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1 Introduction
In a former project done for DnB (an Norwegian bank), NR has built a model for the
total risk of the financial institution. The total risk is defined as the sum of different
risk variables. The different risk variables are uncertain quantities. In the project done
for DnB they are modeled by different probability distributions. Because one risk variable
may depend on other risk variables, it is important to specify a good dependence structure.
This may mean that a high risk for one variable gives rise to a high risk for another risk
variable. How the dependence structure is specified will determine how the distribution
of the total risk variable will look like. Banks are especially interested in the tail of the
total risk distribution (at a given quantile). Based on the quantile, they determine the
amount of money they should put aside to meet potential problems. Previously, banks
have based their analysis on adding the quantiles of the different risk distributions. This
is not necessarily the same as taking the tail of a distribution base on the total risk (sum
of the different risk variables). Taking the former way of producing a tail risk (as sum of
tail risks) means that all tail risks are added up. However, this means that if we assume
that the different risk are perfectly correlated, it could potentially mean that the risk is
overestimated and to much money is put aside. This is a serious problem for the bank
because the money can not be invested and more money could be made if a smaller amount
is put aside.

The two most important risk variables are credit risk and operational risk. In the
current version of the DnB’s total risk system, the dependence structure of credit risk
and operational risk are modeled in two steps. First, the marginal distributions of the
credit and operational losses are assumed to be beta and lognormal distributed. Second,
the dependence structure between the two variables are modeled on a normal scale and
then transformed to the beta and lognormal scale. The correlation between the beta and
the lognormal variables is fixed by the bank (qualified guess) and from this number it is
possible to set the correlation on the normal scale (at least by simulation). This project
will try to find out more about the features of the model. The model could be changed in
two ways: First, the marginal distributions could change to other distribution than beta
and lognormal. Second, the dependence structure could change from correlation on normal
scale to other dependence structures. The other dependence structures could be modeled
by using the copula theory. This copula theory is currently a very popular subject in the
Finance literature. In Section 2 we will try to link copula theory to the method described
above, where dependence is measured on normal scale by correlation. Section 3 studies
tail dependence and local dependence. Furthermore, Section 4 and 5 define the model and
Value at risk respectively. Finally, Section 6 gives the Splus code that produced the results
in this report.

2 Copulas

A joint distribution can be estimated parametrically, semiparmetrically or nonparametric-
ally. Deciding on a parametric multivariate distribution will limit ourself to quite strict
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dependence structure as well as distributional shape. In most textbooks on multivariate
distributions, all the marginal distributions has the the same parametric representation.
There are however, many situations where the marginal distributions are different in para-
metric representation. A standard trick is to transform the marginal variables to Gaussian
ones, then measure the dependence on the Gaussian scale and finally transform back to get
the multivariate distribution. This trick assumes however linear dependence on Gaussian
scale (correlation). See Embrechts et al. (2002) for correlation and dependence in Risk
Management. It is however possible that the dependence on the original scale is different
than what is described through the dependence on the Gaussian scale. It is here the flexib-
ility of copulas comes to its right, see Embrechts et al. (2003). Once the copula dependence
function is set, as well as the marginals, the joint distribution can be found.

Copulas is a quite general tool for constructing models with dependence other than the
standard ones. Copulas is a cumulative distribution function where the random variables
have specific marginals. More specific, let X1, . . . , Xn be random variables with continuous
distribution functions F1, . . . , Fn, respectively, and the joint distribution function is F . The
copula is defined as

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)). (1)

The relationship between the joint distribution and the copula can then be written as

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)). (2)

From (1) and (2) it is seen that the joint distribution is defined if both the copula and
the marginals are given. To be able to understand copulas better, it might help to look at
(1) more closely. Before we do that we need the following result: If X have distribution
function FX , then FX(X) is uniformly distributed on [0, 1]. This is seen from

Pr{FX(X) ≤ y} = Pr{X ≤ F−1
X (y)}

= FX(F−1
X (y))

= y.

Since the distribution function of a uniform variable is identical to the distribution function
of the variable FX(X), the result is established. Returning to the copula definition

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un))

= Pr{X1 ≤ F−1
1 (u1), . . . , Xn ≤ F−1

n (un)}
= Pr{F1(X1) ≤ u1, . . . , Fn(Xn) ≤ un}
= Pr{U1 ≤ u1, . . . , Un ≤ un}, (3)

where Ui = Fi(Xi), i = 1, . . . , n is uniformly distributed in the interval [0, 1], but not
necessarily independent. There is a dependence between the Ui’s when the Xi’s are de-
pendent. The point made here is that the copula does not have the marginal aspects built
in, only the dependence structure.
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3 Tail dependence and local dependence

The so called tail dependence characterizes an important property of the extreme depend-
ence between two variables X and Y with marginal distribution functions FX and FY ,
respectively. The tail dependence allows us to quantify the dependence in the tail. It is
defined by

λ = lim
u→1

Pr{X > F−1
X (u)|Y > F−1

Y (u)}, (4)

provided that the limit λ ∈ [0, 1] exists. If λ ∈ (0, 1], X and Y are said to be asymptotically
dependent in the upper tail. If λ = 0, X and Y are said to be asymptotically independent
in the upper tail. That is, λ quantifies the probability to observe a large X, assuming Y
is large itself. It is also possible to link the copula to the tail dependence defined in (4) by
the following alternative definition of the tail dependence

λ = lim
u→1

1− 2u + C(u, u)

1− u
= lim

u→1
2− log(C(u, u))

log(u)
, (5)

where C is the bivariate copula of X and Y . Notice that independence between X and Y
will give λ = 0. It is often the case that we want to look at tail dependence in general,
that is the dependence far out in the tail but not completely in the limit. Therefore, we
define

λu = Pr{X > F−1
X (u)|Y > F−1

Y (u)} (6)

where λ = limu→1 λu. λu will tell us the tail dependence for a certain quantile u of
the marginal distributions. For the Gaussian copula there is independence in the limit.
Nevertheless, we are not interested in what happens in the limit or when the quantile goes
to one. Our real interest is what happens for a fixed quantile close to one, e.g. u = 0.9997.
Let X, Y have the density f(x, y). The local dependence function is defined by

γf (x, y) =
∂2 log(f(x, y))

∂x∂y

The local dependence function has the following properties:

• X and Y are independent iff γf (x, y) = 0

• γf (x, y) is margin free in the sense that γf (x, y)= γh(x, y) if h(x, y)= f(x, y)φ1(x)φ2(y)

• If f1|2 and f2|1 are the conditional density functions, then γf = γf1|2 = γf2|1 .

Furthermore, for any integrable local dependence function defined over a compact area and
any given continuous marginal density functions, there exists a unique bivariate density
function.

For the standard bivariate normal density function, the local dependence function is
γf (x, y) = ρ

1−ρ2 , where ρ is the correlation in the bivariate distribution. This means that
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the local dependence function is constant. This is not the case for the T -distribution.
Part of this project studies the dependence structure in the tail for for different copulas.
The local dependence function might help us to understand dependence in the tail better,
because of the ability to study dependence locally. The tail dependence can be thought of
as a more global (integrated) measure of dependence.

4 Credit Risk and Operational Risk

As we mentioned in the introduction, the model for Credit risk and Operational Risk built
in the DnB tool for total risk management in the following way. First, the credit risk
and operational risk is modeled marginally, that is a separate model for the two variables.
Second, the dependence structure is modeled. The dependence structure is not modeled
through a copula, but we will see in this section this is an option. Let us first look at the
marginal model of the credit risk and operational risk:

C = eB−1(Φ(X)) (7)

O = exp{ξ + τY } (8)

where X and Y are standard normally distributed.

4.1 The dependence structure in the DnB model

In order to get a dependence structure between the variables C and O, the variables X
and Y has to be dependent. Let

(
X
Y

)
∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
. (9)

We can write

X = Φ−1(B(C/e)) (10)

Y =
log(O)− ξ

τ
(11)

The marginal distribution functions are

FC(c) = B(
c

e
) (12)

FO(o) = Φ(
log(o)− ξ

τ
) (13)

The inverse of the marginal distribution functions are

F−1
C (u) = eB−1(u) (14)

F−1
O (v) = exp(τΦ−1(v) + ξ). (15)
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The joint distribution function is

F (c, o) = Φρ(Φ
−1(B(c/e)),

log(o)− ξ

τ
), (16)

where Φρ is the cumulative distribution function of X,Y . The copula of C,O is then

C(u, v) = F (F−1
C (u), F−1

O (v))

= Φρ(Φ
−1(B(F−1

C (u)/e)),
log(F−1

O (v))− ξ

τ
)

= Φρ(Φ
−1(u), Φ−1(v)). (17)

The copula defined in (17) is exactly the normal copula, meaning that the joint credit and
operational loss model has a dependence structure which is the same as normal copula.
One of the objections (in the literature) against using the normal copula is t hat extreme
events happen independent and the 99.97% quantile is an extreme event. Therefore, it is
interesting to see what happens with other dependence structures or other copulas. The
copulas we will study is the t (with different degree of freedom, so called heavy tailed),
Gumbel, Joe, Galambos and Kimeldorf/Samson. Let Tf,ρ be the bivariate cumulative
distribution function of the t-distribution with f degrees of freedom and correlation ρ.
Furthermore, let Tf be the marginal cumulative distribution functions. The copula of the
t-distribution is:

C(u, v) = Tf,ρ(T
−1
f (u), T−1

f (v)). (18)

4.2 Tail dependence

We will now study the tail dependence of some copulas. The tail dependence for a certain
quantile u is

λu =
1− 2u + C(u, u)

1− u
. (19)

The normal, galambos, gumbel and joe copula have zero dependence in the limit. However,
Figure 1 shows that far out in the tail there is quite a distinct difference in the quantity
of dependence. The galambos, gumbel and joe tail dependence function is higher than the
normal and tends to go very slowly towards zero. For q = 0.997, the tail dependence is
0.08, 0.27, 0.28 and 0.34, when the dependence copula is normal, galambos, gumbel and
joe respectively.
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Figure 1: Displaying λu(q) for high values of q and for four different copulas.
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5 Ratios of Value at risk

Let the total risk be defined as a sum of the two risk variables operational and credit risk,
that is T = O + C. Let

zT (q) = F−1
T (q) (20)

zC(q) = F−1
C (q) (21)

zO(q) = F−1
O (q) (22)

be the quantiles (or Value-at-risk (VaR) in the financial literature) of the different distri-
butions T , C and O, respectively. DnB is interested in the quantity r(q) which is given
by

r(q) =
zT (q)

zC(q) + zO(q)
. (23)

Now, in most cases (dependent on the dependence between C and O and the marginal
distributions) we have

zT (q) ≤ zC(q) + zO(q), (24)

but we can construct situations where the opposite yields. In this section we study different
values of r(q) for different quantiles q and different copulas for the dependence structure
between credit and operational losses. In all cases we have specified the correlation between
C and O to be approximated by 0.43.

In Table 1 we show the results. The t-distribution is not in the EVANESCE imple-
mentation, so an independent S-PLUS code was made for this case. All other dependence
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Table 1: Displaying r(q) for q = 0.95, 0.99, 0.997 for 500, 000 simulations. The dependence
is modeled by different copulas. C is beta distributed and O is lognormally distributed.

method r̂(0.95) r̂(0.99) r̂(0.9997) ρ̂C,O Parameter λ̂0.9997 (ŝd)
Normal 0.9358 0.9046 0.8422 0.426 ρ=0.500 0.033 (0.000)
t2 0.9207 0.9159 0.9143 0.428 ρ=0.401 0.324 (0.014)
t4 0.9248 0.9017 0.8812 0.430 ρ=0.378 0.221 (0.014)
t6 0.9380 0.8928 0.8778 0.422 ρ=0.387 0.147 (0.011)
Gumbel 0.9230 0.9162 0.9177 0.425 δ=1.280 0.276 (0.016)
Kimeldorf.Sampson 0.9379 0.8796 0.7887 0.424 δ=2.500 0.001 (0.001)
Galambos 0.9216 0.9163 0.9145 0.424 δ=0.530 0.250 (0.011)
Joe 0.9233 0.9210 0.9367 0.429 δ=1.360 0.343 (0.014)

structures was implemented in the EVANESCE system. Most of these copulas have two
parameters. We focused on copulas with one parameter since copulas with two paramet-
ers involves finding two parameter values that gives correlation between C and O to be
approximately ρC,O = 0.43 which is time consuming. It is also possible that several values
of the two parameters gives ρC,O = 0.43.

Using correlation as a measure of dependence does not necessarily tell us how strong the
relationship between two variables are. The correlation measures the linear dependence,
but other types of dependencies may not be captured. In the case of beta and lognormal
risk variables, correlation seems to be a fair measure of dependence. We will now show a
case where the dependence is far from linear. Let C and O be inverse normally distributed
with the same means and variances as in the beta and lognormal case. If the correlation
on normal scale is 0.5, the correlation on inverse normal scale is about zero. Now, if the
correlation on normal scale is 0.9, the correlation on inverse normal scale is still about zero.
Even though the correlation is about zero, it does not mean that there is no dependence.
The dependence structure is seen in Figure 2 where it is seen that it is far from linear.
This tells us that correlation is a bad measure for dependence in this particular case.
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Figure 2: Displaying 5000 simulated credit and operational risk variables, which is inverse
normal distributed variables. The correlation is 0.9 on the normal scale before transform-
ation to inverse normal variables where the correlation is approximately zero.
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In Table 2, it is difficult to set the correlation between credit and operational (inverse
normal scale) to be 0.43 as in Table 1 because of other dependence structure than linear.
Therefore we set the operational correlation to be 0.5 for normal copula. For the other
copulas the same parameter value as in Table 1 were set.

We learn from Table 1 that the dependence structure (different copulas) does not matter
very much when it comes to r(q) for q = 0.95, 0.99. For the quantile q = 0.9997, there
is a distinct difference. The tail dependence at 0.9997 differs depending on the copula.
The Kimeldorf Sampson copula has the smallest tail dependence (0.001) while the Joe
copula has highest tail dependence (0.343). The connection between tail dependence and
r(0.9997) is clear, high tail dependence gives high r(0.9997). The opposite also yields,
low tail dependence gives low r(0.9997). From Table 2, r(q) does not vary very much for
q = 0.95, 0.99 as well as q = 0.9997 for different copulas. The value of r(0.9997) is however
smaller in most cases compared to Table 1. If we compare Table 1 and Table 2, it is not
only how we model the dependence that matters, but also how we model the marginal
distributions. Therefore, both dependence and marginal distributions should be addressed
when modeling total risk.

Acknowledgments. Thanks to Kjersti Aas for helpful comments.
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Table 2: Displaying r(q) for q = 0.95, 0.99, 0.997 for 500, 000 simulations. The dependence
is modeled by different copulas. C and O are inverse normally distributed.

method r̂(0.95) r̂(0.99) r̂(0.9997) ρ̂C,O Parameter
Normal 0.857 0.838 0.843 0.001 ρ=0.500
Gumbel 0.857 0.839 0.835 0.001 δ=1.280
Kimeldorf.Sampson 0.852 0.836 0.841 0.001 δ=2.500
Joe 0.856 0.839 0.843 0.000 δ=1.360
t6 0.864 0.821 0.822 0.004 ρ=0.500

6 SPLUS code

The EVANESCE implementation in SPlus FinMetrics Module works on a PC platform.
Remember to open the EVANESCE system by the SPLUS code:
> module(finmetrics)
Some of the functions used below is found in the files:
/nr/project/stat/GB-optimering/Copula/creditOper.ssc
and /nr/project/stat/GB-optimering/baard/functions.ssc

delta <- 0.53
#found by trying many different values
b1c = galambos.copula(delta)
galambos <- rep(0,10)
u = rcopula(b1c,500000)
vv <- simCreditandOperationalLossunif(u$x,u$y)
cat("delta=",delta,"quantilratio=",quantileratio(vv$osim,vv$csim),
"cor=",cor(vv$osim,vv$csim),"\n")

delta <- 1.28
#found by trying many different values
b1c = gumbel.copula(delta)
u = rcopula(b1c,500000)
vv <- simCreditandOperationalLossunif(u$x,u$y)
cat("delta=",delta,"quantilratio=",quantileratio(vv$osim,vv$csim),
"cor=",cor(vv$osim,vv$csim),"\n")

delta <- 1.36
#found by trying many different values
b1c = joe.copula(delta)
u = rcopula(b1c,500000)
vv <- simCreditandOperationalLossunif(u$x,u$y)
cat("delta=",delta,"quantilratio=",quantileratio(vv$osim,vv$csim),
"cor=",cor(vv$osim,vv$csim),"\n")

delta <- 2.5
#found by trying many different values
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b1c = kimeldorf.sampson.copula(delta)
u = rcopula(b1c,500000)
vv <- simCreditandOperationalLossunif(u$x,u$y)
cat("delta=",delta,"quantilratio=",quantileratio(vv$osim,vv$csim),
"cor=",cor(vv$osim,vv$csim),"\n")

rho <- 0.5
b1c = normal.copula(rho)
u = rcopula(b1c,500000)
vv <- simCreditandOperationalLossunif(u$x,u$y)
cat("rho=",rho,"quantilratio=",quantileratio(vv$osim,vv$csim),
"cor=",cor(vv$osim,vv$csim),"\n")

#source("/nr/project/stat/GB-optimering/baard/Ssource/kjor.s")
#source("/nr/project/stat/GB-optimering/baard/Ssource/functions.s")
source("/nr/project/stat/GB-optimering/Copula/creditOper.ssc")
# Here we optimize such that C and O have correlation close to 0.43
# for the t-distribution copula.
df1_2
vv <- optimize(minfunc, lower = 0.35, upper = 0.5,max=F)
zz_simCreditandOperationalLossMethod(operasjonellKorr=vv$minimum,
numSim=500000,method="Tdist",df=df1)
cat("kor=",vv$minimum,"df=",df1,"quantilratio=",quantileratio(zz$osim,zz$csim),
"cor=",cor(zz$osim,zz$csim),"\n")
df1_4
#vv <- nlminb(0.39, minfunc, lower = 0.35, upper = 0.5)
vv <- optimize(minfunc, lower = 0.35, upper = 0.5,max=F)
zz_simCreditandOperationalLossMethod(operasjonellKorr=vv$minimum,
numSim=500000,method="Tdist",df=df1)
cat("kor=",vv$minimum,"df=",df1,"quantilratio=",quantileratio(zz$osim,zz$csim),
"cor=",cor(zz$osim,zz$csim),"\n")
df1_6
vv <- optimize(minfunc, lower = 0.35, upper = 0.5,max=F)
zz_simCreditandOperationalLossMethod(operasjonellKorr=vv$minimum,
numSim=500000,method="Tdist",df=df1)
cat("kor=",vv$minimum,"df=",df1,"quantilratio=",quantileratio(zz$osim,zz$csim),
"cor=",cor(zz$osim,zz$csim),"\n")

lambda <- 1.28
b1c = gumbel.copula(lambda)
u = rcopula(b1c,500000)
vv <- simCreditandOperationalLossIN(u$x,u$y)
cat("lambda=",lambda,"quantilratio=",quantileratio(vv$osim,vv$csim),
"cor=",cor(vv$osim,vv$csim),"\n")

lambda <- 0.5
norm = normal.copula(lambda)
u = rcopula(norm,500000)
vv <- simCreditandOperationalLossIN(u$x,u$y)
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cat("lambda=",lambda,"quantilratio=",quantileratio(vv$osim,vv$csim),
"cor=",cor(vv$osim,vv$csim),"\n")

zz_simCreditandOperationalLossMethod(operasjonellKorr=0.5, numSim=500000,
method="TdistIN",df=6)
cat("kor=",0.5,"df=",6,"quantilratio=",quantileratio(zz$osim,zz$csim),
"cor=",cor(zz$osim,zz$csim),"\n")

b1c = normal.copula(0.5)
q_(0:100)*0.04999/100+0.95
lambda.u <- function(u,b1c) {
(1-2*u+pcopula(b1c,u,u))/(1-u)
}
delta <- 0.53
b2c = galambos.copula(delta)
delta <- 1.28
b3c = gumbel.copula(delta)
delta <- 1.36
b4c = joe.copula(delta)
matplot(cbind(q,q,q,q),cbind(lambda.u(q,b1c),lambda.u(q,b2c),lambda.u(q,b3c),
lambda.u(q,b4c)),cex=1.5,lwd=6,type="l",xlab="",ylab="")
legend(0.95,0.15,c("normal","galambos","gumbel","joe"),lty=1:4,cex=1.5,lwd=6,type="l")
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