
Security in M3Ci

 NOTAT/NOTE
 N o r w e g i a n C o m p u t i n g C e n t e r / A p p l i e d R e s e a r c h a n d D e v e l o p m e n t

IMEDIA/17/01

Lill-Anita Pettersen

Oslo
August 2001

�
�������

 Notat / Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

Tittel/Title:

Security in M3Ci

Dato/Date: August

År/Year: 2001

Notat nr/
Note no: IMEDIA/17/01

Forfatter/Authors:

Lill-Anita Pettersen

• Sammendrag/Abstract:

The MultiMedia Multi-Channel Infrastructure shall enable the development of
multimedia services that can be deployed across multiple devices. The platform
functions as a springboard for the prototyping of new products and services
relevant to both industrial and public sectors. The infrastructure consists of all
generic mechanisms needed by different applications. This makes the
development of new applications and services fast and easy. It is also necessary
that the infrastructure supports some generic security services required by the
applications. Both APIs and underlying protocols have to be implemented.

Emneord/Keywords: security, M3Ci, multi channel infrastructure

Tilgjengelighet/Availability: Restricted to channel S Partners and NR until January 2002; Open thereafter.

Prosjektnr./Project no.: channel S 11000

Satsningsfelt/Research field: service architecture and service channeling, security

Antall sider/No of pages: 31

Sensitivitet/Sensitivity: Non-sensitive information

Security in M3Ci

Lill-Anita Pettersen

Norsk Regnesentral
August 2001

Table of Contents

1. INTRODUCTION...1

2. REQUIREMENTS ..2

3. SECURITY SERVICES ...2

3.1 CONFIDENTIALITY ..2
3.2 INTEGRITY..2
3.3 AUTHENTICATION ..3
3.4 ACCESS CONTROL ..3
3.5 ACCOUNTING ...3
3.6 NONREPUDIATION ..3

4. APPLICATION PROGRAM INTERFACES (APIS)..3

4.1 GENERIC SECURITY SERVICE API (GSS-API) ...5
4.2 INDEPENDENT DATA UNIT PROTECTION GSS-API (IDUP-GSS-API)..6
4.3 GENERIC CRYPTOGRAPHIC SERVICE API (GCS-API) ..7
4.4 MICROSOFT CRYPTOAPI..8
4.5 BSAFE - PKCS (CRYPTOKI) ...9
4.6 CAPI COMPARISON..10
4.7 GENERIC AUTHORIZATION AND ACCESS CONTROL API (GAA-API)..11
4.8 JAVA-API...12
4.9 SECURE DISTRIBUTED ENVIRONMENT (SECUDE) ..13

5. PROTOCOLS..14

5.1 NETWORK ACCESS LAYER ...14
5.2 INTERNET LAYER ...15
5.3 TRANSPORT LAYER..19
5.4 APPLICATION LAYER..22

6. RECOMMENDATION ..29

7. WHAT MORE DO WE NEED? ..30

REFERENCES..31

Note

Lill-Anita Pettersen

3rd August 2001

Security in M3Ci

Abstract

The MultiMedia Multi-Channel Infrastructure shall enable the de-

velopment of multimedia services which can be deployed across mul-

tiple devices. The platform functions as a springboard for the proto-

typing of new products and services relevant to both industrial and

public sectors. The infrastructure consists of all generic mechanisms

needed by di�erent applications. This makes the development of new

applications and services fast and easy. It is also necessary that the

infrastructure supports some generic security services required by the

applications. Both APIs and underlying protocols have to be imple-

mented.

1 Introduction

This note is an overview over di�erent security standards that is possible

to use in the M3Ci platform. After a short introduction to the di�erent

security services that must be supported, di�erent APIs and protocols will

be introduced. Section 7 summarizes what more we need.

Separating security from applications, and store them in the infrastructure,

makes it possible to develop new, secure applications quickly.

The note is systemized in two main parts; APIs and Protocols. After this

introduction some security requirements for M3Ci are mentioned, followed

by a section describing di�erent security services.

After the de�ntition of security services the �rst main part starts. The sec-

tion introduces di�erent security APIs, their bene�ts and their weaknesses.

The second main part consists of a description of some of the security pro-

tocols that exist today. The protocol section is divided in four subsections

after the OSI architecture: the Network access layer, the Internet layer, the

Transport layer and the Application layer. Each layer has it's protocols de-

scribed. There might be disagreements on which layer a speci�c protocol

belongs, this is one proposition.

1

2 Requirements

Because of the large scale of applications that the M3Ci platform supports,

it is important that all the applications have their requirements satis�ed.

Since a banking service, that is one of the applications, probably requires

the highest degree of security, it is important to have this particular service in

mind when deciding for security mechanisms to use in the platform. It would

probably be most e�ective to add the security services that are required by

many of the applications in the infrastructure, and services required by few

applications in the application itself. This solution depends on the variety

of security services required.

3 Security services

In this section di�erent security services which are of interest in the M3Ci

platform will be listed. Stallings [15] describes con�dentiality, authentic-

ation, integrity, nonrepudiation, access control and availabiltiy as a useful

classi�cation of security services. This section gives a description of these

services and some possible ways to provide them.

3.1 Con�dentiality

Con�dentiality ensures that a message are only accessible for reading by au-

thorized parties. Con�dentiality is achieved by encrypting messages. Mes-

sages can be encrypted based on symmetric cryptosystems or asymmetric

cryptosystems. In symmetric cryptosystem both parties share the same key,

a session key, that they encrypt and decrypt messages with. Only the two

communicating parties know this key. Examples of algorithms used for sym-

metric cryptography are triple DES (the Data Encryption Standard with

two or three keys), IDEA (International Data Encryption Standard) and

Blow�sh. In asymmetric cryptosystems there are two keys: one for encryp-

tion and one for decryption. Each party has a private key and a public key.

The private key is secret, while the public key may be publicly known. The

RSA algorithm and the Di�e-Hellman algorithm is asymmetric. They are

mainlyused for key exchange between two communicating parties.

Usually asymmetric encryption is used for key exchange and symmetric en-

cryption is used for encrypting the message.

3.2 Integrity

Integrity ensures that only authorized parties can modify a message. Modi�c-

ation includes writing, changing, deleting, creating etc. One way to provide

integrity is by the use of a message digest algorithm (e.g. MD4, MD5).

2

3.3 Authentication

Authentication ensures that the origin of a message is who it claims to be.

The sender is uniquely identi�ed. One way to achieve authentication of a

sender is through the use of password, by digital signatures (for example

RSA-signatures) or by a authentication protocol like Kerberos as described

later in this note.

3.4 Access control

Access control is the ability to limit and control the access to a system. One

way to achieve access control is by the use of Access Control Lists (ACLs)

which stores the access rights to an object with the object itself..

3.5 Accounting

Accounting is to collect information on resource usage for the purpose of

trend analysis, auditing, billing, or cost allocation. One way to store such

information is in audit trails. An audit trail is a record of relevant security

events.

3.6 Nonrepudiation

Nonrepudiation requires that neither the sender nor the receiver of a mes-

sage have the possibilty to deny sending or recieving it. The mechanisms

employed to achieve this is encryption, digital signatures and integrity check

functions.

4 Application Program Interfaces (APIs)

Petersen and Davie [10] de�nes Application Program Interface (API):

Application Programming Interface (API) is the interface that

application programs use to access the network subsystem (usu-

ally the transport protocol). Usually OS-speci�c.

They also make a distinction between the protocol that provides a certain set

of �services�, and the API that provides �syntax� by which those services can

be invoked in this special OS. Berkley's unix socket interface is an example

on an interface that is widely supported. In this section the APIs discussed

are security APIs and not generic APIs as the socket interface. The de�ni-

tion, however, will be the same.

Bene�ts and weaknesses in the di�erent security APIs will be stated. How-

ever, most of the APIs presented in this section are application independent

(support future applications as well as todays), module independent (support

wide variety of HW and SW modules) and algorithm independent (support

3

Figur 4.0:Basic layered cryptographic security architecture

future algorithms as well as todays). The APIs give us functional com-

pleteness when it comes to security and separate security from application,

making it easier to apply new applications. The purpose of this section is

to give a description that help choosing the right API for a special applica-

tion/protocol, since the most suited API to for example a mail application

and the best API to a cryptographic token application will di�er. One sub-

section compare four Cryptographic APIs (CAPIs). We will discover that

to choose only one API, that covers all the security services we need, is im-

possible.

Figure 4.0 shows an overview over the layers in a security architecture. The

overview tells us that we need more than one layer with security to keep an

application secure. In addition to security mechanisms/protocols you need

both a higher-level API (represented by SSAPI and SSSAPI in the �gure)

and a lower-level API, also known as cryptographic APIs (or CAPIs). The

API makes it possible for the upper layer applications to determine what

services are available at a lower layer.

4

4.1 Generic Security Service API (GSS-API)

GSS-API provides a simple interface to security services for connection-

oriented applications. It provides security services to caller in a generic

fashion.

Linn [8] characterises the typical GSS-API caller as a communication pro-

tocol calling on GSS-API in order to protect it's communications with se-

curity services as authentication, integrity and/or con�dentiality. Services

available through GSS-API may be implemented over a range of underlying

mechanisms. Both symmetric cryptography (e.g Kerberos) and asymmetric

cryptography (e.g Simple Public Key Mechanism (SPKM)) may be used.

Mechanism independence is one of four basic goals for GSS-API. Another

goal that is addressed is protocol environment independence. GSS-API is

independent of the communication protocol used, permitting use in a broad

range of protocol environments. GSS-API is also protocol association inde-

pendent and suitable to a range of implementation placements.

Gollmann [7] de�nes two logical pieces of GSS-API: the generic interface

to the set of security services and a collection of mechanisms providing the

security. He also de�nes the basic security elements in GSS-API which are

credentials, tokens, security contexts and status codes. In addition Linn [8]

de�nes mechanism types and naming.

Credentials contain the security-relevant data required to establish a secure

context between peers. They have to be handled carefully by underlying

mechanisms to maintain security.

Tokens are data elements that are transferred between GSS-API callers.

There are two classes of tokens, context-level tokens and per-message tokens.

While context-level tokens are exchanged in order to establish and manage

a security context between peers, per-message tokens relate to an context

and are exchanged to provide protective security services for corresponding

data messages. The GSS-API caller who recieves the tokens is responsible

for handling them in the right way in order to which type of tokens they

represent. This distinction depends on the caller protocol environment.

Security contexts are established between peers using credentials. They cap-

ture information related to the management of the security services.

Status Codes are set to support setting up a security context, e.g. a GSS

CONTINUE NEEDED status, which indicates that initialising a security

context has not been completed. A status �ag also indicates which features

are desired, e.g mutual req �ag to request mutual authentication.

Naming structures are avoided in GSS-API. The names transferred across

the interface are treated in order to initiate and accept security contexts as

opaque objects.

There exist four types of calls in the interface: Credential management,

5

Context-level calls, Per-meesage calls and Support calls.

Credential management calls gives the principals the right to acquire and

release credentials. Context-level calls manage the security context between

peers. Per-meesage calls provides protection of messages. Support calls for

routines related to support and general housekeeping e.g GSS Display status

which translates status codes to printable form.

GSS-API is more than just a Cryptography Application Program Interface

(CAPI). It is a securtiy service API that provides the means to access other

security services.

NSA [9] mentions the strengths and the weaknesses of GSS-API. Besides

the fact that GSS-APi is algorithm and cryptomodule independent it also

supports cryptographically unaware applications. The application program-

mer need not be an expert in cryptography to implement the API. A weak-

ness when it comes to not supporting aware applications is that it does nor

provide a direct interface for services like key management, user authentic-

ated logon, access control and the storage and access to security database

information. Since the applications needed to access these services will be

cryptographically aware, it will be necessary with another API i addition

to GSS-API. GSS-API uses opaque objects to identify sensitive information

(e.g credentials, contexts). It is therefore an API that provides safe program-

ming. Some other weaknesses with GSS-API when implemented by itself.

It does not support store and forward applications with multiple recievers

(IDUP-GSS-API issues this), there is no authentication of the cryptomod-

ule and it does not include auxiliary security services like user logon which

makes it more di�cult to ensure MISSI support. It is however recommended

to use another low-label API together with GSS-API to provide the import-

ant things like key-management etc.

GSS-API is a standard.

Implementation: http://www.idoox.com/products/gss/doc/api/index.html

How to use GSS-API: http://devresource.hp.com/STK/impacts/i683.html

4.2 Independent Data Unit Protection GSS-API (IDUP-GSS-

API)

Adams [1] describes IDUP-GSS-API as an extension to the Generic Security

Service API. In addition to the other facilities provided by GSS-API, IDUP-

GSS-API supports store-and-forward and storage applications. IDUP-GSS-

API gives the possibility to protect each Independent Data Unit (IDU). The

IDU may be of any size and it's protection is entirely independent of any

other unit of data.

6

Adams [1] describes the paradigm within which IDUP-GSS-API operates in

as:

An IDUP-GSS-API caller is any application which works with

IDUs, calling on IDUP-GSS-API in order to protect its IDUs with

services such as data origin authenticationwith integrity (DOA),

con�dentiality with integrity (CONF), and/or support for non-

repudiation (e.g., evidence generation, where "evidence" is in-

formation that either by itself or when used in conjunction with

other information is used to establish proof about an event or

action.

IDUP-GSS-API is, as GSS-API, mechanism independent, protocol envir-

onment independent, protocol association independence and suitable for a

range of implementation placements. The basic elements in IDUP-GSS-API

are, as in GSS-API, credentials, tokens, security environment, mechanism

types and naming. Credentials are the same as in GSS-API. Tokens in IDUP-

GSS-API are much the same as in GSS-API, but there are no context-level

tokens generated. The security environment in IDUP-GSS-API is di�erent

from the one in GSS-API. In IDUP-GSS-API the security environment exists

within a calling application. This is because it's purpose is to protect the

IDUs using particular caller credentials. Mechanism types and naming are

to be understood as in GSS-API.

Implementation:http://www.meehan.cs.wwu.edu/nw3courses/cs417f/common/

gssapi/idup_gss.htm

4.3 Generic Cryptographic Service API (GCS-API)

Rogaway [11] describes what GCS-API provides:

It is the purpose of Generic Cryptographic Service Applica-

tion Program Interface (GCS-API) to provide a simple and ab-

stract interface for gaining access to virtually any cryptographic

transformation

GCS-API provides a generic interface to cryptographic operations. Applic-

ations are given the possibility to take advantage of cryptography and in

that way secure themselves. GCS-API is neither a low-level nor a high-level

API. It has the characteristics of both and are therefore called a middle-level

API. It can support the underlying mechanism for a high-level CAPI such

as GSS-API.

NSAs CAPI team [9] summarizes bene�ts and weaknesses of the GCS-API.

7

GCS-API is algorithm independent and application independent. It supports

both session-oriented and store-and-forward applications. The cryptographic

services provided by GCS-API are authentication, data integrity and con-

�dentiality. GCS-API is the only recommended CAPI for key management

applications. It is also recommended for security association protocols and

as certi�cation manager.

Some of the basic concepts of GCS-API are mentioned by Rogaway [11].

He describes transforms, cryptographic contexts, keys, quality of service, de-

faults and security awareness, and naming. Transforms are maps from an

integer code, �old state�, and zero or more (input) strings, to a �new� state

and zero or more (output) strings. The state can be changed or left in the

same way as before. Statefull transforms are often used to store keys. A

cryptographic context has to be created to use a transform. The creation is

done by naming the desired transform and �lling it's initial state. A cryp-

tographic context is an instance of keyed transform. A key is an abstract

enity to the caller. One can create a key by calling GCS Init key, or by using

GCS Retrieve key. Quality of service for a mechanism is de�ned by a given

transform's transform-type and a set of (attribute, value)-pairs for the mech-

anism. When it comes to the security awareness there are to possibilities for

a GCS caller; the caller can be classi�ed as �security unaware� (U) or as

�security aware� (A). Naming structures are, just as with GSS-API, avoided.

More information: http://www.opengroup.org/publications/catalog/p442.htm

4.4 Microsoft CryptoAPI

NSA [9] compares di�erent CAPIs, one of them is Microsoft's CryptoAPI.

CryptoAPI supports cryptography in order to secure cryptographical aware

applications. CryptoAPI includes functionality for encoding to and decod-

ing from ASN.1, hashing, encrypting and decrypting data, for authentication

using digital certi�cates, and for managing certi�cates in certi�cate stores.

Encryption and decryption are provided, both using session keys and with

public/private key pairs. CryptoAPI is a low-level CAPI developed by Mi-

crosoft. The CAPI is not a standard. Hardware and software implementa-

tions of the library are called �cryptographic service providers� (CSP). The

CSP does the actual interpretation of objects and structures. It also utilizes

both hardware and software cryptographic modules. CSPs have to be signed

by Microsoft. The kernel contains a 1024 RSA public key that it uses to

check the signature when the user tries to load a CSP. If the test fails the

user can not load the CSP. One CSP provides a limited set of algorithms

and data exchange formats. If the user needs a richer set it have to contact

more CSPs to connect to. The CAPI uses the concepts of CSP type to refer

to a set of algorithms and associated modes and data formats.

8

Concepts of a CSP type de�nes:

� Key exchange algorithms

� Digital signature algorithms

� Key exchange format

� Digital signature format

� Session key derivation scheme

� Key length

� Default modes

CryptoAPI has a default CSP that implements several commercial crypto-

graphic algorithms including RSA and MD5.

Microsoft CryptoAPI is algorithm and application independent. It provides

a generic interface to cryptographical services as encrypt and decrypt. It

also allows for current and future cryptomodules to be implemented. Many

of cryptoAPI's weaknesses are related to it being a low-level CAPI. It is

for example weak in the key and certi�cate area, and should therefore be

mixed with an API from a higher level. Since the CAPI is embedded in the

OS, it cannot easily be changed by the application developer. Programmers

using the API need substantial C-expertise and cryptographic programming

expertise. These requirements limit the use of the API where most of the

applications are cryptographical unaware and where the application pro-

grammer has no C-and cryptographical expertise.

Implementation: http://msdn.microsoft.com/downloads, under security

4.5 BSAFE - PKCS (Cryptoki)

Cryptoki is the fourth CAPI in the comparison done by NSA. BSAFE - PKCS

(Cryptoki) is a standard, simple, low-level object oriented CAPI. It is a cryp-

tographic token interface where hardware and software implementations are

called �cryptographic tokens�. As the only CAPI that interfaces directly to

cryptographic tokens, Cryptoki is the logical place for functions that allow

user authentication and administrative control over the token. Together with

MS cryptoAPI, Cryptoki is recommended for certi�cation manager, secur-

ity association protocol, ESP, AH, NLSP, TLSP, MSP, S-HTTP, SSL and

GULS

Cryptoki is application independent and also, as the three other CAPI's

represented in this note, algorithm independent. When developing cryptoki

9

RSA had personal cryptographic tokens in mind (e.g., smart cards, PC-

cards), but there are de�ned extension mechanisms to allow addition of new

capabilities. Cryptoki supports hash, signature and encryption operations.

Services as integrity, authentication and con�dentiality are provided by these

operations. In addition, signature provide support for nonrepudiation.

Implementation:http://www.phaos.com/e_security/dl_cryptoki.html

http://www.phaos.com/e_security/dl_crypt.html

4.6 CAPI comparison

The NSA Cross Organization CAPI team [9] has done a comparison of four

CAPIs: GSS-API, GCS-API, Microsoft cryptoAPI and RSA CRYPTOKI.

In this section the team's foundings will be represented. Since the article

was related to cryptographic APIs there are some interfaces which are not

mentioned, and some characteristics not considered. However, it gives us an

overview over four APIs and what the di�erences between them are.

GSS-API has evolved lately, the extension to the API, IDUP-GSS-API, is

the pre�ered version and will in this section represent the API. As mentioned

above the IDUP-GSS-API is a high-level API and will therefore probably be

the best choice for application developers. GCS-API, CryptoAPI and Cryp-

toki should be used only when developing cryptographically aware applica-

tions, or as an underlying mechanism to IDUP-GSS-API. IDUP-GSS-API is

the recommended API for applications/protocols like word processors, mail

applications, �le storage, directory seivices, network management and au-

thentication applications.

GCS-API is the proposed API for key management applications/protocols.

The GCS-API is special because it has some of the characteristics of high-

level APIs (e.g GSS-API) and som from the low-level APIs (e.g Cryptoki).

As a middle-level API it has not gain the same suport from the market as

both low- and high-level APIs have.

Microsoft CryptoAPI and RSA Cryptoki are two similar APIs. They are

both low-level APIs, application independent and require cryptographic aware-

ness from the application developer. CryptoAPI and Cryptoki are both

recommended for Security Association (SA) protocols, ceri�cate managers,

ESP, AH, NLSP, TLSP, MSP, S-HTTP, SSL, GULS. Cryptoki is also the

recommended API for cryptographic token applications because of it's ab-

stract token model. Table 4.6 shows which API that suits which application.

Which API to choose depends on what protocol/application you have to

10

Algorithm Independence

Detailed Cryptographic

Design and auxiliary Services

 Cryptomodule verification

 Certificate management

 Set-up/Tear-down capability
MISSI Suport

Security Perimeter

 yes yes yes yes

Application Independence yes[1] yes[2] yes[2] yes[2]
Cryptomodule Independence yes yes yes yes

 Awerness Required no yes[3] yes[3] yes[3]

 Key life cycle management no yes no no

no no yes no
 User authentication no no no no

 some no no no
 Query Capability no no yes yes

 yes yes yes yes
 yes yes yes yes

Safe Programming 4 2 2 2
yes yes[5] yes[6] yes

[2]
[3]
[4]
[5]

[1] GSS and IDUP each handle the different application paradigms

Criteria GSS/IDUP GCS-API CryptoAPI Cryptoki

.
GCS-API, cryptoAPI and Cryptoki are suffiently low-level to be independent of the application
GCS-API, cryptoAPI and Cryptoki are intendend for the cryptographically aware programmer
Safe programming is weighted from 1 through 5, with 5 being the most safe
Keys are protected physically (using hardware) or cryptographically (encrypted under facility master key).

Similar protection is provided for intermediate function results (if not kept within the security perimeter)
and "exported" contexts.

[6] Microsoft CryptoAPI specifies a programming inteface that supports this function. The degree of support
 is CSP specific

Table 4.6: CAPI comparison

support. If there are many di�erent applications the perfect API will be

di�cult to �nd. The solution then is to mix the existed APIs. Developing

a new one is to much work. The recommodation states that in reality, a

combination of all four CAPIs will more likely be used. Figure 4.6 shows

an overview over CAPIs and which applications thay are suited for. Recom-

mended layered CAPI approach:

-high-level CAPI (e.g., IDUP/GSS-API) for application developers -low-

level CAPI (e.g., CryptoAPI, CDSA, or Cryptoki) for cryptographic service

developers directly interfacing to HW/SW cryptographic modules.

4.7 Generic Authorization and Access control API (GAA-

API)

GAA-API adds authorization and access control to applications in a generic

fashion. Ryotov et al [13] write that the API works independently of under-

lying security protocols and can be used of multiple applications. GAA-API

supports the following security mechanisms:

� Security mechanisms based on symmetric or asymmetric cryptosystems

11

� Di�erent authorization models

� Heterogeneous security policies

� Various access rights

The GSS-API can be used by the GAA-API to obtain principal's identity.

While GAA-API provides authorization, GSS-API provides authentication.

It will often be necessary to perform both authentication and authoriza-

tion. Without authenticating an user it is impossible to know that he really

is who he claims to be and therefore impossible to decide which right he

has. Ryotov and Neuman [12] say that GAA-API is built into applica-

tions through a library. The applications use it to decide whether a subject

is permitted to do what it wants to do. A simple GAA application will

perform some initialization to create a GAA control structure and security

context (gaa-get-object-polcy-info). The control structure contains informa-

tion about callback routines while the security context contains information

about the user's credentials. After this initialization the application prob-

ably will receive a request. The application will then determine what rights

are necessary to ful�ll that request and call GAA-API routines to create a

list of requested rights (gaa-request-right). When the right policy is found,

the application will determine whether or not policy grants those rights (gaa-

check-authorization). After the application has �nished using GAA-API it

calls cleanup routines and release resources. A GAA application's perform-

ance is illustrated in �gure 4.7. The �gure shows an Initiator who wants

access to a Target. The Access Control Enforcement Function (AEF), that

stands in the middle of the initiator and the target, sends a decision request

to the Access Control Decision Function (ADF) with information about the

initiator and the target. The ADF decides whether or not the Initiator

should get access to the target, and sends the answer to the AEF.

Implementation: http://www.isi.edu/ hochung/research/gaa-api.html

4.8 Java-API

Amit [2] gives a overview of Java security and security APIs. Amit informs

that the cryptographic Java API that supports encryption and other code

signing tools was �rst introduced in JDK 1.1x when the new Java Crypto-

graphic Architecture (JCA) became introduced. The new API introduced

support for symmetric cryptography, asymmetric cryptography, certi�cates

(based on X.509v3 standard) and one way hashing functions. JDK 2.0 in-

troduced a new security API. The API consisted of two main groups of

classes: the access control classes and the cryptographic classes. In addition

12

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

gaa_check_authorization

Decision
Decision
Request

Initiator ADI

Access Request ADI

Target ADI

Retained ADI

Control
Information

Access Control
Policy Rules

gaa_get_object_policy_info

AEFInitiator Target

ADF

Figure 4.7: GAA API

to the cryptographic API version there exist two other JAVA APIs: Java Au-

thentication and Authorization Service (JAAS), that provides user authen-

tication and access control capabilities, and Java Secure Socket Extension

(JSSE). JSSE is a set of Java packages that enable secure Internet com-

munication. It implements the Java version of SSL (Secure Sockets Layer)

and TLS (Transport Layer Security) protocols, and includes functionality

for data encryption, server authentication, message integrity, and optional

client authentication. JSSE enables secure passage of data between a client

and a server running any application protocol (http, Telnet, NNTP, FTP

etc.) over TCP/IP.

Implementations are under the security APIs links.

More information:

http://tetworks.opengroup.org/javadoc/

http://java.sun.com/products/jdk/1.1/docs/guide/security/CryptoSpec.htm

http://www.oop-reserch.com/download.html

http://java.sun.com/j2se/1.4/docs/guide/security/index.html

Java-APImap:http://www.onjava.com/pub/a/onjava/api_map/

4.9 Secure Distributed Environment (SecuDE)

SecuDE is a collection of APIs working side by side.

The following APIs are part of SecuDE:

� AF (Authentication Framework and Certi�cation), adds the functions

of a X.509 certi�cate to the collection of APIs

� CRYPT (Cryptographic algorithms)

� GSS (Generic Securitys Serivices)

� PKCS (Public Key Cryptography Standard)

13

IP

TCPUDP

Kerberos SMTP HTTP

S/MIME PGP SET

IP

TCP

SSL or TLS

HTTP FTP SMTP

IP/IPSec

TCP

HTTP FTP SMTP

(a) Network level (b) Transport Level (c) Application level

Figure 5.0: Location of security protocols

� PEM (Private Enhanced Mail Support)

� SECURE (Personal Security Environment and Cryptography

� SEC-SC (SmartCard Plug-in API)

� SCT

� S/MIME (Secure MIME)

� BAKO

Some of these APIs are further described in this note, but not all.

Implementation: http://www.darmstadt.gmd.de/secude/navreg.htm

More information: http://www.darmstadt.gmd.de/secude/Doc/

5 Protocols

This section is systemized in four subsections: Network Access-level Pro-

tocols, Network-level Protocols, Transport-level protocols and Application-

level protocols. The security protocols located at di�erent levels have di�er-

ent advantages and disadvantages. There are also a number of protocols at

each level, and therefore even more di�cult to choose the right ones. Figure

5.0 shows some protocols and their location in the stack. The protocols will

be further introduced later in this section.

5.1 Network Access Layer

5.1.1 Point-to-Point Protocol (PPP) Authentication

Cisco [4] gives an introduction to authentication using PPP. A PPP session

starts with establishing a link between two nodes. If the establishment suc-

14

ceeds, an optional authentication takes place. PPP supports two authentica-

tion protocols: Challenge Handshake Authentication Protocol (CHAP) and

Password Authentication Protocol (PAP). PAP works as a two-way hand-

shake where the username and password is sent in clear text. CHAP on the

other hand uses a thrre-way handshake. After a PPP link is established ,

the host sends a �challenge� message to the remote node. The remote node

calculates a value using a one-way hashfunction and responds. If this value

matches the value calculated by the host, the authentication is acknowledged.

PPP CHAP is a standardized protocol for authentication.

Implementation:http://www.cisco.com/warp/public/131/ppp_callin_hostname.

html

5.1.2 Layer 2 Tunneling protocol (L2TP)

L2TP provides secure tunnels at the transport layer. The protocol is an

extension to the PPP protocol that enables ISPs to operate Virtual Private

Networks [ms]. L2TP consists of two pieces: the L2tp Access Concentrator

(LAC) and the L2TP Network Server (LNS). LAC physically terminates

a call and LNS probably authenticates the PPP stream [linux home site].

L2TP consists of the best features of PPTP (from Microsoft) and L2F (from

Cisco Systems). The protocol requires that ISPs support it.

home site: http://www.marko.net/l2tp/

5.2 Internet Layer

Protocols at the Internet layer have the bene�t of each packet being encryp-

ted individually. Protocols implemented as low in the OSI architecture as

the Internet layer provide a high degree of security.

5.2.1 Internet Protocol Security (IPsec)

IPSec is IETF's proposed standard for real-time communication security.

The protocol provides authentication and encryption at the IP layer and it's

goal is to make the essence of Internet secure. The protocol consists of three

important elements; the Encapsulated Security Payload header (ESP), the

Authentication header (AH) and the Internet Key Exchange (IKE). ESP

supports both encrypted transmission and authentication. AH provides au-

thentication, and IKE manages key exchange.

Stallings [15] says that IPsec supports a variety of applications since it en-

crypt and/or authenticate all tra�c at the IP level. Therefore all distributed

applications, including remote logon, client/server, e-mail, �le tranfer,web

access and so on can be secured. One of the greatest bene�ts of IPsec is

it's placement in the ISO protocol stack. IPSec may be seen as a protocol

15

between the transport layer (TCP/UDP), and the network layer (IP). Be-

cause it is below the transport layer it is transparent to applications. It is

therefore possible to include IPSec in the kernel without changing the ap-

plications.

The services IPSec provides are:

� Access control

� Connectionless integrity

� Data origin authentication

� Rejection of replayed packets

� Con�dentiality

� Limited tra�c �ow con�dentiality

Security Associations (SA) is a one-way relationship between a sender and

a receiver that a�ords security services to the tra�c carried on it. Security

Associations are important in both AH and ESP. Each SA is unique and

a�ords di�erent security services (ESP or/and AH)

ESP and AH support two modes of use: transport and tunneling. Transport

mode is typically end-to-end communication between to hosts. It primar-

ily protects upper-layer protocols. Tunnell mode provides protection of the

entire IP-packet. The IP-packet is treated as an inner packet to another IP-

packet with a new IP header. Figure 5.2.1 shows ESP and AH in transport

and tunnel mode in IPv4. IKE is the key exchange protocol in IPSec. The

protocol implements the Oakley key exchange and Skeme key exchange inside

the Internet Security Association and Key Management Protocol (ISAKMP).

IKE negotiates IPSec security associations (SA). It provides authentication

of IPSec peers and negotiates IPSec keys.

IPSec is an standard.

Implementation: http://snad.ncsl.nist.gov/cerberus/

5.2.2 Internet Key Association and key Management Protocol

(ISAKMP)

Stallings [15] describes ISAKMP/Oakley as the default automated key man-

agement protocol for IPSec. Internet Key Association and Key Management

Protocol (ISAKMP) uses the Oakley key determination protocol for key ex-

change. The key management consists of determination and distribution of

secret keys. Oakley is a key exchange protocol based on the Di�e-Hellman

16

AH transport and tunnel mode

ESP, transport and tunnel mode

orig IP

hdr
ESP
hdr TCP DATA

ESP
trlr

ESP
auth

new IP
hdr

ESP
hdr

orig IP
hdr TCP DATA

ESP

tlrl

ESP

auth

orig IP
hdr

AH TCP DATA

new IP
hdr

AH orig IP
hdr

TCP DATA

Encrypted
Authenticated

Figur 5.2.1: ESP and AH in transport and tunnel mode

algorithm. ISAKMP de�nes procedures and packet formats to establish,

negotiate, modify and delete Security Associations (SA). There exist �ve

di�erent types of exchange in ISAKMP: Base Exchange, Identity Protection

Exchange, Authentication Only Exchange, Aggressive Exchange and Inform-

ational Exchange. In Base Exchange key exchange and authentication are

transmitted together. Identity Protection Exchange extends Base Exchange

to protect the user's identities. Authentication Only Exchange performs

mutual authentication without key exchange. Aggressive Exchange does

not provide protection of identities and minimizes the number of exchanges.

Informational Exchange provides a one-way transmission of info for SA man-

agement.

Implementation: http://web.mit.edu/network/isakmp/dodkmp.html

5.2.3 Simple Key-Management for Internet Protocols (SKIP)

Aziz et al [3] describes SKIP as a key management protocol designed to work

with the IP Security protocols AH and ESP. The protocol is, in di�erence

from the majority of key management protocols, not session oriented. It

is therefore a more appropriate protocol to use together with IPv4 or IPv6

since they are session-less datagram oriented protocols. Using authenticating

RSA keys to provide authenticity and privacy for a datagram protocol such

as IP may be a problem with session-oriented key management protocols.

One way to solve this problem is by implementing a pseudo-session layer

17

underneath IP, which is sessionless. However, such a solution is complicated

and requires too many operations each time a new session key has to be made.

SKIP avoids these problems. It is a very simple, e�cient, and statless key

management protocol that also as Aziz et al [3] says:

...provides straightforward and scalable solutions to permit

dynamic reroruting of protected IP tra�c through alternate en-

crypting intermediate nodes for crash-recovery, fail-over, and load-

balancing scenarios.

SKIP uses two di�erent keys for authentication of packets (A_kp) and en-

cryption of packets (E_kp). They both origin from a third key, which are

retrieved from a fourth key that is a shared session key.

Implementation: http://www.skip-vpn.org/usersguide.html

http://cypherpunks.venona.com/date/1995/08/msg00572.html

5.2.4 Network Layer Security Protocol (NLSP)

NLSP is a network layer protocol that provides security services. It is de�ned

by ISO 11577 and is a international standard. Services provided by NLSP

are:

� Peer entity authentication

� Data origin authentication

� Access control

� Connection con�dentiality

� Connectionless con�dentiality

� Tra�c �ow con�dentiality

� Connection integrity without recovery

� Connectionless integrity

Both cryptographic protection between End Systems and between Interme-

diate Systems located at the borders of security domains, are supported by

NLSP.

5.2.5 Security Protocol Layer 3 (SP3)

NIST's network layer security protocol. Much the same as NLSP.

18

5.3 Transport Layer

Protocols operating at the transport layer do not have to involve the Operat-

ing System (OS) during implementation. Instead of encrypting each packet

individually, the packets are encryptes per �ow.

5.3.1 Secure Socket Layer (SSL)/Transport layer security (TLS)

SSL is the basis for IETF's standard TLS. Petersen and Davie [10] describe

the main problem TLS was meant to solve. Transactions on the Web need

some level of security. The security requirements di�er from service to ser-

vice. Basically the need for privacy, integrity and authentication must be

satis�ed. The designers of the protocol bulit a general-purpose protocol that

sits between the application layer and the transport layer. The problems to

solve were not speci�c for Web transaction, but important for other services

too. The SSL protocol stack is illustrated in �gure 5.3.1. Stallings [15] writes

that SSL/TLS is a protocol that uses TCP to estabilsh a secure end-to-end

service. It consists of two layers of protocols; the SSL Record Protocol on

top of TCP, and SSL Handshake Protocol, SSL Change Cipher Spes protocol

and SSL Alert Protocol on top of the record protocol.

The Record Protocol provides two services for a SSL connection; con�den-

tiality and message integrity. The record protocol operates by having the

application data fragmented. The fragmented data gets compressed (op-

tional) before a MAC is added to it. The compressed data with its MAC

gets encrypted and a SSL header is added.

The other layer of protocols in SSL consists of three di�erent protocols. One

of them is the handshake protocol. The handshake protocol consists is used

to negotiate parameters of the communication. The communicating parties

exchange messages through four fases:

� Which security mechanisms do the communicating parties support?

� Server authentication and key exchange

� Client authentication and key exchange

� Finish

The handshake protocol de�nes a shared secret key that is used for conven-

tional encryption and to form a Message Authentication Code (MAC).

The SSL Change Cipher Protocol consists of one message (1 byte) which

purpose is to update the cipher suite used in the connection. The last pro-

tocol on this layer is the Alert protocol. The Alert protocol is used to convey

SSL-related alerts to the peer entity.

APIs that implement SSL/TLS:

19

IP

TCP

SSL Record Protocol

SSL hand-
shake Prot.

SSL Change
Cipher Spec
Protocol

SSL Alert
Protocol HTTP

Figure 5.3.1: SSL Protocol Stack

� OpenSSL

� Mozilla's NSS SSL/TLS API

� PKCS-11 from RSA

� CDSA (�Common Data Security Architecture�)

� Certicom's SSL Plus

� RSAs BSAFE BHAPI (not open source)

SSL/TLS is a standard.

Implementation:http://www.vonnieda.org/SSLv3/

http://www.openssl.org/docs/

5.3.2 Secure Shell Transport Layer Protocol (SSH)

Ylonen et al [17] gives a description of the SSH transport layer protocol. The

SSH-transport layer protocol provides secure remote login and other secure

network services over an insecure network. The protocol typically runs over

TCP/IP. Services provided by SSH are strong encryption, server authentica-

tion, and integrity protection. The two parts of the communication negotiate

about key exchange method, asymmetric encryption algorithm, symmetric

encryption algorithm, message authentication algorithm and hash algorithm.

Since SSH does not provide user authentication, a higher level protocol must

be used for that. If transmission errors occurs a SSH-connection will termin-

ate. It is therefore important that the underlying transport protects against

such errors.

When establishing a SSH connection both sides start sending identi�cation

strings to each other. Then the di�erent negotiations take place. Both sides

send a list with algorithms they support. The �rst algorithm in the list is

the one pre�ered by the sender. All algorithms are negotiated during key

20

exchange. Key exchange method is Di�e-Hellman. The key exchange gives

two outputs: a shared secret key K and a exchange hash H. Encryption and

authentication keys are derived from these. A service is then requested by the

client. The service is identi�ed by name. ssh-userauth and ssh-connection is

the available names reserved.

SSH derives a unique session identi�cator that may be used by higher level

protocols. For example an authentication protocol like Kerberos.

Implementation: http://www.ssh.com/products/ssh/

5.3.3 Private Communication Technology (PCT)

Microsoft's version of SSL. Existed from 1995, but only supported in Mi-

crosoft products.

5.3.4 (NSA/NIST Security Protocol Layer 4 (SP4)

SP4 is the transport layer security protocol in NIST Secure Data Network

System (SDNS) project. SDNS implements computer to computer com-

munication security for distributed applications. Dinkel et al [5] gives a

description of SP4, a secure data network system transport protocol. SP4

provides end-to-end reliable transparent data communications with con�den-

tiality and integrity. One reason for implementing network security at layer

4 is the independence of network technology. Layer 4 is also the �st plave in

the OSI architecture where reliable end-to-end connections are established.

SP4 encapsulates information. If intergrity is requested a checksum is added,

if con�dentiality is requested the information and the checksum is encryp-

ted. There are two options in SP4: SP4-E and SP4-C. SP4-E stands for

end-to-end SP4 protection, and SP4-C stands for connection-oriented SP4

protection. SP4-C can only be provided when a connection-oriented trans-

port service is available.

5.3.5 Transport Layer Security Protocol (TLSP)

Together with SP4, TLSP represents one of the �rst proposed standards for

network security at the transport layer. The protocol is quite similar to SP4

except from the removal of sequence number. TLSP is also an end-to-end

encryption protocol and is centered at the bottom of layer 4, just as SP4.

TLSP is a ISO standard.

21

5.4 Application Layer

Application-layer protocols are embedded within the application. The great

advantage with such protocols are that the service can be tailord to the

speci�c application. For M3Ci this may be a solution for applications that

for example requires a payment system. It is not always a bene�t that all

the services ever needed by an application is provided in the infrastructure.

There may be many di�erent requirements among them that special requests

have to be implementet in the application itself. The next subsections will

present some application-layered protocols.

5.4.1 Secure Shell Authentication Protocol (SSH)

SSH Authentication Protocol is described by Ylonen et al [16]. The SSH

protocol, in general, is described in section 6.5.2. The SSH Authentication

protocol is intended to run on top of SSH Transport Layer Protocol. It

provides user authentication, but assumes that underlying protocols takes

care of integrity and con�dentiality protection. The authentication mechan-

ism is negotiated and the protocol supports multiple mechanisms. The only

required authentication method is public key authentication.

Implementation: http://www.ssh.com/products/ssh/

5.4.2 Secure HyperText Transmission Protocol (S-HTTP)

The HTTP extension S-HTTP supports sending data securely over the World

Wide Web. Just as SSL does. While SSL is designed to establish a secure

connection between two communicating parties, S-HTTP is designed to se-

cure individual messages. Another di�erence between the two protocols is

the authentication part. S-HTTP supports user-authentication, while only

the server is authenticated using SSL. The two protocols may be used to-

gether.

Shostack [14] gives an overview of S-HTTP. He says that S-HTTP provides

mechanisms for integrity, con�dentiality and authentication. The messages

are encapsulated as encryption, signing or MAC based authentication. The

secure version of HTTP supports RSA, in-band, out-of-band and kerberos

key exchange. The client and the server negotiate which cryptographic en-

hancements to use. The certi�cate types used in S-HTTP could be extended

from PKCS-6 or X.509 (see section 6.4.10). Key exchange algorithms can

be Outband, Inband, RSA, or Kerberos. Message digest algorithms used in

S-HTTP can be 'RSA-MD2', 'RSA-MD5' or 'NIST-SHS'.

S-HTTP is a standard.

Implementation: http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/shttp/

22

5.4.3 Secure Electronic Transactions (SET)

Stallings [15] says that SET is designed to protect creditcard transactions

on the Internet. It is a collection of security protocols and is not itself a

payment system.

SET provides three services:

� A secure communications channel

� Trust by the use of X.509v3 ceri�cates

� Privacy

SET provides con�dentiality by using symmetric encryption (DES). It en-

sures integrity of data by using RSA digital signatures with SHA-1 hash

codes. Authentication of cardholder account is done by X.509v3 digital ceri-

�cates with RSA signatures. Authentication of the merchant, who the card-

holder pays to is also done by X.509v3 certi�cates. The participants in a

SET system are the cardholder, the merchant, the issuer, the acquirer, the

payment gateway and the Certi�cation Authority (CA). An important in-

novation introduced by SET is the dual signature. The dual signature gives

extra protection to the customer in linking two di�erent messages for two

di�erent recipients. By doing so, none of the recipients are able to change

the content of the message.

Information and links to products using SET: http://www.setco.org/

5.4.4 Secure/Multipurpose Internet Mail Extension (S/MIME)

Stallings [15] describes S/MIME as a security extension to the existing elec-

tronic mail standard MIME. S/MIME guarantees secure transmission, stor-

age, authentication and forwarding of secret data at the application layer. It

provides enveloped data (encrypted content), signed data (digital signature)

and clear-signed data.

In S/MIME there are some cryptographic algorithms that must be used and

some that are recommended to use. The Digital Signature Standard (DSS)

is the preferred algorithm for digital signatures. Di�e-Hellman is used for

encrypting session keys. RSA can be used for both signatures and key en-

cryption. As hash function the 160-bit SHA is recommended, while 128-bit

MD5 is required. The recommended algorithm for message encryption is

23

tripple-DES, but it 40-bit RC2 is required.

S/MIME is a standard.

Implementation:http://www.phaos.com/e_security/dl_smime.html

5.4.5 Digital Signature Standard (DSS)

Stallings [15] writes that DSS uses the Digital Signature Algorithm (DSA)

to provide a digital signature. DSA makes use of asymmetric encryption, it

uses the private key to sign a message and the public key to verify a signa-

ture. While the public key may be distributed on web and be entirely public,

the private key has to be kept secret. All the security relays on the private

key being kept secret. A hash function is used to generate a signature. The

hash code and a random number is the inputs to the signature function.

The signature function also depends on the senders private key and a global

public key. The results from the signature function is a signature consisting

of two labels. The receiver generates the hash code from the message. The

message and the signature are then input to a veri�cation function. The

global public key and the sender's public key, paired with his private key, is

also required. If the output of the veri�cation function is the same as one of

the parts the signature consisted of the signature is valid.

FIPS [6] says that the DSA is intended for use in electronic mail, electronic

funds transfer, electronic data interchange, software distribution, data stor-

age, amd other applications which require data integrity assurance and data

origin authentication.

Implementation: http://www.itl.nist.gov/�pspubs/�p186.htm

5.4.6 Needham-Schroeder Protocol

Gollmann [7] describes the key transport protocol Needham-Schroeder. Two

communicating parties A and B both share a secret key with a server S. The

purpose of the protocol is for them to obtain their session key from S. the

protocol uses a symmetric cipher for encryption. Replay-attacks are preven-

ted by using nonces (random numbers). Figure 5.4.6 shows how the protocol

works. A �rst contacts S with a message containing A's identity, B's identity

and a nonce N1. This message tells the server that A wants to communicate

with B. The server S replays with a message encrypted with the session key

A and S share. The encrypted message contains the nonce N1, B's identity,

the key A and B are going to share and the same key together with A's

24

A B

S

1 2

3

5
4

Figur 5.4.6: Needham-Schroeder key transport protocol

identity encrypted with the session key S and B shares. A sendes this last

part of the message directly to B who answers with a nonce N2 encrypted

with the key A and B are going to share. A responds to B with a encrypted

versjon of (N2 - 1). At this time the key is transported and A and B may

start to communicate securely.

Stallings [15] points out the possibility for impersonation of A in the Needham-

Schroeder protocol. The session key sent from A to B encrypted with the

key B shares with S may be catched by an opponent X. X can then send

messages to B using this session key. Denning solved this problem by adding

timestamps in the second and third step of the protocol. Adding timestamps

will however present a new problem: the need of synchronized clocks. To

avoid synchronized clocks Neuman introduced his protocol with expiration

time added to the origibal Neuman-Schroeder protocol. The expiration time

makes it possible to start a new session without communicating with the

server �rst (if the time has not expired).

Implementation:http://www.compapp.dcu.ie/~cdunne.mect1/security/project/

user_guide.html

5.4.7 Kerberos

Gollmann [7] and Stallings [15] both gives a description about how the Ker-

beros authentication service works. Kerberos is a network protocol that

provide secure authentication of client and server using symmetric encryp-

tion. The protocol uses strong cryptography to make it possible for a client

and a server to communicate across an insecure network.

Gollmann [7] gives a description of Kerberos. The Kerberos system was de-

veloped at MIT in the 1980s and has it's origin i the Needham-Schroeder

protocol. The Needham-Schroeder protocol transports keys. It uses a sym-

metric cipher for encryption (e.g., DES) and authenticates users with pass-

words not transmitted i clear over a network.

Figure 5.4.7 illustrates the steps in a mutual authentication of the user A and

the server B. The �rst step involves the user and a Kerberos Authentication

25

KAS A B

TGS

1

2

3 4

5

6

Figur 5.4.7: Kerberos

Server (KAS). A contacts KAS with a message consisting of two identi�ca-

tions, the Identi�cation of A and the identi�cation of the Ticket Granting

Server (TGS). The TGS will be contacted by A as soon as he receives the

ticket that he shares with the TGS from the KAS. The message also consists

of a lifetime stamp L1 and a nonce N1. A nonce is a randomly picked number

to prevent replay attacks. The second message sent during Kerberos authen-

tication is from the KAS to user A. The KAS sends an encrypted version of

the identi�cator TGS, a session key K shared by TGS and A, a ticket shared

between A and TGS, L1 and N1. The KAS has now authenticated A and

given him the opportunity to contact TGS. A needs a Ticket Granting Ticket

(TGT) from TGS to communicate securely with B. The third messages goes

from A to TGS. A sends an identi�cation of himself and one of the server B

which he wants to communicate with. He also sends a new lifteime stamp

L2, a nonce N2, the ticket he recieves from KAS and an encrypted message

with his own identi�cator and a creation time of tickets/authentication T1.

A encrypted the message with the key he recieved from KAS and which he

shares with TGS. TGS replays with a encrypted message, with the same key,

which consists of the identi�cator of B, a session key that A and B shares,

a ticket A shall use when contacting B and the lifetime stamp and nonce he

got from A. A is now able to communicate with be in a secret way, and he

sends an encrypted message with his identi�cator and the creation time of

tickets/authentication together with the ticket. B replays by encrypting the

creation time stamp with the session key to show A that he is who he claims

to be. A is now authenticated.

The protocol is freely available at MIT: http://web.mit.edu/kerberos/www/

Kerberos Library:

http://web.mit.edu/macdev/Development/MITKerberos/MITKerberosLib/Common/Documentation

26

5.4.8 Pretty Good Privacy (PGP)

Pretty Good Privacy (PGP) was develoed by Paul Zimmermann. PGP

provides authentication and con�dentiality services and has become a pop-

ular security application protocol. It is free, and available worldwide. Zim-

mermann used the best cryptographic algorithms available and PGP has a

wide range of applicability. Another bene�t is that it is neither developed nor

controlled by a standard organization. Stallings [15] describes the 5 services

provided by PGP:

� Digital signature using DSS/SHA or RSA/SHA

� Message encryption using CAST or IDEA or Three-Key Triple DES

with Di�e-Hellman or RSA

� Compression using ZIP

� Email compatibility using Radix 64-conversion to convert to ASCII

string

� Segmentation and reassembly

Authentication is provided by a digital signature. Con�dentiality is provided

by encrypting the message. PGP where developed for e-mail security, but is

now used for other applications too.

PGP is a standard.

Implementation of PGP: http://www.pgpi.org/

5.4.9 Pretty Good Privacy Library (PGPLIB)

PGPLib is a library based on Pretty Good Privacy (PGP). There is no docu-

mentation about the library available. It was written because the developer

needed it himself. PGPLib let you generate and manipulate PGP packets

without running PGP.

The following types of PGP packets can be generated:

� Data can be signed with a private key

� Data can be encrypted with a public key

� Data encrypted with your public key can be decrypted

� You can verify signatures on public keys and on bu�ers (�les)

� Conventional packets can be encrypted and decrypted (IDEA)

� A bu�er or �le can be (de)armored into a bu�er or �le

27

� UserID packets are read and written in a varity of formats

� Literate packages can be created from �les, or from bu�ers and �les

can be created from literate packets

� Keys can be obtained from a database or by parsing keyrings

� You can maintain a PGP public-key database

Information:

http://www.openbsd.org/2.7_packages/i386/PGPlib.tgz-long.html)

Implementation of PGPLib: http://www.cam.org/ droujav/pgp/pgplib.html

5.4.10 Privacy Enhanced Mail (PEM)

Petersen and Davie [10] describes PEM as a mechanism for encryption, au-

thentication and integrity of e-mail messages. A RSA public key mechanism

is used for authentication and encryption. It is therefore necessary with a

mechanism to distribute public keys. PEM uses a hierarchical tree structure

with Certi�cation Authorities (CAs) to distribute certi�cates. This method

of distributing certi�cates scales much better than one centralized authority

who have to sign all ceri�cates. One CA may sign a serti�cate on behalf of

another. The problem with this solution is the delegation of trust from one

CA to another.

PEM is a standard.

Implementation of RIPEM: http://camtech2000.net/Pages/Downloads.html

5.4.11 X.509

Peterson and Davie [10] de�nes a certi�cate as

a special type of a digitally signed document that says �I

certify that the public key in this document belongs to the entity

named in this document,signed X�. X could be anyone with a

public key, but commonly X would be the Cert�cation Authority

(CA).

Stallings [15] gives a description of the ITU standard for digital signatures,

X.509. The certi�cates contain the public key of a user and is signed with

the private key of a CA. The X.509 certi�cates are used in protocols as

28

IPSec, SSL/TLS, S/MIME and SET. X.509 is based on the use of public key

cryptography (recommended algorithm is RSA) and digital signatures.

These are the �elds in the X.509 certi�cate:

� Version, tells us the version of the certi�cate. Default value is version

1. There also exist version 2 and a version 3

� Serial Number; integer which are unique within this issuing CA

� Signature Algorithm Identi�er; identi�es the algorithm used for signing

� Issuer Name; X.509 name of CA

� Period of Validity; �rst and last date this certi�cate is valid

� Subject Name; name of the user

� Subject's Public Key Information; public key and an identi�er of the

algorithm to use it with

� Issuer Unique Identi�er

� Subject Unique Identi�er

� Extensions; extension �elds added in version 3

� Signature; the hashcode of all the other �elds encrypted with the CA's

private key.

Stallings [15] also shows the standard notation to de�ning the certi�cate:

CA�A� = CA {V, SN, AI, CA, Ta, A, Ap}

CA is the issuer and A is the user. The issuer signs the certi�cate with his

private key. If the user knows CA's public key he can verify that the certi-

�cate is signed by the CA. To prove that you are the subject mentioned in

the certi�cate, you need something that shows that you have the private key

corresponding to the public key in the certi�cate. How many CAs needed

depend on how many users there are. Many users need many CAs. The CAs

can for example be organized in a hierachy where the CA over X has signed

X's certi�cate.

Information: http://www.javaworld.com/javaworld/jw-02-2001/jw-0216-howto.html

6 Recommendation

There exists many APIs and probably even more security protocols. It is

therefore di�cult to choose the best suited mix for our usage. GSS-API is

29

the security which are most generic. It is also the best suited API for an ap-

plication programmer to use. The APi supports alle the security services we

need in our platform and works well together with lower level cryptographic

APIs (CAPIs). The documentation around GSS-API is good. There exists

many RFCs about it, and some of them consider protocols and mechan-

isms that may work together with GSS-API. Both public- and private key

mechanisms are described. Kerberos version 5 GSS-API mechanism (RFC

1964) is already a eatblished solution. As a representative for the public-key

mechanisms SPKM (Simple Public-Key mechanism) is documented. While

Kerberos supports authentication and not much more, SPKM provides both

unilateral and mutual authentication, digital signatures,

7 What more do we need?

There exist many APIs for supporting security in a system, but using only

one is not enough. There are several layers of security APIs wich has to be

taken into account. An lower-level API that takes care of encryption need

to be used together with a higher-level API if authentication and integrity

are required. The same thing is the case when it comes to protocols. What

we need is some kind of library consisting of the perfect mechanisms for our

project. Such a library does not exist, of course, but by connecting di�erent

mechanisms that provides the generic security services we need, we can get

a perfectly good solution.

30

References

[1] Adams, C., Independent Data Unit Protection Generic Security

Serivice Application Program Interface (IDUP-GSS-API), Network

Working Group, RFC 2479, Entrust Technologies December 1998

[2] Amit, A., Security and security API in Java, 1999

[3] Aziz, A. et al, Simple Key-Management for Internet Protocols (SKIP)

1997

[4] Cisco Tech note, PPP Authentication using the PPP, http://www.

cisco.com/warp/public/131/ppp_callin_hostname.html

[5] Dinkel, C. et al, NISTIR 90-4228 A Secure Data Network System

Tranport Protocol Interoperability Demonstration Project

[6] Federal Information Processing Standards Publications (FIPS PUB),

Digital Signature Standard (DSS), May 1994

[7] Gollmann, D., Computer security, Wiley, 1999

[8] Linn, j., Generic Security Service Application Program Interface, Net-

work working group, RFC 2743, RSA Laboratories January 2000

[9] NSA Cross Organization CAPI Team, Security Service API: Crypto-

graphic API Recommendation Second Edition, NSA, 1996

[10] Petersen, L. L. & Davie, S. B., Computer NetworksMorgan Kaufman,

2000

[11] Rogaway, P., Generic Cryptographic Service Application Program In-

terface IBM, 1994

[12] Ryotov, T. & Neuman C., Access Control Framework for Distributed

Applications CAT Working Group, 2000

[13] Ryotov, T. et al, Generic Authorization and Access control Applica-

tion Program interface C-bindings CAT Working Group, 2000

[14] Shostack, A., An overview of SHTTP 1995

[15] Stallings, W., Cryptography and network security, Prentice hall, 2nd

edition 1999

[16] Ylonen, T. et al, SSH Authentication Protocol, Network Working

Group, Internet Draft, 1999

[17] Ylonen, T. et al, SSH Transport Layer Protocol, Network Working

Group, Internet Draft, 2001

31

