
Norsk Regnesentral / Norwegian Computing Center HIT, October 20001

Information Modeling
UML, ER, NIAM - what is the difference?

Egil P.Andersen
Norwegian Computing Center

P.O.Box 114, Blindern, 0314 Oslo, Norway
Tel: +47 22 85 25 94, Fax: +47 22 69 76 60

Egil.Paulin.Andersen@nr.no

UML - (OMG) Unified Modeling Language (http://www.omg.com/uml)
ER - Entity Relationship
NIAM - Natural language Information Analysis Method (http://www.orm.net/overview.html)

Slides: http://www.nr.no/~egil/hit-model-101000.zip (PS: >4Mb)

Norsk Regnesentral / Norwegian Computing Center HIT, October 20002

Information Modeling Methods
Information Modelling

To model the information in which we are interested for a particular system, i.e., facts,
knowledge, etc, about what we perceive to be objects in the system being modelled, and this
described as structural relationships between the objects involved.

The essence of information modeling is
a) to represent the information of interest to the modeling task
b) to assure consistency with respect to the constraints that apply to the information represented

Information modeling is important! Information persist - applications come and go...

Information Modeling Methods

• ER - the first data or information modeling method (published ‘76 by Chen).

• NIAM (*) - NIAM is an information modeling method with a rather cumbersome syntax, but its
underlying principles are very important and useful to understand the essential characteristics of
information modeling (which are syntax independent - and thus ER/UML/NIAM independent!).
(NIAM is now mostly known under the name of ORM (Object Role Modeling), which is an
extension of the original NIAM to include behavioural object modeling).

• UML - a relatively new object-oriented analysis/design method. Good tool support.
OMG (the Object Management Group) is in charge of developing and standardising UML.
UML seems to become much of a standard for object-oriented and relational analysis/design.

(*) G.M.Nijssen, T.A.Halpin; Conceptual Schema and Relational Database Design - A Fact
Oriented Approach; Prentice-Hall, 1989, ISBN 0-7248-0151-0

Norsk Regnesentral / Norwegian Computing Center HIT, October 20003

Rule Number 1

A picture may be worth a 1000 words, but
whatever modeling language you use - whatever syntax you prefer - whatever tool you are using
always add the 1000 words +/- for each drawing you make!

A model diagram itself is of no value at all
without an elaborate formal or informal description stating how to interpret it, exactly what is
expressed by the diagram, and so on.

Example:
In any information model, you can add a many-to-many binary association between
almost any pair of classes/entities without making any other error than perhaps
forgetting to identify those relationships that are derivable.

*
*

*
1

* *

PersonCity BankBirth-
place

customer

PS - ikke glem dette på eksamen :-)
(… dersom dere vet hva dere har modellert… hvis ikke - gjør som dere ikke vet dette …)

Norsk Regnesentral / Norwegian Computing Center HIT, October 20004

UML - Unified Modeling Language
Information modeling is just one ingredient in a full system analysis/design process.

UML supports many other analysis/design areas beside information modeling
…but on the downside: UML is huge(!) - not fully consistent - not very precise semantics - areas not

supported by tools are mostly of “academic” value - ...

The following are some of the diagram types supported by UML:

Class diagrams: for information modeling and static class/object behaviour modeling

Object diagrams: for exemplifying actual object structures

Use cases: for describing system services as perceived and accessed by its users

Sequence diagrams: dynamic object interaction modeling - message sequences

Collaboration diagrams: dynamic object interaction modeling - object interactions

Statechart diagrams: object state modeling

Activity diagrams: object state modeling

Component diagrams: for implementation - structure of the code - software component dependencies

Deployment diagrams: for implementation - structure of the run-time system and its processing

OCL - Object Constraint Language
A predicate based language for defining constraints and business rules.

Norsk Regnesentral / Norwegian Computing Center HIT, October 20005

UML vs ER vs NIAM

UML has some minor syntactical differences from ER (also depending on the ER “dialect”…),
but when it comes to information modeling (via UML Class Diagrams), then for all practical
purposes there is no principal difference between using UML versus using ER.

The same is “almost” the case for NIAM as well, but NIAM has a construct called “joint-unique”,
(see later on) which is very useful and quite frequently occuring, that is missing in UML and ER.
In general, NIAM is conceptually better at handling n-ary associations where n>2, and thus for
doing information analysis.

Norsk Regnesentral / Norwegian Computing Center HIT, October 20006

+ “Mainstream” - well-known and seen as much of a standard

+ Information modelling and explicit object interaction modelling

+ Object model available via COM/automation - it can be extended and customised!

+ Code generation (but not production code…)

+ Informal (can be a plus)

÷ Business rules and behaviour other than explicit object interaction

÷ Conceptual errors cannot be detected - models are not correct/incorrect - no modelling tool can
distinguish good from bad models (and this is difficult also for experienced modellers)

÷ Incomplete

÷ Slightly confusing organisation (at least at first…) - quite awkward drawings

• Consider it mainly as a drawing tool and as a model repository

• Use only those parts that are well understood (or agreed upon within the project),
and use it consistently - do not “over-model”

• Modeling syntax is not essential, but you are not likely to do e.g. Class Diagrams any better...

• Assuming that analysis/design is essential to large-scale software development, then a modelling
tool can be useful to establish good routines for planning and documentation, and as a means for
unambigous communication internally and externally.

Characteristics of Rational Rose - a UML development tool

Norsk Regnesentral / Norwegian Computing Center HIT, October 20007

What is an attribute versus an association?

An attribute should be considered as a many-to-one binary association where the opposite class
is “suppressed” (i.e., it will not be explicitly implemented).

Uniqueness constraints (due to mandatory constraints or “joint unique”) should be specified
for attributes similar to how this is specified for associations.

Object-Oriented versus Relational Associations
What if a person can be employed by the same company several times?

Person

Char Date

String

gender

adress
name

ssn

*

birth
date

1 1

0..1

1
0..1

1

*
*
*

Person
ssn : String
name : String
adress : String
gender : Char
birthdate : Eate

Attributes and Associations

Company Person**

Company Person

**

1 1

Object

C P
c1 p1
c1 p2
c2 p1
c1 p1 error

oid C P
1 c1 p1
2 c1 p2
3 c2 p1
4 c1 p1 ok

object-oriented ”solution” actual model
?

Norsk Regnesentral / Norwegian Computing Center HIT, October 20008

Relational vs Object-Oriented Information Models

A mistake
"We do OO so we do not need those traditional ER-based techniques, normalization and all that,
it's irrelevant to us"

Behaviour modelling - Interaction Modelling
A key characteristic of object-oriented modeling; e.g. by collaboration diagrams or role models.

Relational databases has implicit access routes via joins
Object-Oriented implementations requires explicit object access routes

Object Information Associations versus Access Routes
Do not mix the two

- How and which information associations to implement is a modeling decision
- How and which access routes to implement is an implementation decision

The use of information associations is strictly ruled by
the information they represent, and
the constraints that apply to them.

The use of access routes is only concerned with
how to achieve efficient access - they can be added and
removed however it serves the implementation best.

information
association

Customer owner

ATM

Account
Manager

Account

cashwithdrawal
object
access
routes

Norsk Regnesentral / Norwegian Computing Center HIT, October 20009

NIAM

Main characteristics

NIAM, i.e., its principles, is particularly valuable for information analysis, i.e., to understand the
information that we are supposed to represent correctly and efficiently within a computer system.

NIAM achieves this by being “relation-oriented” rather than “object-oriented”
This is a great benefit since it allows us to focus on more manageable subsets of the overall
information modeling task - “separation of concern”
How can we possibly know what are appropriate objects for an information domain that we may
not really know very well?
Hence, in the beginning, look for object relationships - not objects!

Norsk Regnesentral / Norwegian Computing Center HIT, October 200010

NIAM - Uniqueness Constraints

1*

* *

1 1

Norsk Regnesentral / Norwegian Computing Center HIT, October 200011

NIAM - Elementary Associations
Elementary Association - sufficiently ”small” to avoid ”repetition of information”,

but not so ”small” that it implies ”loss of information”.

n-1 rule - an association is elementary if and only if:
1) it has no uniqueness constraint with an arity less than n-1 (n=assos.arity)
2) there are no other

constraints between the
members of this association

Norsk Regnesentral / Norwegian Computing Center HIT, October 200012

NIAM - Elementary Associations (cont.)

Norsk Regnesentral / Norwegian Computing Center HIT, October 200013

NIAM - Joint Unique

Norsk Regnesentral / Norwegian Computing Center HIT, October 200014

NIAM - Association Associations

Norsk Regnesentral / Norwegian Computing Center HIT, October 200015

NIAM - Creating Objects from Associations

Norsk Regnesentral / Norwegian Computing Center HIT, October 200016

NIAM - from n’ary to Binary Associations

Norsk Regnesentral / Norwegian Computing Center HIT, October 200017

NIAM - from n’ary to Binary Associations (cont.)

Norsk Regnesentral / Norwegian Computing Center HIT, October 200018

NIAM - from n’ary to Binary Associations (cont.)

Norsk Regnesentral / Norwegian Computing Center HIT, October 200019

Qualified Associations are binary associations where a qualifier is added to one of the objects
involved in the association. Assume having a qualified association between class A and B where a
qualifier Q is added to A. The qualifier Q is used to partition the set of B objects associated to a
particular A object into disjoint subsets.
Qualified associations are often used to model dictionary-like constructs with the qualifier as index.

NIAMs joint-unique is more generally useful than qualified associations (as a special case).

Some UML constructs in NIAM

1) x = 0..1
y = 0..1

B

AQ

QA

x

y

2) x = 0..1
y = *

3) x = *
y = 0..1

4) x = *
y = *

0..1 BQA
0..1

1)

* BQA
0..1

2)

0..1 BQA
*

3)

* BQA
*

4)

BQA1)

BQA2)

BQA3)

BQA4)

Association Classes
UML association classes are classes representing properties of associations themselves.

Company Person

Job
salary

** Company Person

Job
salary

**

1 1

Norsk Regnesentral / Norwegian Computing Center HIT, October 200020

A convention for presenting Information Models
There are usually different subsets of the overall set of associations that are more strongly related
than others, or that should be considered together to better grasp the overall structure that they
represent.
Sets of associations that are more closely related should be presented separated from other
associations that they are not intimately related to.
Obviously, this is a matter of judgment on a case by case basis.

The separate presentation of different subsets of an overall information model is orthogonal to the
classes involved.
Thus the same class can be illustrated several times within different associations, and this can make it
difficult toget an overview of every association in which a particular class is involved.
However, a tool supporting information modeling can automatically produce a model view where
every association of a particular class is illustrated, but, due to no knowledge of the semantics
involved, it cannot automatically produce a model split as by the above convention.

Person

Char Date

String

gender

adress
name

ssn

*

birth
date

1 1

0..1

1
0..1

1

*
*
*Person Company

ProjectProject
Member

member responsible

employer
employee

*

*

*

*

1 1

1
*

Norsk Regnesentral / Norwegian Computing Center HIT, October 200021

Different models for different purposes

Motivation
To characterize two kinds of information models (IM's) that play different roles in the design,
implementation and documentation of a set of related software components.

This to avoid that implementation-oriented issues (at least to a lesser degree) "clutters up" the
conceptual view provided to clients working with these components.

"Traditional" Information Modeling
• In database terminology an IM is a

schema; e.g. consisting of tables,
columns, keys, etc, in a
relational database.

• In logical database design an IM is
expressed as an ER-like model,
consisting of entities, attributes of
entities and relationships
between entities.

DB Schema

employee
employer

member responsible

Project
Member

Person

Project

Company

1 1

1
*

**

*

*

implement

Norsk Regnesentral / Norwegian Computing Center HIT, October 200022

Component Object Models
• In component systems an object model consists of classes, interfaces, functions, etc, typically

specified by an IDL.

• Example: Rational Rose
COM/Automation interfaces
illustrated in VB Object Browser

Norsk Regnesentral / Norwegian Computing Center HIT, October 200023

Implementation versus Interface Information Models
Two different kinds of IM for component-oriented systems where component implementations are
encapsulated behind interfaces of functions offered to their clients

Interface Information Models (IntIM)

Conveys the common understanding necessary between a client and a set of related components
by describing which objects are made available by the components,
which information must be provided when
invoking a function,
which information will be received,
what is the effect of invoking this function

Implementation Information Models (ImpIM)

A basis for implementing the components
common

understanding

information viewpoint

Interface
Information Model

Student

Grade

Course

Exam

implementation

Implementation
Information Model

Client

computational
viewpoint

components
(IDL specification)

Norsk Regnesentral / Norwegian Computing Center HIT, October 200024

Example - An Electronic Patient Record (EPR) Server
Based on the results of Synapses - an EU project for the standardization of EPR's

RecordElement
nodeID : string
localID : long
className : string
type : short
logTime : date
logUserID : string

Property
name : string
value : string
logTime : date
logUserID : string

1*
dynamic
attributes

succ pred0..10..1 *
below

0..1

target
0..1

*

above

hyperLink

object class1*

*

RecordElement
recordID : string
localElementID : long
classID : string
logTime : date
logUserID : string

Property
name : string
value : string
logTime : date
logUserID : string

DocumentItem
localClassID : long

HyperLink

Record Folder Document

DataField

below

0..1 abovesucc

pred

0..1

1

0..1
0..1

* 1 *

*
below

1*
dynamic
attributes

1 *

above

succ pred0..10..1

succ

pred0..1
0..1

target0..1*

Implementation Information Model

Interface Information Model

Norsk Regnesentral / Norwegian Computing Center HIT, October 200025

Implementation-Oriented Information Models (ImpIM)
Goals: a) to represent the information of interest, and b) to assure consistency in this information

Assure Consistency - Elementary Associations - Normalization
• Find elementary associations -

associations that are sufficiently small to avoid the "repetition of information" and "the inability to
represent certain information" problems, but not so small that they imply a "loss of information".

• Handled by a normalization process - but the technical details of normalization theory is not a
prerequisite for good modelling.

Avoid Redundancy - Derivable Associations - Pragmatic considerations
• Derivable associations should be "read-only" and computed on demand to avoid redundancy that

can lead to inconsistencies
• In practice not always possible - the essence is to be aware of it

Constraints and Business Rules
• Constraints are equally important to associations in defining which information can be represented
• What are derivable associations depends upon the business rules

Change Control
• Changes in ImpIM are often expensive
• ImpIMs are often made general and generic to better support changes
• It is easier to add, change or remove business rules than to change the association structure.

Performance and Platform Oriented
• ImpIM focuses on achieving an efficient and flexible implementation - thus influenced by

performance issues, e.g. relating to the implementation platform

Norsk Regnesentral / Norwegian Computing Center HIT, October 200026

Interface Information Models (IntIM)

Goal: provide a description and documentation of how to use a set of related software components

A set of related components should always be accompanied by a corresponding IntIM

Change Control
IntIM is part of the contract between the components and their clients
Changing them is a "paper excercise", but clients are affected

IntIM can be more domain specific
There is no benefit in making an IntIM more general or generic, as when defining ImpIM's

Constraints and Business Rules
Does not concern consistency - only how a client can work with the components

Maximize Encapsulation
An IntIM does not concern how component interfaces are implemented - there need not be any
correspondence between the IntIM and the ImpIM

Confine the effects of implementation changes
- The design of component interfaces should not reveal how they are implemented
- Focus on what an object offers to its clients, not how it does this

Documentation
E.g. IntIM may well describe detailed function signatures for documentation purposes

Norsk Regnesentral / Norwegian Computing Center HIT, October 200027

Interface Information Models (cont.)

Consistency and Redundancy

• Avoiding redundancy and distinguishing derivable versus non-derivable associations is irrelevant to
IntIM.

Redundancy in an IntIM can do no harm as long as consistency is maintained by the implementation

• Avoiding redundancy in an ImpIM implies that every "piece" of information is stored in one place,
not duplicated several places.

For every constraint that apply to an ImpIM there should be as few objects as possible, preferably
just a single object, in charge of testing or maintaining this constraint.

This is not an issue for IntIM where the same information, or the same functionality, can be offered
several places without introducing redundancy, inconsistencies, or hamper maintenance.

Norsk Regnesentral / Norwegian Computing Center HIT, October 200028

Interface Information Models (cont.)

Connected Models and Logical Views

• ImpIM are connected models -
or else models of independent systems

• Several IntIM can offer different logical views
to the same system

RecordElement
nodeID : string
localID : long
className : string
type : short
logTime : date
logUserID : string

Property
name : string
value : string
logTime : date
logUserID : string

1*
dynamic
attributes

succ pred0..10..1 *
below

0..1

target
0..1

*

above

hyperLink

object class1*

Implementation
Information Model

Record Class View
Interface Information Model

DocumentItem
Class

HyperLink
Class

Record
Class

Document
Class

DataField
Class

0..1

*
below

RecordElementClass
classID : string
localClassID : long

Property
name : string
value : string
logTime : date
logUserID : string

1*
dynamic
attributes

1 *

above

succ

pred0..1
0..1

0..1
succ

0..1
pred

Template

Record
Template

Folder
Template

Folder
Class

className:stringclassName:string className:string

1

* *

1
1 1

* *

0..1
above

*
below

representative representative

Norsk Regnesentral / Norwegian Computing Center HIT, October 200029

Summary
We can distinguish two different kinds of information models for the design, implementation and
documentation of sets of related software components.

Implementation Information Models (ImpIM)
• Used as a basis for implementing components and their interfaces

• Primary concern is to assure consistency, achieve good performance, and being flexible w.r.t. future
changes

Interface Information Models (IntIM)
• An implementation-independent model that describe the components as perceived by clients using

their interfaces

• Primary concern is conceptually simple (more domain specific), easy to use client interfaces with
proper encapsulation such that technical, domain independent implementation changes are confined
without affecting the interfaces and thus clients.

Similarities
They should both be the results of an analysis/design phase
- for ImpIM to understand and design an implementation, and
- for IntIM to understand and design good client interfaces

They can both be described by the same notation, but
- an ImpIM may not be considered a good IntIM since it is too implementation-oriented, too generic,
or too awkward to use, and
- an IntIM may not be considered a good ImpIM by being too specific and thus not good for
handling changes

