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1 Introduction
Weather forecasting beyond the medium range of two weeks is currently an active area of
research (Robertson and Vitart, 2018) due to the demand for skillful long-range forecasts
in various societal sectors such as energy production, agriculture, health and disaster
management (e.g. Ogallo et al., 2008). Sources of long-range predictability within the at-
mosphere are usually associated with the existence of different modes of low-frequency
variability, including the El Niño Southern Oscillation (ENSO), monsoon rains, sudden
stratospheric warmings, the Madden Julian Oscillation (MJO), the Indian Ocean dipole,
the North Atlantic Oscillation (NAO), and the Pacific/North American (PNA) pattern,
spanning a wide range of time scales from months to decades (Hoskins, 2013; Vitart et al.,
2012). It is expected that, if a forecasting system is capable of reproducing phenomena
with low-frequency variability, they may also be able to forecast them (Van Schaeybroeck
and Vannitsem, 2018). Post-processing and skill assessment of long-range forecasts is thus
often focused on these same phenomena (e.g. Van Schaeybroeck and Vannitsem, 2018), or
other slowly-evolving components of the Earth system such as sea-surface temperature
(e.g. Heinrich et al., 2019). However, forecast users commonly need information on atmo-
spheric variables such as surface temperature and precipitation (Roulin and Vannitsem,
2019).

At time scales beyond the medium range, the weather noise that arises from the growth of
the initial uncertainty, becomes large (Royer, 1993). As a consequence, predictions must
be probabilistic in nature. This is made possible through the use of ensemble forecasts
(Van Schaeybroeck and Vannitsem, 2018), with a trade-off between increased compu-
tational costs and increased skill as the ensemble size grows. For monthly to seasonal
forecasts, the benefit of good initialization (initialization as close as possible to observa-
tions) has been demonstrated (Doblas-Reyes et al., 2013a,b). For these reasons, the UK
Met Office’s seasonal prediction system, GloSea5, uses a lagged initialization approach
with new ensemble members initialized every day, resulting in a monthly seasonal fore-
cast ensemble with 42 members generated by combining all forecasts available from the
most recent three weeks (MacLachlan et al., 2015)1.

In this paper, we investigate how the older members of a lagged ensemble system can be
brought closer to observations by utilizing new observations that have become available
since the forecast system was run to generate these members, using the rapid adjustment
of forecast trajectories (RAFT) algorithm recently proposed by Schuhen et al. (2020). With
a focus on weekly average surface temperature, we aim to assess the skill of the forecast in
a user-relevant setting. For observations, we use the ERA5 reanalysis. Preliminary data
for ERA5 is now being released daily with a 5-day delay from real time, making the
setting considered here somewhat realistic from an operational perspective. The data sets
and the RAFT algorithm are described in the following Section 2, with results shown in
Section 3. Finally, some concluding remarks are given in Section 4.

1. https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/

user-guide/technical-glosea5
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2 Data and methods

2.1 Data
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Figure 1. Verification rank histograms for GloSea5 forecasts of weekly mean temperature anom-
alies initialized on May 1st compared against ERA5. The results are aggregated over the study
region, the time period 1993-2015 as well as lead times 1-6 weeks (left), 7-12 weeks (middle) or
13-18 weeks (right). The black horizontal lines indicate a perfectly calibrated forecast.

We analyze surface temperature hindcasts, or historical re-forecasts, from GloSea5, the
UK Met Office Global Seasonal forecast system version 5 (MacLachlan et al., 2015). The
GloSea5 system has a spatial resolution of 0.8 degrees in latitude and 0.5 degrees in lon-
gitude. Our analysis focuses on land grid cells in a region bounded by -30 to 50 longit-
ude and 30 to 90 latitude, covering Europe and surrounding area. The hindcasts cover
the time period 1993 to 2015, and the system uses a lagged initialization approach with
seven members initialized on the 1st, 9th, 17th and 25th of every month. Hindcasts of
weekly mean temperatures from five initialization dates–May 1st to June 1st–are con-
sidered for realization dates of up to 18 weeks ahead for the May 1st run, or the time
period from early May to early September. The analysis is performed on temperature
anomalies which are defined relative to the model’s weekly climatology over the entire
time period 1993-2015. In the remainder of the paper, we will refer to the hindcasts as
“forecasts”.

The GloSea5 forecasts are compared against the ERA5 reanalysis (Copernicus Climate
Change Service (C3S), 2017). ERA5 originally has a spatial resolution of 0.28 degrees and
is here upscaled to match the resolution of the GloSea5 system. We calculate weekly mean
anomalies in the same manner as for the hindcasts using ERA5’s climatology over the
same time period.

The aim of the forecast system is to provide accurate and calibrated forecasts (e.g. Thor-
arinsdottir and Schuhen, 2018). Calibration, or reliability, refers to the representation of
uncertainty in the forecast in that an event predicted to occur with probability p should be
realized with the same frequency in the reanalysis. An empirical calibration assessment
of the seven member ensemble initialized on May 1st is shown in Figure 1. The plots
show the distribution of the rank of the reanalysis when compared against the seven
ensemble members across years, spatial locations and forecast lead times. While the fore-
casts are slightly underdispersive for the first six weeks as indicated by the ∪-shape, they
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are nearly perfectly calibrated for weeks 7-18. For this reason, we will in the following
focus on improving the prediction accuracy.

2.2 Rapid adjustment of forecast trajectories (RAFT)
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Figure 2. (a) Correlations between forecast anomaly errors at different lead times of the same fore-
cast trajectory for the ensemble mean forecast initialized on May 1st; (b) The resulting adjustment
periods for each forecast lead time.

To improve the accuracy of the forecasts, we consider new information that has become
available since the forecast was issued, namely observations associated with lead times
that have already been realized. Specifically, if the forecast errors at subsequent lead times
are correlated with the most recently observed forecast error, this information can be used
to update the remaining forecast trajectory that is yet to be realized using the rapid ad-
justment of forecast trajectories (RAFT) algorithm proposed by Schuhen et al. (2020). The
forecast error et,l is here defined as the distance of the ensemble mean anomaly forecast
x̄t,l initialized at time t and valid at lead time l to the observed anomaly yt+l at time t+ l,

et,l = yt+l − x̄t,l. (1)

Figure 2(a) shows the correlation between forecast errors at different lead times for the
ensemble mean forecast trajectory initialized on May 1st. While the errors at all lead times
beyond the first show substantial correlation with the error observed at the previous lead
time, the correlation decreases rapidly for lead times further into the future.

We use a linear regression model to connect the error at a future lead time l′ > l with the
current error et,l. Specifically, we define the model

et,l′ = α+ β et,l + ε, (2)

where α and β are real valued regression coefficients and ε is a normally distributed er-
ror term with mean zero. The model is estimated separately for each forecast run, current
lead time and future lead time in a leave-one-out cross-validation approach, i.e. forecast
anomaly errors for each year are predicted by using data from all remaining years. In
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Schuhen et al. (2020) and Schuhen (2019), the number of future lead times that are cor-
rected each time is selected based on a hypothesis test for β = 0 after estimating the
regression equation in (2) for future lead times l+ 1, l+ 2, . . .. At the first future lead time
l∗ where this test is not rejected, the procedure is stopped and only lead times l′ with
l < l′ < l∗ are corrected. Here, this approach turns out to produce unrealistically long
adjustment periods and thus spurious correlations can result in reduction of the forecast
accuracy rather than an improvement. As we only have a small number of lead times, we
instead determine the length of the adjustment periods empirically.

For each l′ with l < l′ < l∗, we then update the ensemble mean forecast x̄t,l′ to x̄t,l′ + êt,l′

where êt,l′ is the estimated error based on (2). The adjustment periods for the forecast run
initialized on May 1st are shown in Figure 2(b). Further details of the RAFT algorithm
are given in Schuhen et al. (2020) and Schuhen (2019).

3 Results
For evaluating the forecasts, we calculate the root mean square error (RMSE) skill score
of the ensemble mean forecast with the ERA5 climatology forecast of that week and grid
cell over the entire time period 1993-2015 as a reference forecast. A positive skill score
indicates a higher skill than the climatology, while a negative skill score indicates a lower
skill.
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Figure 3. Root mean squared error (RMSE) skill scores for five different runs of GloSea5 com-
pared against ERA5 climatology. The score for each forecast week is aggregated over all land grid
cells in the study area and the years 1993-2015. The original GloSea5 forecasts are indicated with
dashed lines while RAFT forecasts updated one week prior to the realization time are indicated
by solid lines.
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Figure 3 shows the RMSE skill scores for each of the GloSea5 runs as a function of lead
time, aggregated over grid cell locations and years. All the runs show a similar pattern: In
the first week, the forecast improves the climatological reference forecast by 40-60%, and
in the second week, the forecasts are 15-35% better than climatology. From week three
and onward, however, the skill is roughly constant at 5-15% below climatology. At the
shortest possible adjustment lead time of one week, the forecasts updated with the RAFT
algorithm are consistently better than the original forecasts and, on average, more skillful
than the climatology forecast. The skill of RAFT forecasts with adjustment lead times
from one week to that of the original forecast generally falls between the two forecasts
shown in Figure 3. For example, for the run initialized on May 1st, Figure 2(b) shows that
the adjustment period for this run varies from one to three weeks depending on the week.
At any given time, the RAFT forecast trajectory will thus converge to the original forecast
trajectory after one to three weeks. Results for the other four runs are similar (results not
shown). On their own, the individual runs thus do not provide forecasts of higher skill
than climatology beyond the medium range of two weeks.
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Figure 4. Root mean squared error (RMSE) skill scores for a comparison against ERA5 clima-
tology for the combination of all five forecast runs (blue dashed line), for RAFT-processed ERA5
climatology of adjustment lead time one week (brown solid line), and for a combination of the
RAFT-processed ensemble means for all five forecast runs at an adjustment lead time of one
week (blue solid line). For comparison, these skill scores are overlaid on the results shown in
Figure 3.

We now consider various forecast combinations where, in each case, the multi-model
or lagged ensemble mean forecast is constructed using equal weights on the different
models. As shown in Figure 4, for the first five forecast weeks, the skill of the lagged
ensemble mean is slightly below that of the newest forecast run. From forecast week six
and onward, no new runs are added to the lagged ensemble mean, resulting in increasing
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effective lead time of the forecast. While this gradually reduces the skill, as expected, the
reduction halts at around the skill of the climatology and beyond week eight, the two
forecasts are comparable in skill. Thus, while the skill of each individual run is lower
than that of climatology beyond the medium range of two weeks, their joint skill is con-
sistently higher for lead times of up to three weeks and comparable thereafter.

The climatological reference forecast may be updated in the same manner as the GloSea5
forecasts using the RAFT algorithm. This results in a climatological forecast with a struc-
ture comparable to an autoregressive process of order one. The updated climatological
forecast with lead time of one week is indicated with a brown line in Figure 4. This
forecast has 5-10% higher skill than the climatological reference forecast. Furthermore,
a forecast that combines the lagged ensemble means post-processed with RAFT is the
best forecast for weeks 6 and 7, and comparable to the RAFT climatology for week 8 and
onward.
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Figure 5. Root mean squared error (RMSE) skill scores for various model combinations for fore-
casts issued in week five compared against ERA5 climatology. Each run combination consists of
the most recently available runs. The score for each forecast week is aggregated over all land grid
cells in the study area and the years 1993-2015.

For a further comparison of various model combinations in an operational setting, Fig-
ure 5 shows the skill scores for a number of forecasts for weeks 5-18 issued in week 5.
These results indicate that an optimal forecasting strategy is to combine a smaller number
of the most recent runs for the first two forecast weeks after which all five runs as well as
the climatology should be combined. While the combination of all runs and climatology
does not outperform climatology for all forecasts weeks, it is overall the best forecast for
weeks 7-18. In particular, including climatology in the ensemble is consistently slightly
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better than only considering the five GloSea5 runs.

As shown in Figure 2, the adjustment period at forecast lead time 5 is relatively short.
This can also be seen in Figure 5 where the RAFT-adjusted forecasts coincide with the
original forecasts from week 7. Figure 6 shows the same original forecasts from week 10
and onward, as well as the RAFT-adjusted forecasts issued in week 10. Here, the adjust-
ment periods are considerably longer for all the forecast runs and the RAFT adjustment
yields improved performance until week 14 after which the forecasts again coincide. In
this case, the original forecasts have lead times of 5+ weeks, and we see that only the
combination of all five runs is on a par with climatology. For a combination of three or
more runs, the RAFT adjustment yields an overall higher skill than climatology with the
full combination of all five runs and RAFT climatology again showing the highest skill
overall.
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Figure 6. Root mean squared error (RMSE) skill scores for various model combinations compared
against ERA5 climatology for forecast weeks 10-18. The score for each forecast week is aggreg-
ated over all land grid cells in the study area and the years 1993-2015. The original GloSea5
forecasts are indicated with dashed lines while RAFT forecasts issued in week 10 are indicated
by solid lines.

4 Conclusions and discussion
In a study of long-range forecast skill for weekly summer surface temperatures in Europe,
we assess the skill of the UK Met Office’s seasonal prediction system GloSea5 against
the ERA5 reanalysis. GloSea5 uses a lagged initialization approach where, for the 1993-
2015 hindcasts analyzed here, seven members are initialized on the 1st, 9th, 17th and
25th of every month. Our results indicate that the system might benefit from a step-wise
model combination approach, where for the earliest forecast lead times, only more re-
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cently available runs are used, while a larger set of runs should be employed for lead
times beyond two weeks. Furthermore, the forecast skill is increased for lead time bey-
ond two weeks if climatology is included in the ensemble.

For a lagged ensemble system, additional information in the form of observed forecast er-
rors is available for earlier lead times of the older ensemble members. Using the recently
proposed RAFT adjustment approach (Schuhen et al., 2020), we have investigated the use
of this information to post-process the older members before the forecast is issued. Our
results indicate that the application of the RAFT adjustment can improve the RMSE skill
of the forecast by as much as 10% compared to climatology. In each time step, the length
of the RAFT adjustment period depends on the number of future lead times where the
forecast error is expected to correlate with the most recently observed forecast error. We
find that the length of the adjustment period varies over time, with a higher correlation
across lead times in July and August than in the earlier part of our study period in May
and June.

As argued by e.g. Kharin and Zwiers (2003) and Van Schaeybroeck and Vannitsem (2018),
the small samples sizes available for seasonal forecasts (23 seasons in our case) require
simple post-processing methods in order to avoid overfitting. The RAFT approach is a
fairly simple post-processing method whose strength lies in the use of new, otherwise un-
used, information. The current study focuses on average skill in predicting mean weekly
summer temperatures in Europe. For many forecast users, a particularly valuable in-
formation is the occurrence of outliers, e.g. a particularly warm or cold summer. While
this topic requires further investigation, we expect that RAFT could prove particularly
useful in such situations when the outlier has been detected in the newest runs with that
not being the case for the older runs.
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