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Abstract

Learning the structure of a Bayesian Network from multidimensional data is
an important task in many situations, as it allows understanding conditional
(in)dependence relations which in turn can be used for prediction. Current
methods mostly assume a multivariate normal or a discrete multinomial model.
A new greedy learning algorithm for continuous non-Gaussian variables, where
marginal distributions can be arbitrary, as well as the dependency structure,
is proposed. It exploits the regular vine approximation of the model, which is
a tree-based hierarchical construction with pair-copulae as building blocks. It
is shown that the networks obtainable with our algorithm belong to a certain
subclass of chordal graphs. Chordal graphs representations are often preferred,
as they allow very efficient message passing and information propagation in
intervention studies. It is illustrated through several examples and real data
applications that the possibility of using non-Gaussian margins and a non-linear
dependency structure outweighs the restriction to chordal graphs.
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1. Introduction

Bayesian Networks (BNs) (Pearl, 1988) or directed acyclic graphs (DAGs)
allow to represent complex structured relations between random variables. They
are successfully used in many areas, including genomics, where vertices represent
genes and edges describe interactions in biomolecular mechanisms (Zhang et al.,
2012), social sciences, where vertices are individuals and edges indicate contacts
and collaborations (Banerjee et al., 2008), petroleum, where vertices stand for
geographical locations and edges for geophysical relations (Martinelli et al.,
2013), and telecommunication and internet networks (Bashar et al., 2010), where
edges actually represent physical connections between instruments.

Learning the structure of a network from data is still one of the most ex-
citing challenges in machine learning (Zhu et al., 2012). There are two main
approaches for learning the structure of a BN, score-based and constraint-based
approaches. Generally, the constraint-based methods require the existence of
a faithful DAG for the data set (Tsamardinos et al., 2006), which is a rather
strong assumption (Uhler et al., 2013), while the score-based methods typically
do not have this restriction. On the other hand, the constraint-based algorithms
may handle much larger dimensions. Since both methods have their advantages
and disadvantages, researchers have tried to combine them in different ways,
leading to so-called hybrid methods.

Most structure learning and inference methods for BNs have been devel-
oped for multinomial variables. Until recently, there were two ways of dealing
with continuous BNs, either to first discretise the continuous variables and then
work with the corresponding discrete model, or to assume joint normality. The
first approach is limited by size and complexity, while the other is restricted
by the normality assumption. There are many real-life situations where the
dependencies between variables are far from linear, e.g. stock market prices,
biometric variables, weather conditions. Assuming Gaussianity in such cases
may produce incorrect networks that give a poor fit to the data. Hence, there
have been some attempts at learning the structure of non-Gaussian BNs, see
e.g. Margaritis (2005), Schwaighofer et al. (2007), Ma et al. (2012), Hanea et al.
(2010), Elidan (2010b), Elidan (2010a), Bauer and Czado (2015) and Bauer
et al. (2012). In the first three papers, non-parametric approaches are used to
learn the structure, while the remaining papers combine the theory of copulae
and BNs.

These previous attempts at using the framework of copulae all have some
disadvantages. Hanea et al. (2010) restrict their attention to Gaussian copulae
and hence to linear dependence, and the approach proposed by Elidan (2010a) is
based on k-dimensional copulae. While the list of parametric bivariate copulae
is long and varied, the choice is rather limited in higher dimensions (Genest
et al., 2009). To obtain a proper likelihood, there are also restrictions regarding
the copula types that can be combined. In the approach by Bauer et al. (2012),
all copulae involved are bivariate and can belong to different families. However,
the procedure for learning the structure requires involved computations.

In this paper we propose a new approach for learning the structure of a BN.



Like Bauer et al. (2012), we use pair-copula constructions (PCCs) (Aas et al.,
2009), but we restrict ourselves to the subclass of regular vines (Joe, 1996;
Bedford and Cooke, 2002), meaning that there is a well-defined and computa-
tionally efficient procedure for selecting the appropriate model. In turn, our
approach allows to estimate only a restricted subclass of chordal graphs, which
we characterise in this paper. However, we argue and show in a number of ap-
plications, that the benefits of assuming non-Gaussianity more than outweigh
the disadvantages of being restricted to a certain type of graph structure.

The paper is organised as follows. Section 2 is a short review of pair-copula
construction (PCC) and regular vines, while Section 3 treats the relationship
between regular vines and chordal graphs. In Section 4, we discuss how the
vine methodology may be used to learn the structure of a BN and in Section
5, we apply the methodology and compare it to other state-of-the-art structure
learning approaches. Finally, Section 6 contains some concluding comments.

2. Pair-copula constructions and regular vines

Pair-copula constructions (PCCs), introduced by Joe (1996), are multivari-
ate models, that decompose multivariate copulae into a product of bivariate
ones. These structures have been studied by Bedford and Cooke (2001, 2002)
and Kurowicka and Cooke (2006b) from a probabilistic point of view, and later
by Aas et al. (2009) in an inferential context. PCCs have been shown to be use-
ful in various applications, see, e.g., Chollete et al. (2009), Heinen and Valdesogo
(2009), Berg and Aas (2009), Min and Czado (2011, 2010), Czado et al. (2012)
and Smith et al. (2010). In this section we give an introduction to PCCs, fo-
cusing on the special case of regular vines.

A PCC is a multivariate copula, that is constructed from a set of bivariate
ones, so-called pair-copulae. More specifically, the copula density is decomposed
into a product of pair-copula densities. All these bivariate copulae may be
selected completely freely as the resulting structure is guaranteed to be a valid
copula. Hence, PCCs are highly flexible, and able to characterise a wide range
of complex dependencies. Inference on PCCs is in general demanding, but the
subclass of regular vines has many appealing computational properties, and
hence constitutes an exception in the inferential context.

The notion of regular vines (R-vines) was introduced by Bedford and Cooke
(2002), and described in more detail in Kurowicka and Cooke (2006b). It in-
volves the specification of a sequence of trees, each edge of which corresponds to
a pair-copula. These pair-copulae constitute the building blocks of the joint R-
vine distribution. According to Definition 4.4 of Kurowicka and Cooke (2006b),
an R-vine V on d variables consists of the trees T4, ...,Ty_1 with nodes N; and
edges F; for i = 1,...,d — 1, which satisfy the following:

1. Ty has nodes Ny = {1,...,d} and edges E;.

2. For i =2,...,d — 1 the tree T; has nodes N; = F;_1.

3. Proximity condition: if two edges in tree T} are to be joined as nodes in
tree T; 41 by an edge, they must share a common node in T;.
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Figure 1: An R-vine tree specification on seven variables with edge indices.

To build an R-vine with node set N' := {Ny,...,Ng—1} and edge set & :=
{E1, ..., Eq_1}, one associates each edge e in F; with a bivariate copula. As-
sume that N;; and N;; are joined by the edge e in T;. As a consequence of
the proximity condition, N;; and N;; share all but one node. Let D(e) be the
nodes they have in common, and j(e) and k(e) the ones they do not share, such
that N;; = {j(e),D(e)} and Ny, = {k(e),D(e)}. Then, the nodes j(e) and
k(e) are called the conditioned nodes, while D(e) is denoted the conditioning
set and the union {j(e), k(e), D(e)} the constraint set. Further, the edge e is
associated with the bivariate copula Cj(c) ()| p(e)- Take for instance the edge
5,4/231 joining {5, 2|31} and {4,2|13} in the fourth tree of Figure 1, displaying
a seven-dimensional R-vine tree specification. The conditioned nodes are 5 and
4, the conditioning set is {1,2,3} and the constraint set is {5,4,1,2,3}. As
in Aas et al. (2009), it is assumed here that this copula is independent of the
conditioning variable X p(.). Hobak Haff et al. (2010) denote the correspond-
ing structure a simplified PCC. The copulae constituting the vine are organised
in levels, also called trees, according to the size of their conditioning set. The
copulae of level 1 have an empty set, on level 2 these sets consist of one node,
on level 3 of two nodes, and so on.

Let the random vector X follow an R-vine distribution. Further let X p ()
denote the subvector of X determined by the indices constituting D(e). Then,



Theorem 4.2 in Kurowicka and Cooke (2006b) states that the joint density of
X can be written as

d d—1
f(@1, .y 2a) = [H fk($k>‘| X [H I cicorme e F@je)Tne): Fawe [Tne)) | -
k=1

i=1eckE;
(1)

The right factor of the righthand side of (1) is a product of d(d — 1)/2 bivariate
copula densities, and is called an R-vine copula. Note that the arguments of the
pair-copulae are conditional distributions in all trees but the first, where they
are the univariate margins.

The key to the construction in (1) is that all copulae involved in the decompo-
sition are bivariate and can belong to different families. There are no restrictions
regarding the copula types that can be combined; the resulting structure is guar-
anteed to be valid anyhow. A further advantage with the R-vine copula is that
the conditional distributions F'(z|v) constituting the pair-copula arguments can
be evaluated using a recursive formula derived in Joe (1996):

80901)]'\117]- (F('I|'U—j)7 F(Uj ‘U—j))
OF (vj|v—;) ' @

F(z]v) =

Here Cyy;1»_, is a bivariate copula, v; is an arbitrary component of v and v_;
denotes the vector v excluding v;. By construction, R-vines have the important
characteristic that the copulae in question always are present in the preceding
trees of the structure, so that they are available without extra computations.

In order to find an expression for a general R-vine density, one needs an
efficient way of storing the indices involved in the pair-copulae. One such ap-
proach was proposed by Morales-Napoles (2011) and explored in more detail in
Difimann et al. (2013). It involves the specification of a lower triangular matrix
M = (m; li,j = 1,..,d) € {0,...,d}%*? whose diagonal entries m;; are the
nodes 1, ..., d of the first tree. Further, each row of M from the bottom up rep-
resents a tree. The conditioned sets of a node is determined by a diagonal entry
and the corresponding column entry of the row under consideration, while the
conditioning set is given in by the column entries below this row. The R-vine
matrix corresponding to the R-vine in Figure 1 is

7
46
6 4 5
M=|2 2 4 4 (3)
332 23
1131 2 2
5513 1 11

To determine the edges in T7, we combine the numbers in the bottom row with
the diagonal elements in the corresponding columuns, i.e., the edges are (7,5),
(6,5), (5,1) and so on. The edges of T are given by the numbers in the second
row from the bottom, associated with the diagonal elements, conditioning on



the elements in the bottom row, namely (7,1]5), (6,1]5), etc. Proceeding like
this, the only edge in T is found by coupling the two upper elements in the
leftmost column with the remaining 5 entries of the column as a conditioning
set, i.e. (7,4|62315).

Based on M the R-vine density may be written as (Diimann et al., 2013)

d 1 j+1
f(@1,...2q) = H fk(xk)] x H H Cmy 5mi jlmita e mayg | (4)
k=1 j=d—1i=d

where the pair-copulae have arguments F(Zy, [Tm,,, ;5 Tm, ;) and
F(xm,; ;|1Tmipr s+ Tmy ;). Corresponding copula types and parameters can con-
veniently be stored in matrices similar to M.

Inference on R-vines consists in three tasks: (i) selecting the structure with
all its trees, (ii) choosing a copula type for each of the d(d — 1)/2 pair-copulae
and (iii) estimating the parameters of each pair-copula. There are many possible
pair-copula families, e.g. Gaussian, t, Gumbel, and Clayton. See Nelsen (2006)
or Joe (1997) for a more comprehensive list. Ideally, the steps (i)-(ii) should be
performed simultaneously. In practice, however, this has to be done stepwise,
which is suboptimal.

The number of possible R-vines on d variables is 2("2%) -1y (Morales-Napoles,
2011). Finding the globally optimal R-vine structure for a given high-dimensional
data set is therefore unfeasible, but several useful strategies have been proposed.
Since the first trees can be estimated with more precision, a natural strategy is
to build the structure starting from the bottom, trying to maximise the depen-
dence in the first trees. Diffimann et al. (2013) propose such a procedure. Their
algorithm starts by finding the maximum spanning tree over the d nodes cor-
responding to the d variables (using the well-known algorithm of Prim (1957)),
which is a tree on all nodes that maximises the sum of the weights of the edges,
using measures of pairwise dependence as weights. The subsequent trees are
built in a similar manner, under the additional restriction that the proximity
condition must be fulfilled. This procedure requires the simultaneous selection
of pair-copula types, as well as the estimation of the parameters. There are
alternatives to this bottom-up strategy, Kurowicka (2011a) starts e.g. with se-
lecting the weakest conditional dependencies for the highest trees. To study
theoretical advantages of one objective function with respect to another would
be very interesting, but beyond the scope of this paper.

The copula types are typically chosen one by one, using either a model
selection criterion, such as AIC, BIC or the copula specific CIC (Grgnneberg,
2011), or a goodness-of-fit test. The parameters are usually estimated in a
separate step. The copula parameters may be estimated using any multivariate
copula estimator, such as the inference function for margins (Joe, 1997, 2005)
and the semiparametric estimators (Genest et al., 1995; Shih and Louis, 1995),
or the stepwise semiparametric estimator (Aas et al., 2009; Hobaek Haff, 2013),
which is designed for R-vines.

The flexibility of R-vines comes at the price of the number of parameters



exponentially increasing with the dimension. In high-dimensional applications,
it is therefore necessary to reduce the number of parameters. One strategy is
to identify as many pair-copulae as possible being equal to the independence
copula, which amounts to specifying a series of conditional independencies. This
may be done either by testing individual copulae for independence, so-called
pruning, or by checking the contribution of all trees above a certain level, which
is denoted truncation.

Pruning:. Pruning a particular copula Cjp in the R-vine structure is the same
as stating that X; and X}, are conditionally independent given X p. Pruning
may be performed using a copula goodness-of-fit test, e.g. the bivariate asymp-
totic test based on Kendall’s tau (Genest and Favre, 2007). However, such a test
is, strictly speaking, not an independence test unless the copulae are Gaussian,
since 7 = 0 implies independence only for those copulae. Another option is
therefore to use the Cramér-von Mises test proposed by Hobaek Haff and Segers
(2015).

Truncation:. A truncated R-vine at level K is an R-vine where all pair-copulae
with conditioning set equal to or larger than K are replaced by independence
copulae. If K = 1, the truncated R-vine becomes a Markov tree distribution,
that only models unconditional relationships. The density of an R-vine copula
truncated at level K is given by

max{j+1,d—K+1}

1
ctRV(K) (u) = H H Cm]-,j,m.;’j\mi+1,j,‘..,md,]~a (5)

j=d—1 i=d

where u = (u1, ..., uq) € [0,1]%.

The use of truncated R-vines may be justified as follows. As stated earlier in
this section, the selection algorithm of Difimann et al. (2013) builds the struc-
ture from the bottom up, trying to maximise the dependence in the first trees.
Hence, if this procedure is successful, the most important and strongest (condi-
tional) dependencies among the variables are captured by the pair-copulae in the
first trees. At high levels of the structure, the parameters quantify conditional
dependence with a very large number of conditioning variables. The uncertainty
of the estimated copula parameters is large because of the repeated transfor-
mations of the original data using estimated conditional distribution functions
(Hobaek Haff, 2012). Moreover, the parameter estimates for the upper levels
do not seem to affect the lower order dependencies particularly. This indicates
that it might be appropriate to truncate large structures after a certain level.

Several methods have been proposed for determining the optimal truncation
level, see e.g. Kurowicka (2011b), Brechmann et al. (2012) and Brechmann and
Joe (2015). In the experiments described in Section 5 we have used the approach
by Brechmann et al. (2012). In this approach, one starts with K = 1 and fits
the corresponding truncated R-vine (for K = 0 a pre-test of joint independence
can be performed). K is thereafter increased by one. If the gain from fitting
the extra tree is negligible, one stops and uses the resulting specification. If not,



one proceeds until one reaches a truncation level K, for which the contribution
from an extra level is not significant. To assess whether the gain from fitting
the extra tree is negligible we use the likelihood-ratio based test proposed by
Vuong (1989), see Brechmann et al. (2012) for more details.

3. From R-vines to graphs

Regular vines and chordal graphs are closely connected. In this section we
describe the relationship between them, but first, we briefly introduce some
concepts from graph theory.

A graph G = (V,E) is a set V of vertices and a set E of edges, which are
pairs of vertices. G is said to be complete if every pair of vertices is joined by
an edge. A maximal complete subgraph is called a maximal clique, or simply
clique. If two cliques Cy,Cs C V share nodes, i.e C; NCoy = S with S # (), then
S is the minimal complete separator of C; and Cy. The degree of a given node
is the number of edges it has to other nodes. Two nodes are adjacent if they
are connected by an edge.

Bayesian Networks (BNs) (Pearl, 1988), also known as Bayesian Belief net-
works, belief networks, or Bayes nets, belong to the family of probabilistic graph-
ical models. More specifically, a BN is a directed acyclic graph (DAG). Each
node in the graph represents a random variable, while the edges between the
nodes represent probabilistic dependencies among the corresponding variables.
An arrow from X; to X; means that variable X is influenced by variable X;.
Node Xj is then referred to as a parent of X;, and X; as the child of X;. More-
over, each variable is independent of its nondescendants in the graph given the
state of its parents. This property is used to reduce, sometimes significantly,
the number of parameters of the model.

BNs provide a compact representation of a high dimensional multivariate
distribution. Let X p(x) be the parents of the variable Xj. The joint pdf is

then given by
d

f(z1, .., H (Tx|Tpak))- (6)
If node 4 has no parents, it is denoted a source node and f(z;|Tpag)) = f(2s).
The Markov blanket M of a variable X consists of its parents, children and
spouses (variables sharing children with X). Two nodes X and Y in a DAG
are d-separated by a set S if all paths between X and Y have either a fork
or chain connection in S, or a collider connection outside S, that does not
involve any descendants in S (see Figure 2 for the different connections). Any
node in a DAG is d-separated by its Markov blanket from all nodes outside
the blanket. A DAG is said to be faithful if its d-separation statements are
equivalent to the probability distribution associated with it. In particular, two
distinct nodes X and Y in a faithful DAG are adjacent if and only if there is no
subset S C V\{X,Y} such that X and Y are conditionally independent given
S (see for instance Theorem 1 in Koski and Noble (2012)). A comprehensive
introduction to Bayesian networks may e.g. be found in Lauritzen (1996).
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Figure 2: Different connections in a DAG: a fork on top, a chain in the middle and a collider
in the bottom

An undirected graph is said to be decomposable, or chordal, if every cycle of
length greater than three has a chord. Chordal graphs have been well studied,
and are used in various fields such as optimisation, computer science, proba-
bility and statistics. If a graph G describes a decomposable model, the joint
probability density function (pdf) can be written as follows

x) = Hcp(wc>
P(®) = [ plas)

where the products in the nominator and denominator run over the sets of
cliques and separators, respectively. In such models, the pairwise conditional
and unconditional dependencies are represented by the edges in the correspond-
ing graph. If two variables are conditionally independent, there is no edge
between them in the graph.

A decomposable model can be defined in several equivalent ways (Beeri et al.,
1983):

e a Markov field whose underlying graph is chordal
e a BN with no V-structures
e a graphical model whose underlying (hyper)graph is a junction tree.

A v-structure consists of two of nodes that have an arrow pointing towards
a third one, i.e. X; — X5 < X3 (see the last connection in Figure 2). A
Markov random field is a set of random variables that satisfy a Markov property
described by an undirected graph. More specifically, any two variables that are
not adjacent, are conditionally independent given all the other variables. A
junction tree is a tree-structured representation of an arbitrary graph. The
vertices in a junction tree are the cliques from the original graph, and the
edges are the separators that connect the cliques. Each junction tree defines
a unique decomposable graph. However, decomposable graphs have multiple
equivalent junction tree representations Thomas and Green (2009). Note that



the cliques and separators are always the same, but the separators may be
located in different places.

According to Deshpande et al. (2001), decomposable models possess several
important characteristics that make them appealing. Among others, parame-
ter estimation and statistical testing is much less demanding than in general
undirected graphs. Moreover, Jensen and Jensen (1994) have shown that any
scheme for exact belief updating must start by making the underlying graph de-
composable. However, the problem of finding the optimal decomposable model
for a given data set is known to be infeasible. Hence, heuristic search techniques
are generally used.

In this section we study the relationship between truncated and/or pruned
regular vines and chordal graphs. It has previously been proved (Kurowicka and
Cooke, 2006a) that so-called m-saturated regular vines correspond to a chordal
graph. M-saturated vines are K-truncated vines for which one or more of the
copulae in levels 1 to K are set to the independence copula. For instance, if the
copulae Cig|5, Ci4j3 and C34 in the vine of Figure 1, truncated after level 2, are
set to independence, the resulting vine is m-saturated, but no longer 2-truncated
(note that in our definition, a K-truncated vine has has no independence copulae
in levels 1 to K, which is a more restricted definition than in Brechmann et al.
(2012)). Hence, truncated vines constitute a subclass of m-saturated vines,
which leads us to the following proposition.

Proposition 1. A d-dimensional R-vine, truncated after level K, defines a
chordal graph whose cliques are the constraint sets of the copulae on level K.

Proof. If K = 1, the graph corresponding to the vine is a tree, where the
connected nodes are the variables joined by a copula. The cliques, that are all
of size 2, are then obviously the constraint sets of these copulae.

Assume now that the R-vine truncated after level K — 1 is a chordal graph
whose cliques are the constraint sets of the copulae on level K —1. According to
the proximity condition, the constraint set of each copula Cjp on level K is the
union of the constraint sets C; = {4;, ki, D;} and C; = {ji, k;, D; } of exactly two
copulae on level K —1, and these two constraint sets are the same except for one
node. Assume without loss of generality that j; # j; and {k;, D;} = {ki, D;}.
Then, the conditioned set of Cj;p must be {j;,7:} and the conditioning set
{k;, D;}. The nodes of {j;, k;, D;} are all connected since they constitute a
clique in the graph corresponding to the R-vine truncated after level K — 1.
Moreover, {j;,j;} are connected in the graph of the R-vine truncated after level
K via the copula Cjp. Hence, {ji, ki, Ds, ji} must either be a clique or the
subset of one. By construction, each pair of nodes is connected exactly once in a
full R-vine. Hence, the pair {j;, j;} cannot be part of any of the constraint sets
of the copulae on level K — 1. Thus, {j;, ki, D;, j;} must be a maximal clique in
the graph corresponding to the R-vine truncated after level K. O

It follows directly from Proposition 1 that the graph corresponding to a
truncated R-vine has cliques that are all of size K + 1, and since the proximity
condition requires that the constraint sets of two copulae connected on a given
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level are the same except for one node, all separators must be of size K. More-
over, it entails that the number of cliques is d — K and that they may be directly
identified in the vine matrix M. If one sets all sub-diagonal entries above row
d— K to 0, the cliques are given by the non-zero entries of columns 1 to d — K.

Not all chordal graphs with d — K cliques and d — K — 1 separators may be
represented by a K-truncated vine. Figure 3 provides a counterexample. The
following proposition gives the characteristics of the subclass of chordal graphs
corresponding to a K-truncated vine:

Proposition 2. A d-dimensional reqular vine truncated after level K defines a
chordal graph on d nodes with cliques C;, i = 1,...,n¢, with nc =d — K, and
separators S;, i = 1,...,ng, that fulfils the following conditions:

1. IGl=d—nc+1,i=1,...,nc.

2. ng=nc—1and |S;|=d—n¢,i=1,...,ng.

3. For all i, let Siy,...,Si, be the separators connecting C; to other cliques
in the junction tree. If n > 2 and there exists a pair of indices {j, k}, such
that S;; = Sa # Sp = S;y,, then S;,, =SaV S;,, =8p, m=1,...,n.

4. Let Gy, be the graph corresponding the R-vine truncated after level k. Then
G must fulfill the three conditions 1, 2 and 8 for any k < K.

Proof. Conditions 1 and 2 follow directly from Proposition 1. Condition 3 fol-
lows from the proximity condition of the regular vine. According to Proposition
1, the cliques are the constraint sets of the copulae on level K. Hence, if two
cliques are adjacent, it means that the corresponding copulae on level K are
connected by a copula on level K +1 (an independence copula, since it is above
the truncation level). The proximity condition requires that the constraint sets
Ci = {Jji, ki, D;} and C; = {4i, ki, D;} of these two copulae have all nodes in
common except one. Since the conditioned sets {j;, k;} and {ji,k;} cannot
be exactly the same, the separator connecting the two cliques must be either
Sa = {ji,Di} or Sg = {k;, D;}. Hence, all separators connecting C; to other
cliques must be equal to either S4 or Sp.

Condition 4 is a consequence of the fact that an R-vine may be truncated
after any level. O

Condition 3 means that if a clique in the graph corresponding to a regular
vine is adjacent to more than two others, the separators associated with this
clique must be at most two different sets of nodes. This is necessary for the
proximity condition to be fulfilled, and is the one that is violated by the two
cliques {B,C,E} and {B,G,E} in the graph of Figure 3. The left panel of
Figure 4 shows the junction tree of a graph that fulfills the first three conditions
of Proposition 2, but not the fourth. This is the junction tree of G4. Hence,
{1,2,3} is a clique in G3 (shown in the right panel), that is connected to {1, 3,6}
with separator {1,3}, to {2,3,4} with separator {3,4} and to {1,2,5} with
separator {1,2}. This means that Gs violates Condition 3, and therefore, the
graph in Figure 4 cannot correspond to an R-vine. Each of the three cliques in
dashed boxes, including the simplical nodes 7, 8 and 9, is one of three possible
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Figure 3: The left panel shows a chordal graph that does not correspond to an m-saturated
vine (source: http://en.wikipedia.org/wiki/Chordal_graph). The right panel shows the
corresponding junction tree. Squares and circles correspond to cliques and separators, respec-
tively.

cliques. The choice of these does not influence the nonfulfillment of Condition
3.

When a truncated R-vine in addition is pruned, i.e. at least one of the K
first levels contains an independence copula, the cliques will in general have
different sizes. More importantly, the corresponding graph may no longer be
chordal. For the graph to remain chordal after the pruning, the statement of
conditional independence must be compatible with the statements of conditional
dependence implied by copulae in higher levels of the vine. This implies that the
pruning must be performed in a certain order, starting with level K, which is
the highest level where there are copulae that are not the independence copula.
At this level all copulae may always be pruned. At the remaining levels, how-
ever, a copula may only be set to independence if the corresponding conditional
distributions are used as arguments in independence copulae in the subsequent
level. In Section 4 we give an algorithm for how to prune in a way that makes
the resulting graph decomposable. The class of truncated vines that are pruned
in this way corresponds to the class of m-saturated vines defined in Kurowicka
and Cooke (2006a).
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Figure 4: Left panel: junction tree of a graph that does not correspond to a truncated R-vine
after level K = 4 although it fulfills Conditions 1 to 3 of Proposition 2. Right panel: junction
tree of the graph that would have corresponded to truncation level K = 3, if this were an
R-vine.

4. Structure learning using vines

In this section, we outline the specific procedure for structure learning using
regular vines. Further, we discuss how this approach differs from the other
copula-based approaches proposed in the literature.

The specific procedure for learning a BN using the R-vine methodology is
as follows:

1. Fit a truncated R-vine to the data.

2. Convert the corresponding R-vine matrix to an adjacency matrix repre-
senting the chordal graph

3. Choose the BN as one of the multiple equivalent junction tree representa-
tions.

The first step is described in Section 2. Since we know from Section 3 that the
undirected graph corresponding to the truncated vine really is chordal, we may
find the junction tree simply by using the R-vine matrix to identify the cliques,
as described in Section 3. More specifically, a so-called adjacency matrix A is
constructed from the R-vine matrix M as follows:

13
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Algorithm 1
Input: An R-vine matrix M
1: fOI’i:L...,ddO
2: for j=1,...,ddo
[£27] =0.

end for
end for
cfori=d—K+1,...,ddo
for j=1,...,i—1do

Uy mi; = Qmigmy; = 1
9: end for
10: end for

Output: The adjacency matrix A

After step 2, we have a chordal graph. To obtain a BN, it remains to orient
the edges. Since a chordal graph has no V-structures, these directions may be
set in any way, under the restriction of acyclicity and compatibility with the
R-vine decomposition of the joint pdf. Assume e.g. that the R-vine in Figure 1
has been truncated after level 2. After running through Algorithm 1, we obtain
the following adjacency matrix

0111111
1010000
1101100

A=|1 0100 0 0], (7)
1010011
1000100
1000100

and the chordal graph shown in the left panel of Figure 5, with the corresponding
junction tree in the right panel. The corresponding probability density of the
R-vine is given by (for the readers’ convenience we have omitted the copula
arguments):

7

f(z1, . 27) = [H f(xi)] " Ce5 C51 €21 C75 €31 €43

i=1
" Ce1|5 C53]1 €32]1 €175 C41|3- (8)
This density may also be written as follows

f(xﬁa 371,.%'5) f((E5,.’L'3,.’E1) f(fE?,,xz,.’L']) f($1,$7,$5) f(.’L'4,£U17.’L'3)

f(z1,25) f(z1,25) f(21,23) f(71,73) ’

which can be recognised as the junction tree representation of a decomposable
model. As shown in Figure 5, the cliques and separators may actually be di-
rectly identified from the nodes and edges at the truncation level in the R-vine,
displayed in the middle panel.

flxy,.xr) =
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Figure 5: Left panel: Chordal graph corresponding to the R-vine in Figure 1, truncated
after level 2. Middle panel: R-vine tree corresponding to the truncation level. Right panel:
Junction tree corresponding to the graph in the left panel.

There are a number of ways of factorising the particular pdf above into a
product of conditional pdfs, each resulting in a different BN. Note however that
all these BNs correspond to exactly the same likelihood since they are composed
of the same pair-copulae and marginal distributions. The decomposition one
finally chooses to use may e.g. depend on which conditional distributions one
is most interested in. In the example above, one possible BN-representation is:

f(@1, ., xr) = fxr) - flas|ar) f(aa|er, zs) f(@a|zr, 23) fos|@r, x3)
fwel|zy, ws5) f(or|Ts, 25). 9)

Comparing (8) and (9) we see that the different conditional densities may be
written as follows

)
) tC21 - C32)1
) - a3 - €413
T5) - C51 - C53)1
) * Ce5 * C61]5
) “C75 - C17|5-
If one wishes to investigate if any further conditional independence is present
in the BN or to reduce the parameter space additionally, one may prune the
R-vine after having truncated it. To ensure that the resulting graph still is

decomposable, the pruning must be performed in a certain order. Assume that
the truncation level is K. Then, the pruning procedure is as follows:

15



Algorithm 2

Input: A K-truncated vine
1: for levels i = K,...,1 do
2: for edges e € E; do

3: if corresponding node at level ¢ is connected to independence edges
only, then

4 Test whether C'j(¢) k(o) D(e) may be set to the independence copula

5: using the test by Genest and Favre (2007).

6 end if

7 end for

8: end for

Output: A K-truncated and pruned vine

Assume for instance that the model obtained from the structure learning
algorithm is the R-vine in Figure 1, truncated after the third level. This corre-
sponds to a chordal graph with the four cliques {1, 3,5,7}, {1,3,5,6}, {1,2,3,5}
and {1,2,3,4}. Starting at level 3, all copulae Cs7|15, Csgj15, Cas)13 and Cay)r3
may be pruned. At level 2, Cy7)5, Ci65 and Cly3 can be set to independence if
the copulae C37)15, C3615, Ca4)13, respectively, are independence copulae. The
pair {2, 3} is present in two copulae: Cysj13 or Cyy)13. Hence, the copula Chs)y
can be pruned only if both these two copulae have been previously pruned. Fi-
nally, the last copula on level 2, Css), can be pruned only if all three copulae
C37115, C36)15, Cas)13 have been. At level 1, Cs7, Csg, C12 and Csy can be set
to independence if the copulae Cy7|5, Cigjs, Cazj1, and Ciyj3, respectively, are
independence copulae. The pairs {1,5} and {1,3} are both present in three
copulae. Hence, for Ci5 to be pruned, all of Ci75, Cig5 and Css)y must be
independence copulae, and finally C13 may only be tested for independence if
Cs3s1, Cha13 and Cag)y have been previously pruned.

When the vine is pruned, the cliques are no longer directly found in the R-
vine matrix, but one may for instance use the algorithm described in Sections
4.3 and 4.4 of Cowell et al. (1999) to determine the junction tree. This algorithm
has been implemented in the function ug.to. jtree of the R-package lcd.

The works of Elidan (2010a) and Bauer et al. (2012) are the ones bearing the
strongest resemblance to ours, representing the relationship between a variable
and its parents using copulae. We denote the method of Elidan (2010a) Copula
Bayesian Networks (CBNs), the one of Bauer et al. (2012) Pair-copula Bayesian
Networks (PCBNs) and ours Vine-copula Bayesian networks (VCBN). All three
approaches model the joint pdf by (6). However, they model the conditional
densities f(zx|xpa(k)) differently. Let y1,...yn, be the parents of variable .
In the CBN, the conditional density f(zx|y1,...Yyn,) IS given by

C(F(xk)7F(y1)vﬂF(ynk))
C(F(yl)a--~7F(y7Lk)) ’

F@rly, - yny) = far) (10)
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while in the PCBN and VCBN, it is given by

F(@rlyr, - yny,) = flzg) - c(F(zr), F(y1)) e(F(zr|y1), Fy2ly1))
~c(F(xrly1, y2), F'(ys|yi, y2)) - - -

C(F(eklyr, vz, - Une—1)s F(Ynicly1, 92,5 Yni—1))-
(11)

If the copulae in (10) and (11) are all chosen to be Gaussian, the two rep-
resentations are equal. In general, however, the representation in (11) has two
main advantages compared to the CBN. Firstly, in (11), all copulae are bivari-
ate, while the CBN is based on higher-dimensional copulae. While the list of
parametric bivariate copulae is long and varied, the choice is rather limited in
higher dimensions (Genest et al., 2009). Secondly, in (11) all copulae can belong
to different families. There are no restrictions regarding the copula types that
can be combined; the resulting density is guaranteed to be valid anyhow. This
is not the case for the CBN. Take for instance the R-vine in Figure 1, truncated
after the third level, which corresponds to a chordal graph with the cliques
{1,3,5,7}, {1,3,5,6}, {1,2,3,5} and {1,2,3,4}. The construction of a CBN
for this model requires the specification of the copulae Ci357, Ci356, C1235 and
C1234. For the resulting probability density to be valid, the lower-dimensional
margins that these copulae share must be the same. In other words, the margin
C135 must be the same for the three first copulae, and C13 must be the same for
all four. Achieving this, along with the specified conditional independencies, is
very difficult, if possible, with other copula families than the Gaussian.

The main difference between the PCBN and the VCBN is that in the first,
the parents of any node may be freely selected, while in the latter they must be
chosen in a fashion that satisfies the R-vine structure. Bauer and Czado (2015)
investigate the difference in performance between a PCBN and a VCBN. They
find that the likelihood functions of the PCBNs have a consistently higher mode
than those of the corresponding VCBNS, and the former also have fewer param-
eters. Typically, there are some copulae in the PCBNs that are not directly
specified in the VCBNs, but unless these copulae have a strong dependence,
the difference between the likelihood functions of the two models tends to be
rather small. Moreover, the flexibility of the PCBNs comes at a price. In the
VCBN, the conditional distributions F(z|v) in (11) may be computed as the
derivatives of copulae from the previous level of the vine, while in the PCBN,
the determination of the conditional distributions may involve high-dimensional
integration. Further, there is a well-defined and relatively fast procedure for de-
termining the most appropriate structure for the VCBN, described in Section
2,while selecting the most appropriate model from the class of PCBNs is com-
putationally very expensive. More specifically, this selection is made using the
PC algorithm (see Section 5), replacing the independence test based on assump-
tions of Gaussianity with a more general test using the Rosenblatt transform.
For example, to test whether X; and X; are independent given X, one tests
whether Wy, = F(X;|X}) and W, = F(X;|X}) are unconditionally inde-
pendent. In order to compute the Rosenblatt transforms Wy, and W, one
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estimates a vine for the variables X;, X; and X}, that has the copula Cy; in
its final level. This requires selecting and estimating the copulae of as many
vines as there are independence tests in the procedure, i.e. a potentially very
large number of copulae.

5. Experiments

To show the usefulness of the regular vine approach for learning networks,
we have compared it with four state-of-the-art approaches on four different
data sets: an 8-dimensional data set generated by simulation from a known
Gaussian BN, an 8-dimensional data set generated by simulation from a known
non-Gaussian BN, time series for 52 European stock indices, precipitation series
from 22 sites and the Abalone data set, previously used for BN structure learn-
ing. In all examples we have used the following approaches: the Hill-Climbing
greedy search algorithm, the Max-Min Hill Climbing algorithm, the grow-shrink
Markov blanket algorithm, the PC algorithm and the R-vine structure selection
algorithm. In the first two examples, we have also employed the PCBN method,
and in the last example, both the PCBN and CBN approaches. As explained
in Section 4, it is very difficult, if possible, to ensure that a CBN has a coherent
probability distribution function if not all copulae are Gaussian. Therefore, we
have only used the CBN approach with Gaussian copulae. Since that is equiv-
alent to employing Hill-Climbing when the margins are normal, we have only
included the CBN in the last example, where the margins are not transformed to
normal distributions. Further, the PCBN is computationally very demanding.
Hence, we have omitted it in the third and fourth examples, where the number
of variables is quite large.

The PCBN and CBN approaches are sketched in Section 4. Below, we briefly
describe the state-of-the-art methods and give an overview of the parameter
settings that are common to all examples in Section.

Previously proposed approaches for learning the structure of a BN broadly
fall into one of two categories: score-based and constraint-based approaches.
Generally, the constraint-based methods require the existence of a faithful DAG
for the data set (Tsamardinos et al., 2006), as opposed to score-based methods.
On the other hand, they may handle much larger dimensions. Since both meth-
ods have their advantages and disadvantages, researchers have tried to combine
them in different ways, leading to so-called hybrid methods.

Score-based methods treat the learning task as a combinatorial optimisation
problem. They use a certain search technique to find candidate BNs. The
algorithm finally picks the candidate that maximises a chosen scoring metric,
for instance the Bayesian information criterion (BIC). The main problem with
this approach is that the search space increases exponentially with the number of
variables. In practice, one must therefore resort to a heuristic search algorithm.
In this paper, we have considered the Hill-Climbing greedy search algorithm
implemented in the R-package bnlearn (Scutari, 2010). This algorithm starts
with an arbitrary network. Then it performs a local search by changing one
element of the graph at a time in order to find a better fitting network. Hence,
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it either adds or removes an edge, or changes the direction of one of the existing
edges. The different network structures are ranked with respect to their BIC
scores, assuming that the joint distribution is multivariate normal.

Constraint-based methods consist in a series of tests for conditional inde-
pendence between the variables. We have considered the PC algorithm (Spirtes
et al., 2000), implemented in the R-package pcalg (Kalisch et al., 2012), and the
grow-shrink Markov blanket algorithm (Margaritis, 2003) from the R-package
bnlearn. Both algorithms test for conditional independence by testing whether
the corresponding partial correlations are different from 0. A partial correlation
equal to 0 does not imply conditional independence unless the joint distribution
of the variables in question is the multivariate normal.

The difference between the two constraint-based methods is the order in
which the conditional independence tests are performed. The PC algorithm
starts with a complete undirected graph, and tests all pairs of adjacent nodes for
conditional independence given an increasing number of conditioning variables.
The grow-shrink algorithm, on the other hand, constructs the skeleton of the
BN by trying to find the Markov blanket of each variable, that consists of its
parents, children and spouses (variables sharing children with X). Starting with
an empty blanket, the algorithm begins with a growing phase, adding variables
to the blanket, and then switches to a shrinking phase, where variables are
removed from it.

The constraint-based methods only find the so-called skeleton of the network,
i.e. the undirected graph corresponding to the DAG. The directions are set
afterwards by identifying v-structures and propagating directions to other edges
in order to satisfy the condition of acyclicity. This is a completely deterministic
procedure.

The hybrid methods try to combine ideas from constraint- and score-based
techniques in an effective way. In this paper, we have used the Max-Min Hill-
Climbing (MMHC) algorithm (Tsamardinos et al., 2006), which first recon-
structs the skeleton of a Bayesian network and then performs a Bayesian-scoring
greedy hill-climbing search to orient the edges.

To run the Hill-Climbing greedy search algorithm, we have applied the hc-
function implemented in the R-package bnlearn with the Bayesian information
criterion (BIC) as the score function. To run the Grow-Shrink Markov blanket
algorithm, we have used the gs-function implemented in the R-package bnlearn,
testing for conditional independence with Fisher’s Z test. In examples 1, 2, 4
and 5, the chosen significance level was 5%, while in example 3, we had to use
1% in order to get convergence of the algorithm. We employed the function
pc, implemented in the R-package pcalg, to run the PC-algorithm, with the
function gaussCItest to test conditional independencies at significance level
1%. Finally, the function mmhc in bnlearn was used to run the Max-Min Hill-
Climbing algorithm, and the R-vine structure was selected using the function
RVineStructureSelect implemented in the R-package VineCopula. In princi-
ple the latter function allows to choose pair-copulae from 40 different families.
However, to keep the computational time low, we have restricted the choice to
two or three families, selected by visual inspection or prior knowledge. To deter-
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mine the optimal truncation level we have used the likelihood-ratio based test
described in Section 2, while the pruning was done using the copula indepen-
dence test suggested by Genest and Favre (2007). In both tests the significance
level was set to 5%, and the functions that were used were RVineVuongTest and
BiCopIndTest from VineCopula, respectively. For the selection of PCBNs, we
modified the function pc from pcalg, substituting the function gaussCItest
with the independence test of Genest and Favre (2007). We used the func-
tions CDVineCopSelect and BiCopHfunc, implemented in the CDVine package,
to compute the Rosenblatt transforms, and a significance level of 5% in the
independence tests. Note that in the original PCBN-approach, Bauer et al.
(2012) search for the optimal C- or D-vine for the relevant variables when they
compute the Rosenblatt transforms for the independence tests. Here, we simply
choose a D-vine which has the needed conditional distributions in the top level.
This may have affected the performance of the PCBN, but has also reduced the
computation time significantly. For the CBN, we modified the hc-function from
bnlearn, computing the BIC score based on Gaussian copulae instead of the
multivariate Gaussian distribution.

To estimate the parameters of the networks obtained using hc, gs, mmhc
and pc, we used the function bn.fit in the R-package bnlearn, that computes
the maximum likelihood estimates. The parameters of the R-vine structure
were estimated using the function RVineSeqEst in the R-package VineCopula,
which performs the stepwise semiparametric estimation described in Section
2. To select the copulae and estimate the parameters of the PCBNs, we used
the function BiCopSelect from VineCopula, choosing among the same copula
families as for the vine approach. The multidimensional integrations, necessary
for the computation of some of the conditional distributions that are pair-copula
arguments, were performed with the function cuhre implemented in the R-
package R2Cuba. The parameters of the CBN were estimated with the function
fitCopula, implemented in the R-package copula.

In this paper we are mainly interested in the dependence structure of the
data set in question and not the marginal fit. Hence, in all examples except
the last, and for all approaches, we have fit the same parametric distributions
to the univariate margins. Since the Hill-Climbing, MMHC, Grow-Shrink and
PC-algorithms all implicitly assume that the margins are normal, we assume
normal distributions for the margins also when using the regular vine approach.
This allows us to isolate the effect of replacing the dependence structure of
the multivariate normal distribution with an R-vine. However, it also reduces
the potential leverage of the vine approach compared to the others, as one of
the great advantages of this approach is precisely the possibility to choose the
margins freely.

In order to examine the accuracy of the fitted Bayesian networks, we follow
e.g. Acid et al. (2004), and use the Akaike (AIC) and the Bayesian information
criteria. The BIC penalises the number of parameters more than the AIC, and
therefore favours sparser models.
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Figure 6: Network used in Experiment 1.

5.1. Simulated Gaussian data

In the first example, we have generated 10,000 samples from a Gaussian BN
represented by the graph shown in Figure 6. The reason why we generate this
many samples is that we want to ensure that the data set gives an adequate
representation of the BN. The probability density corresponding to this graph
is

FO) f(Vr) f(Vs| Vi, V) f(Va| Ve, Vi) f(Val Vs, Va) f(Va|Vi, Va, Vr)
: f(‘/f)|vl7 ‘/217 ‘/67 V7) f(VSH/Z’n ‘/217 ‘/57 V7)

The corresponding graph is not chordal. The closest chordal graph (in terms
of the least number of added edges) corresponds to an m-saturated, but not
a K-truncated regular vine. Further, the parameters of the above distribution
are such that there exists a DAG that is faithful to the distribution. Hence,
the regular vine approach has a clear disadvantage compared to the traditional
approaches in this case.

For this data set, the Gaussian copula would obviously have been chosen
for most of the pairs if we had selected pair-copulae from all the 40 possible
families. Hence, we fitted an R-vine structure merely with Gaussian copulae.
Table 1 summarises the fit for all approaches. The R-vine obtained with the
algorithm from Section 4 is the one called “Optimal vine”. As it turns out, it was
not truncated and none of the copulae were pruned. For the sake of comparison
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Table 1: Simulated Gaussian data: Number of edges, log-likelihood, number of parameters,
AIC and BIC for the different approaches.

Method No. of edg. Log-lik  No. of par. AlC BIC
True model 17 86664.44 33 -173262.90 -173024.90
Hill-climbing bic 23 86667.98 39 -173258.00 -172976.80
Max-Min HC bge 17 85562.42 33 -171058.80 -173023.00
Grow-shrink 14 83241.75 30 -166423.50 -166207.20
PC-algorithm 13 81119.85 21 -162181.70 -161972.60
PCBN 13 79179.79 29 -158301.60 -158117.80
Optimal vine (K =7) 28 86669.92 44 -173251.80 -172934.60
3-level vine 18 84303.17 34 -168538.30  -168293.20

we have included the corresponding results for the true model and for a vine
truncated after the third level. For all approaches, the number of parameters is
equal to the number of edges plus twice the dimension. We see that the Hill-
Climbing approach gives the best fit. However, the optimal vine is a very close
competitor. The performance of the constraint-based approaches, including
the PCBN, is not particularly good. All three methods are outperformed by
a regular vine truncated after level 3. Hence, the regular vine approach is
competitive even for this data set, which is designed to give the other methods
an advantage.

Since we know the truth, a structural comparison may also be performed for
this example. Table 2 shows the number of true positive, false positive and false
negative edges for the different approaches (we ignore the direction of the edges
in this comparison, since there are a number of ways to set the directions for
the vine structures that all correspond to the same likelihood). As the optimal
vine corresponds to a saturated graph, the number of false negative edges is 0.
The number of false positive edges is however as large as 11. The reason why
this vine nevertheless is a very close competitor in terms of the AIC and BIC,
is that several of the edges in the corresponding graph correspond to very weak
dependencies.

From Table 2 one may think that the PC and PCBN algorithms perform
quite well compared to the optimal vine since the sum of false positive and
false negative edges is much lower. Table 1 shows that it is in fact the other
way around. The reason is that the graphs obtained by the PC and PCBN
algorithms are missing some edges that are essential for the approximation to be
appropriate, while the false positive edges in the optimal vine either correspond
to very weak dependencies or cancel each other out.

5.2. Simulated non-Gaussian data

In this example, we have generated 10,000 samples from a BN represented
by the graph shown in Figure 7, which is a so-called Chow-Liu tree (Chow and
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Table 2: Simulated Gaussian data: Number of true positive edges, number of false positive
edges and number of false negative edges for the different approaches.

Method TP FP FN
True model 17 0 0
Hill-climbing bic 16 7 1
Max-Min HC bge 14 3 3
Grow-shrink 13 1 4
PC-algorithm 13 0 4
PCBN 10 3 7
Optimal vine (K =7) 17 11 0
3-level vine 12 6 5

Liu, 1968). This graph may be represented by the following probability density

V) F(Va Vi) f(ValVa) £ (V6| Va) f(ValVa) f(Vs[Va) f (Vs[V7) £ (V[ V7).

which again may be written as

8
[H (i)

If all pair-copulae C;; in (12) are chosen to be Gaussian and the margins f(V;)
are assumed to be standard normal, all approaches recover the true structure
exactly. However, if the pair-copulae are substituted by Clayton with param-
eter 3 (corresponding to a Kendall’s tau of 0.6), keeping the standard normal
margins, only the vine and the PCBN approaches succeed in determining the
correct number of edges. Figure 8 shows scatter plots of the simulated data,
while Table 3 shows the results. As can be seen from the table, the state-of-the-
art methods detect many false edges. This may be explained as follows. If the
true data are not multivariate normal, one might get a better approximation of
the true density by adding more edges.

The PCBN and our approach find approximately the same model for this
data set, and their performance is comparable. Actually, the PCBN is also a vine
in this case. However, the CPU-time spent on the PCBN is 4150 times longer
than the one spent on the VCBN, although no multidimensional integration was
required for this model.

C12 C24 C46 C45 C47 C73 C78. (12)

5.8. Stock data

In the third example, we have used the Euro Stoxx 50 data set previously
analysed in e.g. Brechmann (2013). The Euro Stoxx 50 index is a major barome-
ter of the financial markets in the Eurozone. It covers stocks of 50 large Eurozone
companies, selected based on their market capitalisation. In our experiment we
have used the Euro Stoxx 50 index itself, 46 of its underlying stocks, and the
German, French, Italian, Spanish and Dutch national indices. This results in a
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Figure 7: Network used in Experiment 2.

Table 3: Simulated Normal-Clayton data : Log-likelihood, number of parameters, AIC and
BIC for the different approaches.

Method No. of edg. Log-lik ~ No. of par. AIC BIC
Hill-climbing bic 25 -81116.84 41 162315.70 162611.30
Max-Min HC bge 22 -81167.91 38 162411.80 162685.80
Grow-shrink 21 -84276.72 37 168894.20 168627.40
PC-algorithm 22 -83712.63 38 167501.30 167775.20
PCBN 7 -45702.01 23 91450.03  91546.97
Optimal vine (K = 1) 7 -45064.79 23 90175.58  90272.52

52-dimensional data set. Like Brechmann (2013), we consider daily log returns
over the 4-year period from May 22, 2006 to April 29, 2010, which corresponds
to 985 observations. The log returns are preprocessed as follows before further
modelling. First, the serial dependence in the conditional mean and in the con-
ditional variance are modelled by ARMA- and GARCH-models (see Appendix
A in Brechmann (2013) for further details). Then, the resulting residual vec-
tors are converted to approximately uniform variables using the fitted marginal
distribution functions. In the final step, each margin is transformed to a stan-
dard normal distribution, using the Gaussian quantile function. Figure 9 shows
pair-plots of the first six variables from the preprocessed data. These are ellip-
tically shaped, which should be compatible with the assumption of multivariate
normality.

According to Brechmann (2013), the t-copula gave the best fit for the ma-
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Figure 8: Scatter plot of the simulated normal-Clayton data.

jority of the pairs in the first 5 levels when they fitted an R-vine to the Euro
Stoxx 50 data set. Hence, we fitted an R-vine structure consisting of Gaussian
and t-copulae. Table 4 shows the fit for the resulting R-vine truncated after the
first level in addition to the optimal one, and for the three other approaches.
The optimal vine is truncated after level 8 and has 10 additional copulae set
to independence. It outperforms the other methods in terms of the AIC score,
while the Hill-Climbing algorithm gives a better BIC, due to the fact that it
is sparser. The two constraint-based approaches perform even worse than the
1-level vine, that has fewer parameters. Hence, the performance of the Hill-
Climbing algorithm and that of the vine approach are once more comparable,
as one might expect from the elliptical pairwise dependencies. Had the two
methods been compared including the marginal distributions, i.e. on the raw
instead of the preprocessed data, the vine is likely to have been far superior to
the Hill-Climbing graph.
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Figure 9: Pair-plot of the six first variables in the stock data.

Table 4: Stock data: log-likelihood, number of parameters, AIC and BIC for the different

approaches.
Method Log-lik  No. of par. AIC BIC
Hill-climbing bic -43984.44 354 88676.87 90408.88
Max-Min HC bge -44691.44 279 89940.89 91305.93
Grow-shrink -47621.82 224 95691.64 96787.59
PC-algorithm -51437.58 239 103353.20 104522.50
Optimal vine (K =8) -43104.20 681 87570.39 90902.28
1-level vine -45820.04 206 92052.08 93059.96
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5.4. Precipitation data

Our fourth data set consists of daily recordings of precipitation from Jan-
uary 1st, 1990 to December 31st, 2006, at 22 meteorological stations in Akershus
county in Norway, obtained from the Norwegian Meteorological Institute. Sub-
sets of these data set have previously been analysed in Berg and Aas (2009) and
Hobaek Haff (2013). We have followed their example, and only modelled the
positive precipitation. That is, we have discarded all observations for which at
least one of the stations has recorded zero precipitation, which results in 4,928
data points. The precipitation data exhibit both serial dependence and seasonal
patterns, typically with more precipitation during winter than summer. When
the dry days are removed, most of the serial dependence is gone. The seasonal
variation could be handled for instance by dividing the data into a summer and
winter season, and treating these separately, as in Hobaek Haff et al. (2015). For
simplicity, however, we have chosen to ignore the seasonal variation here.

To obtain approximately normal margins, we have transformed the mar-
gins first using the empirical distribution functions and then with the Gaussian
quantile function. Figure 10 shows pair-plots of the six first variables after
the preprocessing steps. There are strong indications of non-linear dependence.
Hence, in this case, the regular vine approach is expected to be superior to the
other ones.

From the appearance of the data, there are indications of upper, but not of
lower tail dependence. Hence, the Gumbel copula seems to be a good candidate
at the first level of the vine. Further, the data transformed with the estimated
conditional cdfs from the preceding level seem to have an elliptical dependence
structure (see Figure 11), meaning that the Student’s t-copula would be rea-
sonable for the remaining levels. Hence, we fitted an R-vine structure for which
we allowed the pair-copulae to be either Gumbel or Student’s t. As shown in
Table 5, the fitted regular vine outperforms the other methods even when it is
truncated at level 2. Again, the Hill-Climbing algorithm is far superior to the
two constraint-based ones. However it produces a model with significantly more
parameters and poorer scores than the 2-level vine. No doubt, the reason for
this is the clearly non-Gaussian dependence structure. Moreover, notice that
there is a large difference in the AIC-and BIC-values between the 2-level and
the optimal vine, the latter being truncated after level 10 and having 3 pruned
copulae. This means that although a 2-level vine performs very well compared
to the other approaches, the fit to the data set is far from optimal.

5.5. Abalone data

Finally, we have studied the Abalone data set (available at
http://archive.ics.uci.edu/ml/datasets/Abalone), that has previously been used
for Bayesian Network structure learning by e.g. Margaritis (2005), Steck (2008),
and Ma et al. (2012). The data originate from a study by the Tasmanian
Aquaculture and Fisheries Institute. An abalone is a kind of edible sea snail,
the harvest of which is subject to quotas. These quotas are based partly on
the age distribution of the abalones. To determine an abalone’s age, one cuts
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Figure 10: Pair-plot of the six first precipitation sites.

Table 5: Precipitation data: Log-likelihood, number of parameters, AIC and BIC for the

different approaches.

Method Log-lik  No. of par. AlIC BIC
Hill-climbing bic -27589.85 165  55509.70  56582.64
Max-Min HC bge -32980.04 102 66164.08  66827.35
Grow-shrink -49105.43 79  98368.86  98882.57
PC-algorithm -51227.71 87 102629.40 103195.20
Optimal vine (K =10) -10843.62 312 22311.24 24340.08
2-level vine -26586.53 105  53383.07  54065.84
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Figure 11: Data transformed with the estimated conditional cdfs from the preceding level,
more specifically from levels 1, 2 and 3, representing copulae at level 2, 3 and 4, respectively,
and then transformed to normal marginal distributions.
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Figure 12: Scatter plot of the original Abalone data.

the shell through the cone, stains it, and counts the number of rings through
a microscope. This is a highly time-consuming task. Hence, one would like
to predict the age based on physical measurements such as weight and height.
The Abalone data set was originally used for this purpose. It consists of 4,177
samples on the following 9 variables: Sex (V0), Length (V1), Diameter (V2),
Height (V3), Whole weight (V4), Shucked weight (V5), Viscera weight (V6),
Shell weight (V7) and Age measured by number of rings (V8).

We do not include the variable Sex in our study since it is a categorical vari-
able. Note that the use of regular vines does not exclude discrete data; examples
of discrete and mixed discrete vines may be found for instance in Panagiotelis
et al. (2012) and Stoéber et al. (2015). However, many of the methods become
more complicated when discrete data are involved. Finally, since the variable
Rings is an integer, we convert it to a continuous variable by adding Gaussian
noise with expectation and standard deviation equal to 0 and 0.01, respectively.

Figure 12 shows scatter plots of the original data, while Figure 13 shows
scatter plots of the data transformed with their empirical distribution functions.
The variables are clearly far from Gaussian distributed marginally, and the
pairwise dependencies are also distinctly non-Gaussian. Hence, a truncated
regular vine with appropriate pair-copula families is expected to fit this data
set much better than a Bayesian network based on an assumption of multivariate
normality.

For this data set, we have not preprocessed the data to make them marginally
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normal before running the various algorithms. Hence, the effect of the margins is
incorporated in the results. Figure 13 suggests that the data has lower, but not
upper tail dependence. Hence, the Clayton copula seems to be a good candidate
at the first level of the vine. Further, an inspection of the data transformed with
the estimated conditional cdfs from the preceding level indicated that the Frank
copula (that has neither upper nor lower tail dependence) would be reasonable
for the remaining levels. We have therefore fitted an R-vine structure with
Clayton and Frank copulae.

The results are shown in Table 6. The optimal vine was truncated after level
5 and no copula was pruned. As expected, the vine approach performs much
better than the methods assuming a multivariate normal distribution, even with
just one level. The third best method is the CBN with Gaussian copulae, which
is due to its capability of modelling non-Gaussian margins. The performance
of the PCBN is comparable to the one of the PC-algorithm. This is somewhat
surprising since the PCBN, like the vine approach, is able to model both non-
Gaussian margins and dependence structures, and moreover is not restricted to
a subclass of chordal graphs. A closer look reveals that there are dependencies,
such as between V5 and V; and between V4 and V7, that are modelled as strong
by the vine, and as conditional independence by the PCBN. This indicates that
the PCBN, misses important edges. This is likely due to the use of the PC-
algorithm, but the performance of the PCBN may also have been affected by
the fact that we do not search for the optimal C- or D-vines in the computation
of the Rosenblatt transforms needed in the independence tests.

Since the margins are far from Gaussian, we also applied the methods to
the data transformed first using the marginal empirical distribution functions
and then with the Gaussian quantile function. Table 7 shows the corresponding
results. Since the CBN with normal margins is equivalent to Hill-climbing, it
is not included in the table. The performance of the various methods is quite
similar for the transformed as for the original data.

A further question is whether the improved fit also means better predic-
tion results. Assume e.g. that we want to use the networks to study how the
probability density of the number of rings of an abalone is affected by evidence
about the values the other variables. Hence, for all approaches, we determine
the probability density of Vg given the seven other variables.

The probability density of the optimal vine is

8
[H fi] C12 C24 C46 C45 C47 C73 C78 C56|4 C14|2 C27|4 C57|4 C34|7 C48|7
i=1

Ce7)45 C17|24 C25|47 C58|47 €38]47 C26|457 C15|247 €28|457 €35|478 C16|2457 C18]2457 €23|4578
and the conditional distribution of Vg given all the others is given by

C78 C48|7 C58|47 €38|47 C28|457 C35|478 C18|2457 €23|4578

s

T .
fo C78 C48|7 C58|47 C38|47 C28]457 €35|478 €18]|2457 023|4578dus
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The network determined by the Hill-Climbing algorithm has the pdf

FOV) f(VaVh) f(Val VA, Va) f(Vs| VA, Vo, Vi) f(Vs| Vi, Va, Vi, Vs)
'f(V7H/27V47‘/57 ‘/6) f(‘/s“/Qavéh‘/E)a ‘/67‘/7) f(‘/3|V2, ‘/63 V7,V8)7

the one from Grow-Shrink is

FOV1) (Vo) f(V2|Va) f(Ve|Va, Vi, Va) f(Va| Ve, V2) f(Vs|Va, Va, Ve, Vr)
f(‘/Q‘Vly V37 V7) f(‘/8|‘/3a V47 V57 V7)a

the one from PC is

FV2) f(Vs) f(Vs) f(V1V2) £ (Ve[ V1, Vs) f(Va|Va, Va) f(ValVa, V5)
f(Va|Va, Vi, Vi, Vs, Vs, Vs),

the one from PCBN is

8
lH fi} C12 €34 C46 C57 €38 C24|3 C47|5 C78|3 C45|23 C27|45 =
i=1

FV) f(Va) f(Vs) f(ValVh) f(ValVa, Va, Vs) f(VsIVa) f(Va|Va, Vi, Vs) f(Va| V3, V7),

and the one from CBN is

f(‘/zl) f(V7‘V4) f(‘/llv47v7) f(V3|‘/43 V7) f(‘/ﬁlvlv‘/?)v‘/zla V7) f(‘/Slv?n‘/f)a‘/(h V7)
f(Val Vi, V3, Vi, Vz, Vs) f(V5|Va, Va, Vi, V7).

Figure 14 shows the six versions of the probability density of the number of
rings based on the other seven variables. In the upper row, we have conditioned
on the 1%- and 5%-quantiles of the other variables, and in the lower row, on the
medians and in the lower right corner on the 90%-quantiles. The figure shows
that the densities from the vine approach, Hill-Climbing, Grow-Shrink, PCBN
and CBN are quite similar if we condition on the medians of the other variables.
However, for very large, and especially for very small quantiles, the vine and
the PCBN densities are very similar, but they are significantly different from
the other ones. A closer inspection of the subset of the raw data corresponding
to values of the first 7 variables close to the corresponding empirical quantiles
reveals that the vine-based conditional densities of Vg are much closer to the
truth than the others. Figure 15 shows histograms of the data points of V3
corresponding to the other variables satisfying g —h < V; < g+ h, where ¢ is the
quantile and h is a box size that is appropriate for g, along with the estimated
conditional densities using the optimal vine approach. This shows that the
erroneous assumption of multivariate normality greatly affects the perception
of the effect that the other variables have on the number of rings.

Judged by the AIC and BIC, the performance of the PCBN is not partic-
ularly good for this data set. However, the resulting conditional probability
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Table 6: Abalone data: Log-likelihood, number of parameters, AIC and BIC for the different
approaches.

Method Log-lik No. of par. AlC BIC
Hill-climbing bic 33899.00 21 -67756.01 -67622.92
Max-Min HC bge 33509.65 17  -66985.31 -66877.57
Grow-shrink 30069.67 17 -60105.35 -59997.61
PC-algorithm 27779.94 13 -55533.89 -55451.49
CBN 36228.13 22 -72412.26 -72272.84
PCBN 27118.17 10 -54216.34 -54152.97
Optimal vine (K =5) 41876.51 25 -83697.04 -83519.57
1-level vine 39494.52 7 -78975.05 -78930.68

Table 7: Abalone data: Log-likelihood, number of parameters, AIC and BIC for the different
approaches applied on the data transformed to Gaussian margins.

Method Log-lik  No. of par. AlC BIC
Hill-climbing bic -9320.246 38 18716.49 18957.31
Max-Min HC bge -57356.02 33 19978.91 20188.05
Grow-shrink -13118.79 33 26303.58 26303.58
PC-algorithm -23653.33 30 50722.11 47556.79
PCBN -20281.39 26 40614.78 40779.55
Optimal vine (K =5) -5523.049 41 11134.08 11311.55
1-level vine -7905.039 23  15856.07 15900.44

densities of the number of rings based on the other seven variables are close to
the ones from the vine approach, despite the low number of parameters. Ac-
tually, V3 and V7 are the variables sharing the strongest dependence with Vg
in both the vine and the PCBN. This may explain why the latter captures the
conditional distribution of Vg, given the others, well, but gives low AIC and BIC
compared to the vine. Still, the PCBN required a CPU time that is more than
18,000 higher than for the vine approach.

6. Conclusions

There are two main reasons for the success of graphical models. Firstly,
graphs allow a powerful visual representation of relations between many vari-
ables, so that hierarchical, sequential, parallel or reinforcing effects can be iden-
tified and discussed. Secondly, graphical models allow a compact and coherent
representation of the joint probability distribution, which is very convenient for
inference on the model parameters and for knowledge propagation in the net-
work. In this paper, we propose a new structure learning algorithm for Bayesian
networks, based on pair-copula constructions.

With a few exceptions, existing structure learning algorithms for continuous
variables involve either discretisation or the assumption of multivariate normal-
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ity. The former strategy quickly becomes undoable in higher dimensions. On
the other hand, the multivariate normal distribution fails to capture both non-
linear dependence and potential skewness and heavy tails in the margins. PCCs,
which are hierarchical structures built merely from bivariate copulae, are able
to portray all those characteristics, which are commonly found in multivariate
data. Our structure learning algorithm uses a subclass of PCCs called regular
vines. These are particularly appealing from an inferential and computational
point of view. They have the limitation that they can represent only a subset
of chordal graphs. However, we show in a number of applications that this
disadvantage is more than compensated by the benefits of non-normality.

A potential weakness of regular vines is the number of parameters, which
grows quickly with the dimension. In order to obtain more parsimonious mod-
els, we therefore employ two strategies; truncation and pruning. An R-vine is
truncated by setting all copulae after a certain level to independence because
they do not contribute significantly to the characterisation of the dependence in
the data, while pruning consists in testing individual pairs of variables for con-
ditional independence given some subset of the remaining variables. We prove
that truncation always results in a certain kind of chordal graph. The pruning
on the other hand must be performed in a specific order for the resulting graph
to be triangulated. This is obtained by following the suggested algorithm.

To do the truncation, we use the method proposed by Brechmann et al.
(2012). Combined with the structure selection of Diimann et al. (2013), this
constitutes a greedy and efficient algorithm, that produces reasonable graphical
models, and can be characterised as a kind of score-based algorithm. When com-
bined with pruning, it becomes a hybrid. In order to assess its performance, we
have compared it to the score-based method Hill-Climbing, the hybrid method
MMHC, the two constraint-based methods Grow-Shrink and PC and the two
non-Gaussian methods CBN and PCBN on two synthetic and three real data
sets. Our vine-based approach outperforms the other methods by far when
the dependence structure of the data is clearly non-Gaussian. Moreover, it is
competitive with the best-performing approach even when the true model is
multivariate normal with a graph that cannot be exactly represented by an R-
vine. In such cases, the estimated R-vine typically gives a graph with some
extra edges, with the conditional independencies in question approximated by
weak dependencies. Further, we have not taken the effect of potential non-
normal margins into account, but only considered the dependence structure.
The results could therefore be even more favourable for the vine approach.

Our method also outperforms the two non-Gaussian methods, that are not
restricted to a certain subset of graphs. In particular, the PCBN, that has been
shown to provide better fit than a regular vine when the true graph structure
is known, seems to be inferior to the vine approach when the structure is un-
known. This may be due to the fact that the PCBN uses a constraint-based
structure finding algorithm. Moreover, it is computationally very expensive, and
is therefore not an alternative to our method for high-dimensional problems.
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Figure 13: Scatter plot of the empirical copulae in the Abalone data set.
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Figure 14: The probability density of the number of rings conditioned on the other variables.
Upper row: Conditioned on the 1%- and 5%-quantiles of the other variables. Lower left panel:
Conditioned on the medians. Lower right panel: Conditioned the 90%-quantiles.

42



Alpha =0.01 Alpha = 0.05

o o
- ] - ]
[ee] [ee]
S S
© (]
(<3 <3
7(
< | < |
o o
N
N N
o I "‘ o
o 1 ol 1
e [ T T T T T 1 e [ T T T T T 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Alpha= 0.5 Alpha = 0.9
o _ o _
- —
[ee] [ee]
o 7 o 7
© ©
o | o |
N N
o o
N N
S S
o -/ o
(<2 (<2
[ I I I I I 1 [ I I I I I 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Figure 15: Histograms the number of the data points of Vg corresponding to the other seven
variables satisfying ¢ — h < V; < g + h for the quantiles ¢ = 0.01,0.05,0.5,0.9 and an
appropriate h depending on ¢, along with the estimated conditional densities using the optimal
vine approach. Upper row: Conditioned on the 1%- and 5%-quantiles of the other variables.
Lower left panel: Conditioned on the medians. Lower right panel: Conditioned the 90%-
quantiles.
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