

## Process Based Stochastic Modeling of Deep Marine Reservoirs

Petter Abrahamsen, Bjørn Fjellvoll, and Ragnar Hauge Norwegian Computing Center

John Howell, Tor Even Aas University of Bergen

EAGE - Petroleum Geostatistics 2007 10 - 14 September 2007, Cascais, Portugal



#### What is a turbidite?

- The sand rich parts of a deep marine deposit
- A turbulent flow of water and sediment
- Happens at continental shelf
- Can move 10's of km
- Moves fast ~ 20km/h
- Erodes and deposits
- Comes to rest at ocean floor





#### **The Monterey Channel**





## What is a deep marine deposit?

A stack of turbidite deposits with hemipelagic clay in between

#### The Zaire fan







# Why new approach?

- Process models
  - detailed physics
  - can not use well and seismic data
  - slow



- simplistic geometry
- wrong interaction between turbidite events
- can condition on data





#### Basic ideas

- Combine process model with stochastic elements
- Mimic the sequence of deposition
- Use simplified physical flow process to generate channel/lobe shapes fast



- Multiple events (10-1000?) flows generated chronological
- Minor stochastic element added to the physical process
  - Allows to honor data by intelligent trial and error



# Generating one turbidite

- 1. Centre line
  - Run a single particle down the slope
- 2. Height
  - Find height using 1D model for erosion and deposition
  - Detect hydraulic jump
- 3. Width
  - Simplified particle model for side lines: repulsion from centre line
  - After hydraulic jump: change repulsion to attraction
- 4. Cross section shape
- 5. Adjust top and base using Gaussian random fields





#### 1. Centre line of turbidite

#### Main idea: Track a particle sliding down the slope

- Main forces on a fluid particle:
  - Gravity
    - Force the particle downhill
    - Depend on the density
  - Friction
    - Surface friction almost zero
    - Fluid friction stops otherwise very fast flow
  - Random component
    - Seabed uncertainty
  - Attraction to and repulsion from well observations
- Minor forces:
  - Coriolis
  - Ocean currents



# Density and velocity determines sensitivity to topography









#### 2. Height: Deposition and erosion

- Using a method formulated by Leo C. van Rijn (Delft Hydraulics)
  - 1D calculation of erosion and depositional rate along centre line

mass balance for fluid in lower layer 2  $\partial (u_3h_3(1-c_3))/\partial s - W_s - W_b = 0$ 

**Thickness** gradient:

```
\partial h_2/\partial s = [1/(\gamma_2(1-c_2))][\gamma_1(1-c_2) - (1-c_2)(\tau_i+\tau_b)]
-2\rho_2 u_2(W_i+W_b) - \gamma_3 \partial c_2/\partial s
```

#### with:

```
\gamma_1 = (\rho_s - \rho_w) h_2 c_2 g \sin \beta
 \gamma_2 = (\rho_s - \rho_w)h_2c_2 g \cos\beta - \rho_2(u_2)^2 = (\rho_s - \rho_w)h_2c_2 g \cos\beta [1 - (h_{2,cr}/h_2)^3] 
 \gamma_3 = 2\rho_2h_2(u_2)^2 + (\rho_s - \rho_w)(1 - c_2)h_2(u_2)^2 + 0.5(\rho_s - \rho_w)(1 - c_2)(h_2)^2 g \cos\beta
```

```
mass balance for sediment in lower layer 2
\partial (u_2 c_2 h_2)/\partial s - S_i - S_b = 0
h_1, h_2 = thickness of upper and lower layer (h_1+h_2=h=flow depth),
c_1, c_2 = depth-averaged volumetric suspended sediment concentration
in upper layer 1 and lower layer 2.
u_1=q_1/h_1, u_2=q_2/h_2= velocity in upper layer 1 and lower layer 2,
Wi= exchange of fluid at the interface.
Wb = exchange of fluid at the bed,
Si = exchange of sediment at the interface.
S<sub>b</sub> = exchange of sediment at the bed,
\rho_2 = mixture density of lower layer.
```

 $\tau_i$  = shear stress at interface (=  $\rho C_{di} u_2^2$ ),  $\tau_b = \text{bed shear stress} (= \rho C_d u_2^2).$ 

ρ<sub>w</sub> = fluid density (clear water in upper layer 1),

 $C_d$  = bottom friction coefficient (=  $g/C^2$ ), C = Chézy coefficient,

Cdi = interface friction coeffcient.

 $\beta$  = angle of bed slope in s-direction,

s = coordinate along bed slope.

 $\rho_s$  = sediment density,

#### Detects hydraulic jump

Caused by dilution of sediment and reduced speed at basin floor





## **Example**



Blue is erosion Red is deposition







#### 3. Width





#### Closing the lobe

Length, L, depend on mass at hydraulic jump









## Physics is too stable!

- 2° dipping plane
- Dips in X-direction
- 20 Events







# Results: Event: 1, 10

Red = net deposition

Blue = net erosion





# Results: Event: 15, 20

Red = net deposition

Blue = net erosion

**Deep ditch** 



High pile



#### **Problem and solution**

- Problem
  - Physics too stable
  - All events stack on top of each other
  - Sea floor is incredibly flat
- Solution
  - Add antenna to turbidite
  - Turbidity current sends shockwave forward to find easiest path.





# New results: Event: 1, 10

Red = net deposition
Blue = net erosion







# New results: Event: 15, 20

Red = net deposition
Blue = net erosion







#### **Comparing end results**

Red = net deposition

Blue = net erosion



Looking forward: On



Looking forward: Off



# **Another example**





#### **50 Events**

Red = net deposition
Blue = net erosion





#### **Final realization**



# Similar example: 70 Events



Continuous hemipelagic clay deposition between events



# **Filling**

Filling accommodation space with shale up to spill-point









#### 35 Events: Cross sections





## 70 Events cont.





#### Well conditioning

- Well conditioning in physics model
  - Sand observations are attractors
  - Shale observations are repulsors
- Additional conditioning with Gaussian fields
  - 1D field applied to left and right edge
  - 2D field applied to top and bottom



## Physics conditioning – centre line

- Attracted to sand observations
- Shale observations give force in opposite direction





# Well conditioning





#### 15 Events with wells

#### Well logs:

- Facies
  - Sand
  - Shale
- Body





#### 15 Events with wells cont.





# **Petrophysics**

- Standard approach for object models
  - Trends relative to object geometry
  - Anisotropy following objects









#### Closing remarks

- Realistic geometries
- Conditioning to well data (not perfect yet)
  - Rejection of bad proposals to be tested
- Complex model a lot of parameters









## 70 Events cont.





## 70 Events cont.





#### 35 Events: Cross sections

From channel to abyssal plane





#### 35 Events: Cross sections

Around hydraulic jump.

