this model are shown in Table 2. Each line shows the 
result for 𝜎𝜎2 that minimizes 𝑀𝑀𝐴𝐴,𝐵𝐵 for the specified target distribution (i.e. the chosen 𝜎𝜎1).  
There is a difficult trade off when setting the standard deviation 𝜎𝜎2 in the proposal function. It 
is necessary to have it quite small in order to get a satisfactory acceptance rate, but then the 
Markov chain moves very slowly in the direction where the limiting function varies slowly.  
Also here we may find arbitrary small optimal acceptance rates by setting the 𝜎𝜎1 small enough.             

𝜎𝜎1 Optimal 𝜎𝜎2 Acceptance rate 𝑆𝑆1 𝑀𝑀𝐴𝐴,𝐵𝐵 𝐻𝐻𝐴𝐴,𝐵𝐵 
1 1.5 0.47 0.81 20 3.6 

0.5 1.0 0.46 0.51 24 3.7 
0.25 1.0 0.36 0.42 32 3.7 
0.1 0.9 0.24 0.30 66 5.6 

0.05 0.9 0.21 0.20 120 8.8 
0.01 0.6 0.056 0.089 560 41 

0.002 0.5 0.011 0.038 2 700 210 
0.001 0.6 0.0042 0.028         4 700 300 

Table 2. Example 3 with problem with scale. The Table shows for each value 𝜎𝜎1, the value of 𝜎𝜎2 
that minimize 𝑀𝑀𝐴𝐴,𝐵𝐵 and the corresponding acceptance rate and mean jump i.e. 𝑆𝑆1. Here 
𝐴𝐴 = {𝑥𝑥| 𝑥𝑥.,1 < −0.4}    and  𝐵𝐵 = {𝑥𝑥| 𝑥𝑥.,1 > 0.4}. Data is based on 100.000 simulations, but this 
may not be large enough that the last digit is correct.    

Example 4. The climate model 
The climate model is a complex non-linear model that is sampled by a Markov chain and 
documented in Aldrin et al. 2012 and Skeie et al. 2014. The model has a large number of 
parameters and we know that the mixing of the most important response parameter, the 
climate sensitivity, is slow. Figure 2, left panel shows the slow mixing of the climate sensitivity 
in 100.000 elements of the Markov chain. This makes it necessary to run the model for weeks 
in order to get a good estimate on the distribution of the climate sensitivity which is the main 
objective of the model. It is not possible to rewrite the sampling to an adaptive model. The 
Markov chain is a Metropolis-Hastings sampler where the parameters are updated in blocks. 
The parameter blocks are updated either by a random-walk update (25 parameter blocks) or 
by using a Gibbs sampler. A random-walk update is used when the prior distribution is normal 
or uniform, while a Gibbs-sampler update is used when the prior is gamma or Wishart. The 
step length in the random walk updates are adjusted in the burn in period in order to get a 0.3 
acceptance rate in the previous published papers on the model.  
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Figure 2 right panel shows 𝐻𝐻𝐴𝐴,𝐵𝐵  for different pairs of thresholds and different acceptance rates 
for group of parameters with the climate sensitivity parameter. The other parameters groups 
may have other acceptance rates but these parameters are not as important for the mixing of 
the Markov chain. The figure indicates that we obtain the smallest 𝐻𝐻𝐴𝐴,𝐵𝐵 values for acceptance 
rates in the interval (0.1,0.35) and that 𝐻𝐻𝐴𝐴,𝐵𝐵 increases slightly for more extreme values of 
𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖.  In this paper we have tested other acceptance rates and found out that 0.07 
acceptance rate in all blocks except the block with the climate sensitivity and 0.14 acceptance 
rate in this block is more efficient. Table 3 shows that results with this acceptance rate.  

These examples show the importance of scaling the proposal function such that 𝑀𝑀𝐴𝐴,𝐵𝐵 is as 
small as possible. 

   

Figure 2 The climate sensitivity in the climate model. Left: the climate sensitivity in 100.000 
iterations of the Markov chain showing slow mixing. Only each 50th element in the chain is 
shown in the plot. Right: The figure shows 𝐻𝐻𝐴𝐴,𝐵𝐵 when the model is tuned to different 
acceptance rates for the climate sensitivity parameter. Each curve is for different pairs of 
𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖  and at the horizontal axis is the value of the acceptance rate for the parameter 
group with the climate sensitivity. The curves are more dotted for more extreme values of 
𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖. Estimates are based on 28 runs each with more than one month CPU time and 
about 75 mill. iterations after burn in.     

𝜋𝜋(𝐴𝐴𝑖𝑖) 𝜋𝜋(𝐵𝐵𝑖𝑖) 𝑀𝑀𝐴𝐴,𝐵𝐵 𝐻𝐻𝐴𝐴,𝐵𝐵 
0.01 0.03    275 000 2 400 
0.05 0.10 86 000 2 700 
0.11 0.20 42 000 3 000 
0.16 0.28 29 000 3 000 
0.23 0.39      16 600 2 400 

Table 3. The results from five different thresholds of the climate sensitivity in the climate 
model. Notice the large number of iterations in the Markov chain in order to move from the 
extreme values of the climate sensitivity. This is based on 75 mill. iterations.  
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6 Statistical properties of the chain between A and B 

In section 2 we defined the non-overlapping recurrent intervals 𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3, … of the Markov chain 
where each period starts when the chain enters into 𝐴𝐴, then enters into 𝐵𝐵 and the period is 
ended when the chain returns to 𝐴𝐴. All the periods have the same statistical properties and we 
have defined 𝑀𝑀𝐴𝐴,𝐵𝐵 = 𝐸𝐸 𝐿𝐿𝑘𝑘 the expected length of a period and  𝑅𝑅𝑘𝑘  as the fraction of states in 
𝐼𝐼𝑘𝑘 that is inside 𝐴𝐴 divided by 𝜋𝜋(𝐴𝐴). The statistical properties of the intervals are important for 
𝑉𝑉𝑉𝑉𝑉𝑉�𝜋𝜋𝑛𝑛(𝐴𝐴)� � according to the Theorem. We have not succeeded in proving general properties 
of the stochastic variables  𝐿𝐿𝑘𝑘 and  𝑅𝑅𝑘𝑘. We limit our self to empirical studies on a multi-normal 
model and the climate model and two smaller more “extreme” cases. However, we believe 
these properties are quite general.  

In our two examples,  𝑅𝑅𝑘𝑘 is close to an exponential distribution with parameter 1. Our 
experience is that the density of the length of the intervals  𝐿𝐿𝑘𝑘 is heavily tailed that we prefer 
to model with the Weibull distribution. In our two examples and the first extreme case we 
used a Weibull parameter 𝑘𝑘 ≈ 1.5 which gives a distribution that is less heavy tailed than the 
exponential distribution. In the last extreme case given at the end of the section, the 
distribution is more heavy tailed then the exponential distribution. 

Example 1, The multi-normal case, continued 
The properties of this model are shown in Figure 2 and Table 3. Each line shows the result for 
the value of 𝜎𝜎2 that minimizes 𝑀𝑀𝐴𝐴,𝐵𝐵 for the specified target distribution (i.e. the chosen 𝜎𝜎1).  
There is a trade off when setting the standard deviation 𝜎𝜎2 in the proposal function. It is 
necessary to have it quite small in order to get a satisfactory acceptance rate, but then the 
Markov chain moves very slowly in the direction where the limiting function varies slowly.  
Also here we may find arbitrary small optimal acceptance rates by setting the 𝜎𝜎1 small enough. 
Notice that the optimal value of  𝜎𝜎2 decreases slightly when 𝜎𝜎1decreases but the decrease is 
not large enough such that optimal acceptance rates decreases.   

D 𝜎𝜎1 Optimal 𝜎𝜎2 Acceptance 
rate 

A P(A) 𝑀𝑀𝐴𝐴,𝐵𝐵 𝐻𝐻𝐴𝐴,𝐵𝐵 

3 1 0.87 0.36 2 0.0024 2760 3.0 
3 0.33 0.67 0.27 2 0.0024 4230 4.6 
3 0.2 0.61 0.20 2 0.0024 6500 7.2 
3 0.125 0.56 0.15 2 0.0024 4000 9.4 
3 0.1 0.55 0.12 2 0.0024 3700 12 
3 1 0.87 0.36 1 0.079 110 4.5 
3 0.33 0.67 0.27 1 0.079 205 8.1 
3 0.2 0.61 0.20 1 0.079 305 12 
3 0.125 0.56 0.15 1 0.079 460 18 
3 0.1 0.55 0.12 1 0.079 570 23 

10 1 0.48 0.31 1 0.079 270 11 
10 0.33 0.42 0.27 1 0.079 370 15 
10        0.2 0.38 0.24 1 0.079 520 20 
10 0.125 0.35 0.19 1 0.079 730 29 
10 0.1 0.35 0.16 1 0.079 900 35 
10 0.066 0.34 0.11 1 0.079 1 300 51 
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10 0.05 0.33 0.091 1 0.079 1 700 67 
10 0.02 0.34 0.035 1 0.079 4 300 170 
10 0.1 0.35 0.16 1.5 0.016 2 700 24 
10 0.1 0.35 0.16 2 0.0024 13 700 16 

Table 3. Example 1 the multi-normal case and shows the optimal 𝜎𝜎2 that minimizes 𝑀𝑀𝐴𝐴,𝐵𝐵. Here 
𝐴𝐴 = {𝑥𝑥| 𝑥𝑥.,1 < −𝑎𝑎}  and  𝐵𝐵 = {𝑥𝑥| 𝑥𝑥.,1 > 𝑎𝑎}. The simulation is based on one chain with length 
300.000. This is too little to get a good estimate on the optimal 𝜎𝜎2  and to estimate 𝑀𝑀𝐴𝐴,𝐵𝐵 when 
it is large.  

Note that 𝐻𝐻𝐴𝐴,𝐵𝐵 decreases when we make the two subset 𝐴𝐴 and 𝐵𝐵 more extreme by increasing  
𝑎𝑎 as shown in Figure 1, left panel. This is our general experience. Hence, the tail of the limiting 
distribution does not seem to be critical provided the proposal function is scaled properly.  

We have estimated   𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋𝑛𝑛(𝐴𝐴)�

𝜋𝜋(𝐴𝐴) ), see Figure 3. We have simulated 1.000 chains in 100𝑀𝑀𝐴𝐴,𝐵𝐵 

iterations and estimated the decrease in the standard deviation as the number of iterations 
increases. Notice the similarity of the curves for a wide range of 𝑀𝑀𝐴𝐴,𝐵𝐵 from 264 to 4760. We 
obtain smaller standard deviations for increasing 𝑀𝑀𝐴𝐴,𝐵𝐵 which comes from smaller values of 𝜎𝜎1 

and larger values of 𝑎𝑎. Figure 3, right panel, shows the distribution of  𝜋𝜋𝑛𝑛(𝐴𝐴)�

𝜋𝜋(𝐴𝐴)  for 𝑛𝑛 = 100𝑀𝑀𝐴𝐴,𝐵𝐵. 

Since this estimate is the weighted average of 100 𝑅𝑅𝑘𝑘 variables, it is close to a normal density.  

 

Figure 3. The left panel is the logarithm of the standard deviation of  𝜋𝜋𝑛𝑛(𝐴𝐴)�

𝜋𝜋(𝐴𝐴)  in the multi-normal 

model with 𝑑𝑑 = 10 for 𝑘𝑘 = 𝑛𝑛
𝑀𝑀𝐴𝐴,𝐵𝐵

= 1,2, … ,100  with 𝜎𝜎1 = 1, 1
5
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, 1
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 and 𝑎𝑎 = 1 and with  

𝜎𝜎1 = 1
10

 for both  𝑎𝑎 = 1.5  and 𝑎𝑎 = 2. The values are decreasing with decreasing values of 𝜎𝜎1.  

The upper curve is the log ( 2
√𝑘𝑘

) function. Estimates are based on 1.000 chains. The right panel is 

the distribution of 𝜋𝜋𝑛𝑛(𝐴𝐴)�

𝜋𝜋(𝐴𝐴)   for 𝜎𝜎1 = 1
50

 and 𝑎𝑎 = 1  after 100𝑀𝑀𝐴𝐴,𝐵𝐵 = 4.300.000 iterations where 

𝜋𝜋(𝐴𝐴) = 0.079 and the normal fit to the density. 
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Figure 4. From the multi-normal model 𝑑𝑑 = 10 and 1 mill. iterations.  𝜋𝜋(𝐴𝐴) = 0.07, and 
𝑀𝑀𝐴𝐴,𝐵𝐵 = 474. First line is the density and a qq-plot of the length 𝐿𝐿𝑘𝑘fitted to a Weibull 
distribution with parameters 1.57 and 922. Second line is the fraction of 𝑅𝑅𝑘𝑘 fitted to an 
exponential distribution with parameter 1 since 𝐸𝐸𝐸𝐸𝑘𝑘 ≈ 1.  Lower panel is a cross-plot of the 𝐿𝐿𝑘𝑘 
and 𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘.  This is based on 1171 intervals.  



 

20 The two subset recurrent property of Markov chains  

We have found the distribution of the length of the intervals 𝐿𝐿𝐴𝐴 and 𝑅𝑅𝐴𝐴, see Figure 4. This is 
the same example as line 13 in Table 3. Both these distributions are satisfactory fitted with a 
Weibull distribution. The cross plot at the bottom of Figure 5 shows a negative correlation 
between 𝐿𝐿𝑘𝑘 and 𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘 . Here 𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿𝑘𝑘,𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘) = −0.65 and 𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿𝑘𝑘−2,(𝑃𝑃𝑘𝑘 −
𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘)2) = −0.10 showing that the assumptions in the Theorem is satisfied in this case.  

Example 4. The climate model, continued 

We have estimated  𝑉𝑉𝑉𝑉𝑉𝑉(𝜋𝜋𝑛𝑛(𝐴𝐴)�

𝜋𝜋(𝐴𝐴) ) in the climate model, see Figure 5. The figure shows that the 

standard deviation of the estimate decreases as described in the Theorem.  

Also in the climate model the length of the intervals  𝐿𝐿𝑘𝑘 is a heavily tailed density that is 
satisfactory model with the Weibull distribution. The ratio 𝑅𝑅𝑘𝑘 is best fitted with an exponential 
distribution. The heavier the tail of 𝐿𝐿𝑘𝑘 is, the longer the Markov chain must be in order to 
represent the target density.  Figure 6 shows an example with the density of  𝐿𝐿𝑘𝑘, density of 𝑅𝑅𝑘𝑘 
and a cross-plot of the 𝐿𝐿𝑘𝑘 and 𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘 based on more than 1 953 intervals. We have 
tested more than 130 combinations of parameters and subset  𝐴𝐴𝑖𝑖  and 𝐵𝐵𝑖𝑖  and estimated 
𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿𝑘𝑘−2,(𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘)2) < 0 except in one case where an outlier clearly dominated the 
estimate.  

 

Figure 5. Left panel:  The logarithm of the standard deviation of  𝜋𝜋𝑛𝑛(𝐴𝐴)�

𝜋𝜋(𝐴𝐴)  in the climate model for  

𝑘𝑘 = 𝑛𝑛
𝑀𝑀𝐴𝐴,𝐵𝐵

= 1,2, … ,100.  There is one curve for each of the 5 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 pairs shown in Table 4. The 

curve is estimated from 28 long chains each simulated in about 1 month CPU time. These 
chains  that are cut into sections of length 𝑘𝑘 = 𝑛𝑛/𝑀𝑀𝐴𝐴,𝐵𝐵 The estimate is based on fewer sections 
for larger values of k and the variability is larger for the most extreme 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖 pair where we 

have less data. The dashed line is the log ( 2
√𝑘𝑘

) function. The right panel is a log-log plot of the 

same figure. Estimates are based on 28 runs each with more than one month CPU time and 
about 75 mill. iterations after burn in.      
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Figure 6: Similar to Figure 4, but for climate model.  First line is the density and a qq-plot of the 
length 𝐿𝐿𝑘𝑘fitted to a Weibull distribution with parameters 1.47 and 42 200. Second line is the 
fraction of 𝑅𝑅𝑘𝑘 fitted to an exponential distribution with parameters 1 since 𝐸𝐸𝐸𝐸𝑘𝑘 ≈ 1. Third line 
is a cross-plot of the 𝐿𝐿𝑘𝑘 and 𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘. Here 𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿𝑘𝑘,𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘) = −0.04 and 
𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿𝑘𝑘−2,(𝑃𝑃𝑘𝑘 − 𝜋𝜋(𝐴𝐴)𝐿𝐿𝑘𝑘)2) = −0.06.  This is based on 1 953 intervals.  
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Example 5, Two modes, discrete 
Assume the limiting density consists of two modes and 𝐴𝐴  and  𝐵𝐵 represent each of these 
modes. Assume further that the probability for moving between the two modes is 
independent of the state in the mode. Then the number of iterations needed in order to move 
from one mode to the other is exponentially distributed which correspond to a Weibull 
distribution with 𝑘𝑘 = 1. Further, the recurrence interval,  𝐿𝐿𝑘𝑘, is the sum of two exponentially 
distributions which may be approximated with a Weibull distribution with 𝑘𝑘 ≈ 1.5, the same 
value as in the two other examples. If there were intermediate modes between 𝐴𝐴  and  𝐵𝐵 such 
that the recurrence interval was a sum of more than two exponential distributed variables, the 
recurrence interval would be less heavy tailed.  

Example 6, Cauchy distribution 
Assume the limiting distribution is a Cauchy distribution, the Markov chain is a random walk 
with Gaussian distributed step length and the two subsets of the state space are 𝐴𝐴 = {𝑥𝑥| 
𝑥𝑥1 < −𝑎𝑎}  and  𝐵𝐵 = {𝑥𝑥| 𝑥𝑥1 > 𝑎𝑎}. In this case 𝐻𝐻𝐴𝐴,𝐵𝐵 increases when 𝑎𝑎 increases. This implies that 
the Markov chain enters the subset  𝐴𝐴 less often than proportional with the probability 𝜋𝜋(𝐴𝐴) 
and this is compensated by staying longer in the area in and close to 𝐴𝐴 when 𝑎𝑎 increases. This 
will give very heavy tailed distribution that may be approximated by a Weibull distribution with 
𝑘𝑘 < 1, i.e. more heavy tailed than the exponential distribution. If we had assumed a Gaussian 
limiting distribution or a Cauchy distribution in the random walk, then  𝐻𝐻𝐴𝐴,𝐵𝐵 had decreased and 
we would not have a heavy tail. 

The last example shows that the length of the recurrence intervals may have more heavy tailed 
distribution than the exponential.  But it is necessary with a quite extreme example in order to 
obtain this.  

7 Closing remarks 

This paper proposes a new type of recurrence and a function  𝐻𝐻𝐴𝐴,𝐵𝐵 that gives us a better 
understanding of the mixing of Markov chains. Examples illustrate that the new recurrence 
intervals typically have length from a distribution with heavy tails. However, the length of the 
intervals was fitted with a Weibull distribution in three examples with 𝑘𝑘 approximately 1.5 
which gives a distribution with less heavy tail than the exponential distribution. It is necessary 
with a quite extreme example in order to get heavier tails than in the exponential distribution. 
Heavy tails in the distribution of the length of the recurrence intervals make it necessary with 
more samples in order to be sure to sample the state space representatively.  

We also give a bound on the variance the estimate on 𝜋𝜋(𝐴𝐴) after n iterations. We show that 
variance is proportional with  𝑀𝑀𝐴𝐴,𝐵𝐵, the expected length of the recurrence intervals. Therefore, 
we should tune the acceptance rate and other parameters in the Markov chain in order to 
minimize  𝑀𝑀𝐴𝐴,𝐵𝐵 and  𝐻𝐻𝐴𝐴,𝐵𝐵. In some cases this implies choosing an acceptance rate that is far 
smaller than the interval (0.1,0.6) recommended in the literature.  We find examples where it 
is optimal to have a much smaller acceptance rate than what is generally recommended in the 
literature and also examples where the optimal acceptance rate vanishes in the limit. 
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Appendix 

A. Proof of the Proposition 
When the proposal function is 𝜋𝜋(𝐴𝐴) then the probability for jumping from 𝐴𝐴 to 𝐵𝐵 in exactly n 
iterations is   𝑄𝑄𝐴𝐴,𝐵𝐵,𝑛𝑛 =  𝜋𝜋(𝐴𝐴)(1 − 𝜋𝜋(𝐴𝐴))𝑛𝑛−1. Then the expected number of iterations needed in 

order to move from 𝐵𝐵 to 𝐴𝐴 is ∑ 𝑖𝑖 𝜋𝜋(𝐴𝐴)(1 − 𝜋𝜋(𝐴𝐴))𝑖𝑖−1𝑖𝑖=1 = 1
𝜋𝜋(𝐴𝐴). Then a move from 𝐴𝐴 to 𝐵𝐵 

followed by a move from 𝐵𝐵 to 𝐴𝐴 has the expected number of iterations 𝑀𝑀𝐴𝐴,𝐵𝐵 = 1
𝜋𝜋(𝐴𝐴) + 1

𝜋𝜋(𝐵𝐵). □ 

B.  Proof of the Theorem 
The assumption in the Theorem ensures that the Markov chain has the same properties in all 
the intervals 𝐼𝐼𝑗𝑗. Then we have   
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We have used the first bound on the covariance in the inequality. The bound on the second 
covariance makes it possible to continue the calculation:  
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Since 
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𝜋𝜋(𝐴𝐴) − 𝐿𝐿𝑗𝑗 = �𝑅𝑅𝑗𝑗 − 1�𝐿𝐿𝑗𝑗, we write these two bounds slightly differently in order to show 

the dependence on 𝜋𝜋(𝐴𝐴)  and the independence of the scale of 𝐿𝐿𝑖𝑖. 
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This proves the Theorem. □ 

C. Example where 𝑯𝑯𝑨𝑨,𝑩𝑩 < 𝟏𝟏 
Assume there are 2n+1 states where 𝐴𝐴 = {𝑠𝑠1, 𝑠𝑠3, … , 𝑠𝑠2𝑛𝑛+1} and 𝐵𝐵 = {𝑠𝑠2, 𝑠𝑠4, … , 𝑠𝑠2𝑛𝑛} and all 
states are equally likely in the limiting density. Use a Metropolis-Hasting simulation algorithm 
that from state 𝑠𝑠𝑖𝑖 proposes state 𝑠𝑠𝑖𝑖−1 and 𝑠𝑠𝑖𝑖+1 with probability 0.5 each where we use the 
cyclic definition 𝑠𝑠0 = 𝑠𝑠2𝑛𝑛+2. This means that the Markov chain changes between subset 𝐴𝐴 and 
𝐵𝐵 in each iteration except when the chain is in the two neighboring states  𝑠𝑠1, 𝑠𝑠2𝑛𝑛+1 ∈ 𝐴𝐴. Then 

𝑀𝑀𝐴𝐴,𝐵𝐵 = 4𝑛𝑛+5
2𝑛𝑛+1

 and 𝐻𝐻𝐴𝐴,𝐵𝐵 = 𝑛𝑛(𝑛𝑛+1)(4𝑛𝑛+5)
(2𝑛𝑛+1)3

≈ 0.5 for 𝑛𝑛 large. Notice that in this example, the two 

subsets 𝐴𝐴 and 𝐵𝐵 are as close together as possible instead of far apart. The example shows that 
the subsets 𝐴𝐴 and 𝐵𝐵 must be far apart in order for 𝐻𝐻𝐴𝐴,𝐵𝐵  to give valuable information about the 
mixing of the chain and not only between subsets 𝐴𝐴 and 𝐵𝐵. 
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