
Specification of Distributed Systems with a Combination of
Graphical and Formal Languages∗

Einar B. Johnsen
Department of Informatics
University of Oslo, Norway

einarj@ifi.uio.no

Wenhui Zhang
Institute for Energy Technology

N-1751 Halden, Norway
wenhuiz@hrp.no

Olaf Owe
Department of Informatics
University of Oslo, Norway

olaf@ifi.uio.no

Demissie B. Aredo
Institute for Energy Technology

N-1751 Halden, Norway
demissie@hrp.no

Abstract

Convenience in specification and possibility for
formal analysis are, to some extent, exclusive as-
pects of system specification. This paper describes
an approach that emphasizes both aspects, by com-
bining UML with a language for observable beha-
vior of interfaces, OUN. These are complementary
in the sense that one is graphical and semi-formal
while the other is textual and formal. The approach
is demonstrated by a case study.

1 Introduction

In order to develop open distributed systems,
we need techniques and tools for specification,
design and code generation. For the specification
of such systems, it is desirable to use graphical
notations, so that specifications can easily be un-
derstood. It is also desirable to have a formal basis,
in order to support rigorous reasoning about spe-
cifications and designs. As there is no single ex-
isting method that covers all the desired aspects,
we combine existing formal methods and tools
into a platform for specification, design and re-
finement of open distributed systems. For this
purpose, we integrate the UML (Unified Model-
ing Language) modeling constructs [3], the OUN
(Oslo University Notation) specification language
[8] and the PVS (Prototype Verification System)
theorem prover [9].

UML is a comprehensive notation for creating
visual models of systems and has become a stand-

∗This work is financed by the Research Council of Norway
under the research program for Distributed IT-Systems.

ard for object-oriented software development. It
provides notations needed to define a system with
any particular architecture, but lacks a formal se-
mantics. OUN is a formal object-oriented design
language for the development of open distributed
systems. The language is designed in a restric-
ted way so that reasoning is manageable, partic-
ularly, reasoning control is based on static typing
and proofs, and generation of verification condi-
tions is based on static analysis of pieces of pro-
grams or specification texts. Here, we only con-
sider interface specifications in OUN. OUN ob-
jects may have internal activity, run in parallel, and
communicate asynchronously. They support inter-
faces that describe observable behavior by means
of input/output driven assumption guarantee spe-
cifications, using patterns on finite communication
traces. An object may support a dynamically chan-
ging number of interfaces.

The integration of the techniques lets us exploit
the advantages of graphical notations with UML,
the formal notation of OUN, and the theorem-
proving capabilities of PVS for verification of cor-
rectness requirements. The development process
in our approach consists of the following mostly
machine-assisted steps: informal specification of
user requirements; partial specifications in UML;
extension of UML interface specifications into
OUN specifications; translation of the partial spe-
cifications into the PVS language, so that verific-
ation and validation can be done with PVS tools;
and finally code generation.

This approach is demonstrated by a specific-
ation of the SoftwareBus system, which is an
object-oriented data exchange system developed at
the OECD Halden Reactor Project [1]. A full ver-
sion of this paper is available [6].

1

2 Functionality of the Software Bus

Our main motivation for constructing a distrib-
uted software bus arises from the need for sur-
veillance and control of processes in power plants.
Data collected from processes have to be pro-
cessed and presented in different forms at differ-
ent locations, so data sharing among different user-
applications is a necessity. Any number of user-
applications can connect to the system to carry out
data processing tasks, such as creation and destruc-
tion of variables, assignment of values to variables,
and accessing values of variables (Figure 1).

User-
Application1

· · · User-
Applicationn

\ | /

System

Figure 1. The Software Bus

The SoftwareBus system is object-oriented
and open. Classes, functions, and variables are
treated asSoftwareBusobjects, i.e. manipulatable
units in the system. Due to a hierarchical organiza-
tion, objects are either referenced directly or iden-
tified by name and parent’s identifier. Simplifying,
we have three basic types:SbTName for names,
SbTSti for identifiers, andSbTApplication for ap-
plications. There are subtypes ofSbTSti, includ-
ing SbTStiParent. The system interface towards
user-applications provide the following operations:

• sb_initialize, with argument
name: SbTName, no return value.

• sb_exit, no arguments or return values.
• sb_connect_appl, with argumentapp_name:

SbTNameand return valueapp_ref:
SbTApplication.
• sb_disconnect_appl, with argumentapp_ref:

SbTApplication, no return value.
• sb_id, with argumentsname: SbTNameand

parent_ref: SbTParent, returnsobj_ref:
SbTSti
• sb_delete_obj, with argumentobj_ref:

SbTSti, no return value.

The operationssb_initializeandsb_exitare in-
voked by a user-application in order to enter and
leave the system, whereassb_connect_appland
sb_disconnect_applconcern logical connections
between processes, andsb_id andsb_delete_obj
are examples of object manipulation operations.
For brevity, other operations are omitted here.

Decomposition of the System. It is preferable
to keep data in, or near, the user-applications that
possess the data, and provide a mechanism for de-
centralized data sharing. The system consists of
a central unit, called a portmapper, and a set of
data servers. The portmapper maintains informa-
tion about data servers, while the servers store data
to be shared among user-applications. Now, a user-
application communicates with a data server in or-
der to carry out necessary data processing tasks.
Depending on requests from the user-application,
the data server may communicate directly with an-
other data server to fulfill the requests or commu-
nicate with the portmapper if information concern-
ing other servers is requested or needed. The num-
ber of data servers and their locations need not
be predetermined. Data servers may be started at
any location whenever necessary. For simplicity, a
one-to-one mapping between user-applications and
data servers is assumed.

Two interfaces are specified; an interface of
the portmapper towards data servers and an-
other of a data server to other data servers.
The former interface includes the four opera-
tions pm_initialize, pm_exit, pm_connect_appl,
andpm_disconnect_appl, which are internal equi-
valents to similar operations starting withsb. Upon
receiving a callsb_m (for appropriatem) from a
user-application, the data server forwards the call
to the portmapper by callingpm_m. The op-
erations of the interface of data servers are dir-
ectly concerned with data manipulation, compris-
ing methods such aspm_id and pm_delete_obj.
Data servers issue calls to other data servers when
necessary.

3 UML Specification

We specify theSoftwareBussystem with UML
modeling techniques. First, we provide static
structural descriptions of major system compon-
ents as described in the previous section, with
classes, components, and the interfaces that they
provide to each other. Then, static structure and
dynamic behavior of the system is specified by put-
ting these together in UML diagrams.

The external interface specifies operations that
the SoftwareBus system provides as a service
to user-applications. The operations of the ex-
ternal interface of theSoftwareBus system can
be grouped into two: those concerned with ob-
ject manipulations and those dealing with con-
nections between user-applications and theSoft-
wareBussystem. Accordingly, we decompose the
interface towards external user-applications into
two sub-interfaces: SB_SoftwareBusDataand

2

SB_SoftwareBusConnections. For the purpose
of this paper, the interfaceSB_SoftwareBusData
includes at least the operationssb_id and
sb_delete_obj. Relationships between the soft-
ware bus system and its external interfaces are
given in Figure 2.

Figure 2. External Interfaces

“Internal” interfaces are provided by the com-
ponents of theSoftwareBussystem to each other.
The portmapper offersSB_Portmapper to data
servers and data servers offerSB_DataServer
to other data servers. SB_DataServer resembles
SB_SoftwareBusData, SB_Portmapper is specified
as follows:

�interface�
SB_Portmapper

pm_initialize(name)
pm_exit()

pm_connect_appl(user_name; user_ref)
pm_disconnect_appl(user_ref)

Interpretations of signatures of the operations is as
follows. In the list of parameters, values that oc-
cur before the symbol “;” are input parameters,
whereas the remaining values are output paramet-
ers. Types of the parameters are as specified in the
previous section.

4 OUN Specification

Interface declarations in OUN are used to spe-
cify relevant aspects of theobservable behaviorof
objects. The interfaces of an object are specific-
ations concerning aspects of the behavior of that
object, i.e. the possible communication histories of
the object when a particular subset of its alphabet
is taken into account. Thus, an object considered
through an interface is a specific viewpoint to the
services provided by the object. There may be
several interfaces associated with an object, which
give rise to different specifications of that object.

An interface identifies a set of communication
events that reflect method calls relevant to a role

of the object. Say that a methodm, provided
by an objecto, is called by another objecto′,
with parametersp1, . . . , pn and returns with val-
uesv1, . . . , vm. The call is represented by two
communication events:o′→ o.m(p1, . . . , pn) re-
flects the initiation of the method call ando′←
o.m(p1, . . . , pn; v1, . . . , vm) reflects the comple-
tion of the call. The behavior of the aspect of the
object that is modeled, is given by (first-order) pre-
dicates on finite sequences of such communication
events. For each interface there are two predicates,
an assumptionand aninvariant. The assumption
states conditions on the environment of the object,
so it is a predicate that should hold for sequences
that end with input events to the object. The in-
variant guarantees a certain behavior when the as-
sumption holds, so the invariant is given by a pre-
dicate on the sequences ending with output from
the object. In this section, we consider an OUN
specification of theSB_Portmapper interface.

We define predicates on communication traces
to express behavior (abbreviating method names).
Letp be an object which offers the SB_Portmapper
interface, i.e.p is the portmapper. Leth be the
history ofp. Weassumethat data servers initialize,
connect and disconnect to other servers and finally
exit the system. This is expressed as aprefix of a
pattern, where patterns are regular expressions:

correctComSeq(d, p, h)=
h prp [d↔p.pm_initialize(_, _)

[d↔p.pm_c_a(_, _; _) d↔p.pm_d_a(_, _)]∗

d↔p.pm_exit(_)]∗

Here, a↔ event denotes a→ event immediately
succeeded by a← event,ε is the empty trace, and
` is right append. Using similar techniques, we
define a predicateup to determine whether a server
is initialized andconnection to determine whether
two servers are connected. In the software bus sys-
tem, applications connect and disconnect to each
other. Two applications should not attempt to dis-
connect unless they already have an open connec-
tion. Let s1 ands2 be data servers. Using defini-
tion by cases, this is expressed by a predicate onh
as follows:

cn(p, ε)=true
cn(p, h ` d←p.pm_c_a(s1, _; s2))=

cn(p, h) ∧ up(s1, p, h) ∧ up(s2, p, h)
cn(p, h ` d→p.pm_d_a(s1, s2))=

cn(p, h) ∧ connection(s1, s2, p, h)
cn(p, h ` others)=cn(p, h)

Let “this” object provide the SB_Portmapper inter-
face and “caller” range over data servers. Using the
predicates above, the interface SB_Portmapper can
be specified in OUN as follows:

3

interface SB_Portmapper
begin

with SB_DataServer
[operations as in the UML specification]

asmcorrectComSeq(caller, this,h)
inv cn(this,h)

end

5 Discussion

We have demonstrated an approach based on a
combination of UML and OUN specifications to
the specification of a distributed system. The sys-
tem consists of a central unit (the portmapper) and
a set of applications, with the purpose of exchan-
ging data. In this paper, a minimal piece of the
system is used to illustrate how to specify open
distributed systems, with dynamic communication
patterns and remote object creation. In the specific-
ation, graphical UML constructs are used to spe-
cify interfaces, classes and relations between dif-
ferent components.

As demonstrated in the paper, UML class dia-
grams can be expanded into OUN (interface) spe-
cifications by restricting the implicit history vari-
ables of communication calls. By way of first-
order predicates for assumption and commitment
(invariant) clauses, we capture the observable be-
havior of the components. Using OUN concepts,
the specifications allow formal reasoning about
specification properties such as refinement. In the
case study, we have focused on interfaces and com-
munication between objects that implement these
interfaces. The aspect-wise specification formal-
ism of behavioral interfaces used in the OUN lan-
guage lets us capture certain forms of openness by
textual analysis, as demonstrated in the case study.
Further details are found in the full paper [6].

The advantage of using UML constructs for
specification is that these constructs are intuitive,
commonly accepted, and used in industrial soft-
ware development. The use of UML constructs is
important to describe the initial software require-
ments which are normally a result of discussions
between users and systems analysts (or software
engineers). By extension of UML interface spe-
cifications, we obtain specifications in OUN. The
advantage of using OUN is that OUN specifica-
tions express observable behavior of objects and
captures dynamic behavior which is not easily ex-
pressible in UML and OCL [10]. The OUN spe-
cification language is object-oriented including no-
tions of inheritance and object identity, and focuses
on aspect-oriented specification of observable be-
havior, in contrast to process algebras like CSP [4],
CCS [7], and LOTOS, as well as OCL, Z+, Object-
Z, Maude, and temporal logic based approaches.

In the OUN specification language, emphasis
is on reasoning control: reasoning is both com-
positional and incremental so software units can
be written, formally analyzed, and modified in-
dependently, while we have control of the main-
tenance of earlier proven results. OUN uses a
novel input/output driven assumption commitment
specification style, by means of first-order predic-
ates and graphical-style patterns on communica-
tion histories, thus emphasizing reasoning facility.

The approach of this paper relies on the PVS
proof environment as a tool for consistency check-
ing and verification of specifications. UML class
diagrams can be mapped into the PVS specification
language for consistency checking [2]. For further
system development, OUN interface specifications
may be translated into PVS in order to formally
verify for instance refinement properties of the spe-
cifications [5]. Code generation facilities for OUN
specifications are currently under development.

ACKNOWLEDGMENTS: This work is a part of the
ADAPT-FT project. The authors thank H. Jokstad
and E. Munthe-Kaas for discussions, suggestions
and helpful comments.

References

[1] T. Akerbæk and M. Louka. The software bus, an
object-oriented data exchange system. Technical
Report HWR-446, OECD Halden Reactor Project,
Inst. for Energy Technology, Norway, 1996. See
alsohttp://www.ife.no/swbus .

[2] D. B. Aredo, I. Traore, and K. Stølen. Towards
a formalization of UML class structure in PVS.
Technical Report 272, Dept. of Informatics, Univ.
of Oslo, 1999.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Uni-
fied Modeling Language User Guide. Addison-
Wesley, Reading, Massachusetts, USA, 1999.

[4] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

[5] E. B. Johnsen and O. Owe. A proof environment
for partial specifications in OUN. InNorwegian
Informatics Conference. Tapir, 2001.

[6] E. B. Johnsen, W. Zhang, O. Owe, and D. B.
Aredo. Combining graphical and formal specifica-
tion: the software bus case study. Technical Report
297, Dept. of informatics, Univ. of Oslo, 2001.

[7] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

[8] O. Owe and I. Ryl. On combining object orient-
ation, openness and reliability. InNorwegian In-
formatics Conference. Tapir, 1999.

[9] S. Owre, N. Shankar, and J. M. Rushby.The PVS
Specification Language. Computer Science Labor-
atory, SRI International, 1993.

[10] J. Warmer and A. Kleppe.The Object Constraint
Language: Precise Modelling with UML. Object
Technology Series. Addison-Wesley, 1999.

4

