

Project Number: AC112
Project Title: TRUMPET

 Inter Domain Management with Integrity

Deliverable Type: I

CEC Deliverable Number: AC112/GMD/WP3/DS/R/011/b1

Contractual Date of Delivery: 31st December 1997

Actual Date of Delivery: 14th January 1997

Date of This Version: November, 1997

Title of Deliverable: Implementation

Workpackage contributing: WP3

Nature of the Deliverable: T (PLEASE CHECK)

Document Location: Trumpet/wp3/D11/d11.zip

Authors: Editors: Philippe Emeriau, Marcus Wittig

Abstract:

This deliverable describes the implementation of the secure inter-domain service management systems
which have been developed by TRUMPET. It serves as a baseline document for both, the software
developers in TRUMPET, and the system’s operators which need to install and run the software as part of
the TRUMPET trials.

Keyword list:

TMN, inter-domain management, user access, assets, threats, vulnerabilities, security, integrity, account-
ability, availability, confidentiality, security measures, security profiles, security policies.

© 1998 by the TRUMPET Consortium
ASCOM MONETEL, ALCATEL-ISR, BULL ATC, ÉCOLE POLYTECHNIQUE FÉDERALE DE LAUSANNE, GMD-
FOKUS, INTRACOM, NORWEGIAN COMPUTING CENTRE , SALFORD SOFTWARE SERVICES, SCOTTISH
TELECOM, TELIS, TELSCOM, UNIVERSITY COLLEGE OF LONDON

Executive Summary

This document describes the implementation of the secure inter-domain service management systems which
have been developed by TRUMPET. It serves as a baseline document for both, the software developers in
TRUMPET, and the system’s operators which need to install and run the software as part of the TRUMPET
trials. Accordingly this deliverable has been organised as a set of handbooks which describe the various
aspects. While the developers handbooks in particular address the details of implementation design, the
installation handbooks describe how to install and run software. Moreover, the security components have
been described in a separate set of handbooks since the security software and documentation will be
distributed to other projects such as the ACTS MISA project.

As part of the implementation design the developer handbooks describe the details of component
engineering models, APIs and communication interfaces. It presents a refined view on the detailed
component design presented in deliverables 8 and 9 [TRUMPET-D8, TRUMPET-D9] and describes how the
components have been mapped onto the selected implementation technologies. While these handbooks are
in particular addressed to the software developers, the installation handbook should help systems operators
with the installation and execution of the software. The latter also includes a description of hardware and
software prerequisites for each component so that all the information is given which is needed to set-up a
site to run the TRUMPET system.

The structure of the document is as follows: Chapter 1 provides an introduction which gives an overall
overview on the TRUMPET management architecture, the security architecture, and the technology
environment. Chapters 2 and 3 present the handbooks describing the implementation design and the
installation of the management system components, while the handbooks for the security components are
presented in Chapter 4 and 5.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 3 © 1998 Trumpet Consortium

List of Contributors
Philippe Emeriau

Ascom Monetel (P01)
CICA, 229 rte des Cretes
F 06560 Sophia Antipolis
France

tel.: +33.92.94.21.99
fax: +33.92.94.20.20
email: emeriau@ascom.eurecom.fr

Cyril Autant
Nicolas Ganivet

Alcatel ISR (P02)
3, rue Ampere
91349 Massy Cedex
France

tel.: +33 1 69 76 23 49
fax: +33 1 69 76 25 50
email: autant@isr.alcatel-alsthom.fr
 ganivet@isr.alcatel-alsthom.fr

Dominique Maillot
Christiane Pace

Telis / Sema (P03)
Departement Projects Europeens
3-9 rue Helene Boucher
F-78280 Guyancourt
France

tel.: +33.1.30.96.42.12
fax.: +33.1.30.96.44.72
e-mail: Maillot@sqy.sema.fr

Shahrzade Mazaher
Jonn Sketting

Norwegian Computing Center
(P08)
P.O. Box 114 Blindern
N-0314 Oslo
Norway

tel.: +47.2285.2500
fax: +47.2269.7660
e-mail: Shahrzade.Mazaher,
 Jonn.Skretting@nr.no

Marcus Wittig
Oliver Schittko

GMD - Fokus (P09)
Kaiserin-Augusta-Allee 31
D-10589 Berlin
Germany

tel.: +49.30.3463.7218
fax: +49.30. 3463.7218
e-mail: wittig@fokus.gmd.de
 schittko@fokus.gmd.de,

Lionel Sacks
Mathew Loryman
Matthieu Verdier

University College London (P10)
Torrington Place
London WC1E7JE
England

tel.: +44.1.71.419.3198
fax: +44.1.71.387.4350
e-mail: l.sacks@eleceng.ucl.ac.uk

George Andrianopoulos ATC Bull (P12)
Aharnon 438 str,
GR 11143 Athens
Greece

tel.: +30.1.2182008-9
fax: +30.1.2182010
e-mail: andriano@01p.gr

Bernhard Bowler Salfort Software Systems (P13)
Technology House, Lissadel
Street, Salford M6 6AP,
England

tel.: +44 161 278 2555
fax: +44 161 278 2506
email: bb@e.sss.co.uk

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 4 © 1998 Trumpet Consortium

Table of Contents

1. Introduction.. 8
1.1 Management System Architecture...8
1.2 Security Architecture ...9
1.3 High-Level Technology Viewpoint..11

2. Service Management Developers Handbook ..13
2.1 CPN User Application..13

2.1.1 Technology Object Model...13
2.1.2 Required and supported component interfaces..14

2.2 CPN Server...15
2.2.1 Engineering Object Model...15
2.2.2 Required and supported component interfaces..15

2.3 VASP Customer Server..18
2.3.1 Engineering Object Model...18
2.3.2 Required and supported component interfaces..20

2.4 VASP Control Server..22
2.4.1 Engineering Object Model...22
2.4.2 Required and Supported Component Interfaces ..22
2.4.3 Interfaces with the customerServer..22

2.5 VASP CORBA/TMN Gateway..24
2.5.1 Engineering Object Model...24
2.5.2 Required and supported component interfaces..25

2.6 PNO Xuser-Agent...33
2.6.1 Engineering Object Model...33
2.6.2 Required and supported component interfaces..34

3. Service Management Installation Guide ...38
3.1 CPN User Application..38

3.1.1 Hardware and software pre-requisites..38
3.1.2 Installation and configuration instructions...38
3.1.3 Runtime ...38
3.1.4 Version / release history ...38
3.1.5 1.2.5 Known bugs..38

3.2 CPN Server...38
3.2.1 Hardware and software pre-requisites..38
3.2.2 Installation and configuration instructions...39
3.2.3 Runtime ...39
3.2.4 Version / release history ...39
3.2.5 Known bugs...39

3.3 VASP Customer Server..40
3.3.1 Hardware and software pre-requisites..40
3.3.2 Installation and configuration instructions...40
3.3.3 Runtime ...40
3.3.4 Version / release history ...41
3.3.5 Known bugs...41

3.4 VASP Control Server..41
3.4.1 Hardware and software pre-requisites..41
3.4.2 Runtime ...41
3.4.3 Version / release history ...42
3.4.4 Known bugs...42

3.5 VASP CORBA/TMN Gateway..42
3.5.1 Hardware and software prerequisites ...42
3.5.2 Installation and configuration instructions...42
3.5.3 Runtime ...44
3.5.4 Version / release history ...44
3.5.5 Known bugs...44

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 5 © 1998 Trumpet Consortium

3.6 PNO Xuser-Agent .. 45
3.6.1 Hardware and software prerequisites .. 45
3.6.2 Installation and configuration instructions .. 45
3.6.3 Runtime... 45
3.6.4 Version / release history .. 45
3.6.5 Known bugs .. 45

4. Security Developers Handbook ...46
4.1 Security Profile Management ... 46

4.1.1 Engineering Object Model... 46
4.1.2 Required and supported component interfaces ... 46
4.1.3 Example ... 47

4.2 Security Support Object.. 48
4.2.1 Engineering Object Model... 48
4.2.2 Required and supported component interfaces ... 50

4.3 Access Control... 52
4.3.1 Engineering Object Model... 52
4.3.2 Required and supported component interfaces ... 53

4.4 Secure Management Association.. 55
4.4.1 Engineering Object Model... 55
4.4.2 Required and supported component interfaces ... 58

4.5 Adapter Object ... 60
4.5.1 Engineering Object Model... 60
4.5.2 Required and supported component interfaces ... 66

4.6 Audit and Alarm... 86
4.6.1 Engineering Object Model... 86
4.6.2 Required and supported component interfaces ... 88

4.7 SELF ... 89
4.7.1 Engineering Object Model... 89
4.7.2 Required and supported component interfaces ... 90

5. Security Installation Guide..92
5.1 Security Profile Management ... 92

5.1.1 Hardware and software prerequisites .. 92
5.1.2 Installation / configuration instructions.. 92
5.1.3 Runtime... 93
5.1.4 Version / release history .. 93
5.1.5 Known bugs .. 93

5.2 Security Support Object.. 93
5.2.1 Hardware and software prerequisites .. 93
5.2.2 Installation / configuration instructions.. 93
5.2.3 Known bugs .. 94

5.3 Access Control... 94
5.3.1 Hardware and software prerequisites .. 94
5.3.2 Installation / configuration instructions.. 94
5.3.3 Runtime... 96
5.3.4 Version / release history .. 96
5.3.5 Known bugs .. 96

5.4 Secure Management Association.. 96
5.4.1 Hardware and software prerequisites .. 96
5.4.2 Installation / configuration instructions.. 96
5.4.3 Version / release history .. 96
5.4.4 Known bugs .. 96

5.5 Adapter Object ... 96
5.5.1 Hardware and software prerequisites .. 96
5.5.2 Installation / configuration instructions.. 96
5.5.3 Version / release history .. 97
5.5.4 Known bugs .. 97

5.6 Audit and Alarm... 97

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 6 © 1998 Trumpet Consortium

5.6.1 Hardware and software prerequisites ...97
5.6.2 Installation / configuration instructions ..97
5.6.3 Runtime ...98
5.6.4 Version / release history ...98
5.6.5 Known bugs...98

5.7 SELF..98
5.7.1 Hardware and software prerequisites ...98
5.7.2 Software installation..98
5.7.3 Runtime ...98
5.7.4 Version / release history ...99
5.7.5 Known bugs...99

6. References..100

7. Acronyms ..101

8. Appendix A - CORBA/TMN Gateway interface...103
8.1 PNO Connection Manager..103
8.2 VP Connection Manager..105
8.3 ASN.1 Basic Types...106
8.4 Xuser Types ..106

9. Appendix B - CORBA/TMN Gateway library...120

10. Appendix C - Xuser Interface Definition..123

11. Appendix D - List of required Platforms & Packages ...146

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 7 © 1998 Trumpet Consortium

Table of Figures
Figure 1: The TRUMPET Reference Architecture ... 9
Figure 2: Architecture for a Commercial Management Platform. ... 10
Figure 3: Overview of Technology Deployment.. 11
Figure 4: Engineering Object Model of the CPN User Application .. 13
Figure 5: Engineering Object Model of the CPN User Application .. 15
Figure 6: Engineering Object Model of the VASP Control Server.. 22
Figure 7: Engineering Object Model of the VASP CORBA/TMN Gateway .. 25
Figure 8: Required and supported interfaces of the VASP CORBA/TMN Gateway.. 25
Figure 9: Engineering Object Model of the PNO Xuser-Agent ... 34
Figure 10: Graphical Representation of the Secure Management Association Component 57
Figure 11: XOM, XMP and MAE... 61
Figure 12: Secured association establishment & release.. 64

Table of Tables
Table 1: ACSE Functions .. 62
Table 2: ACSE-related Adapter functions .. 63
Table 3: XMP functions to support CMIS services .. 64
Table 4: CMIS-related Adapter functions... 65
Table 5: List of required platforms and packages .. 149

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 8 © 1998 Trumpet Consortium

1. INTRODUCTION
The TRUMPET secure inter-domain service management systems have been developed as part of the
activities in Work Package 3, which is responsible for the architectural design, the definition of test
scenarios, and the implementation of the TRUMPET system. To validate the results of the design and
implementation work the TRUMPET system will be executed and tested as part of trials in which real users
work in a TMN domain environment established by National Hosts.

This document is intended to serve as a baseline document for both, the software developers in TRUMPET,
and the system’s operators which need to install and run the software as part of the TRUMPET trials.
Accordingly this deliverable has been organised as a set of handbooks which describe the various aspects.
While the developers handbooks in particular address the details of implementation design, the installation
handbooks describe how to install and run software. Moreover, the security components have been
described in a separate set of handbooks since the security software and documentation will be distributed
to other projects such as the ACTS MISA project.

As part of the implementation design the developer handbooks describe the details of component
engineering models, APIs and communication interfaces. It presents a refined view on the detailed
component design presented in deliverables 8 and 9 [TRUMPET-D8, TRUMPET-D9] and describes how the
components have been mapped onto the selected implementation technologies. While these handbooks are
in particular addressed to the software developers, the installation handbook should help systems operators
with the installation and execution of the software. The latter also includes a description of hardware and
software prerequisites for each component so that all the information is given which is needed to set-up a
site to run the TRUMPET system.

The structure of the document is as follows: The remainder of this chapter gives an overall overview on the
TRUMPET management architecture, the security architecture, and the technology environment. Chapters 2
and 3 present the handbooks describing the implementation design and the installation of the management
system components, while the handbooks for the security components are presented in Chapter 4 and 5.

1.1 Management System Architecture

TRUMPET focuses on the secure operation of inter-domain management systems within the Open Network
Provisioning (ONP) framework. The TRUMPET scenario shown in Figure 1 involves the following players:
two (or more) Public Network Operators (PNOs), a Value Added Service Provider (VASP), and a number of
customers at various sites - Customer Premises Networks (CPNs) [TRUMPET-D6].

The customers see an end-to-end connection and are not necessarily aware of which PNOs are contributing
to establish the connection. The VASP sees the connection as a set of segments, each supported by a
different PNO, but does not know how each segment has been set up within the corresponding PNO (i.e.,
what ATM switches are used).

The management systems of the players mentioned above form a service provisioning system for
management and provision of broadband (ATM) network connections between two customers/end users.
CPN is a dedicated service in the customer organisation, which already has a contract with the VASP. The
VASP management system provides network connectivity to customers by utilising the resources of one or
more PNOs. VASP allows customers to create, modify and delete connections, thus effectively providing the
Virtual Private Network (VPN) service to the customers. PNOs provide the physical infrastructure, i.e. the
network, and the adequate management interface to interact with it.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 9 © 1998 Trumpet Consortium

CPN
OS

PNO A PNO B

VASP

Customer Premises Network 1

Customer Premises Network 2

CPN
OS

Xuser’’
Xuser’

Xuser’

XcoopPNO
OS

VASP
OS

PNO
OS

Xuser’’
Customer1 / end-user

Customer2 / end-user

Figure 1: The TRUMPET Reference Architecture

This scenario thus presents a reasonable view of emerging service provisioning and market players. Within
this context the needs for high integrity and secure management information exchange between the players
can also be clearly seen. That each player must have publicly accessible data network interconnections
there is a clear exposure of both the data in transit and the accessibility of operational interfaces. Further,
the management platforms employed by each player cannot be restricted to that of any individual vendor.
Thus there is also a demand for understanding the robustness impacts of the inter-working of different
technologies. The exposure of data and interfaces points to the need for data encryption and integrity
requirements for data in transit; the exposure of the interfaces requires access control. Both these security
requirements imply that the organisations can exchange security information such as public keys, private
keys and access rights. These concerns are the principle focus of the implementation of the security
elements of TRUMPET. These security functions are, moreover, explored in the kinds of technology – both
apparent and emerging – which can be used of open service provisioning. The functional requirements on
the reference architecture are:

• VASP receives requests for services from a customer across a TMN like interface Xuser’’. These
requests concern the establishment of inter-domain connections between two customers. The
requirement placed on the VASP consists in finding the best solutions to connect the two customers,
taking into account the requirements concerning the connection (Quality of Service, bandwidth...), the
physical resources available in the PNO domains, and optional criteria related to financial costs.

• PNO provides the physical infrastructure, i.e. the networks. It has a contract with the VASP, which
knows the entry points of the PNO. During the establishment of the connection, a negotiation takes
place between the PNO and the VASP to reach an agreement for an offer from the PNO which
corresponds to the VASP requests.

• Customer is the end-point of the connection. Essentially, two kinds of customer will be considered,
although here they have been merged in a single entity. The customer/end-user is the user of the
application requiring the connection. The customer/network (CPN) is the organisation which will send
the connection request to the VASP. It usually is a dedicated service in the customer organisation, who
has already subscribed a contract with the VASP.

1.2 Security Architecture

The security architecture consists of a set of security components, which can be used by TMN platforms
with open or closed protocol stacks. The distinction is described as:
• For a research management platform, the internals of the protocol stack can be accessed for additions

and modifications. In this case, TRUMPET suggests use of the Generic Upper Layer Security (GULS)
specifications and the Transport Layer Security Protocol (TLSP).

• For a commercial management platform, security features can only be added on top of the interface to the
protocol stack, i.e. over CMISE or ACSE. Data integrity, confidentiality and non-repudiation are
especially difficult to implement if the protocol stack is not accessible.

Since TRUMPET has selected a commercial TMN platform for implementation, only the commercial platform
architecture has been further developed into component specifications, and is presented here. However, the

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 10 © 1998 Trumpet Consortium

security architecture is designed to be as generic as possible by insulating the security-relevant code from
the actual environment through an integration layer. Therefore, the applicability of the TRUMPET security
architecture to other management environments (open protocol stack, WBEM) should be straightforward.

TRUMPET’s security policies are based on the use of public key mechanisms for authentication and
prescribes the use of Trusted Third Parties (TTP) in the role of Certification Authorities (CA). Symmetric
encryption is used for confidentiality and data integrity protection.

The architecture is shown in Figure 2, with dashed lines indicating the components added by TRUMPET,
and solid lines indicating existing components.

Connection
management
application

SSO

MIB handler

CMISE

OSI stack

ACSE

GSS-API

AccessControl

SMIB

SecAudit

SMASA
d
a
p
t
e
rManagement API

Figure 2: Architecture for a Commercial Management Platform.

This security architecture aims at securing communications between a Management Application Entity
(MAE) belonging to a domain and another MAE belonging to another domain. Different MAEs within a
domain may use different security profiles, and the choice of security profile is made during the initialisation
of the security context. Selection of a security profile may be constrained by the mechanisms supported by
an implementation, by internal policies, or by target OS policies. The architecture must support all security
profiles because it is not a priori possible to determine which security policies that will be applied to a
particular X interface. However, some policy decisions inherently affect the architecture, like the decision to
use public key cryptography.

When a MAE belonging to the initiator OS performs inter-domain management operations, it may be
working on behalf of another entity (a human user or another MAE) or on its own behalf. To preserve
privacy of users, and to facilitate management of access privileges (authorisation), the MAE will always use
its own identity and associated set of privileges to perform the management operations on the target OS.
This implies that proper internal security measures must be enforced before human operators or MAEs are
given access to the management capabilities of MAEs that perform inter-domain management.

To be as independent as possible from the management application and its environments, the security
components are accessed through an Adapter component. Ideally, the interfaces provided by the Adapter
to the application should be identical to the interfaces the application uses for access to the communication
services. Alternatively, a defined interface (like the Generic Security Service API (GSS-API) [RFC 1508])
could be offered from the security components, in which case the applications must incorporate this
interface, and perform necessary transformations on the data passed over the interface.

To achieve a high degree of flexibility to particular security mechanisms, the architecture is based on the
GSS-API. The GSS-API interfaces to a Security Support Object (SSO) used to establish a security context
between the communication parties and to perform security transformations on the application data.

With respect to a commercial management platform, there is some minimal support required for the transfer
of security data between communicating parties. The specific requirements that must be satisfied are:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 11 © 1998 Trumpet Consortium

• The authentication field of ACSE must be supported to establish the security context and for
authentication;

• The access control field of CMIS management operations must be supported to transfer security related
information.

The security architecture also requires that agents have control over accesses to the MIB. This is necessary
to enforce access control to MOs. Although TRUMPET is responsible for the implementation of agents,
their design may be restricted by tools provided by the platform provider. For example, the code generated
by a GDMO compiler may not be compatible with the introduction of access control mechanisms.

The architecture shown in Figure 2 is able to support most of the security services required by the
TRUMPET policies. The security services that cannot be fully supported are integrity, confidentiality, non-
repudiation and security negotiations.

When encryption for confidentiality is performed above CMISE, the encrypted data must be inserted into
one of the fields of the particular CMIS operation being requested. However, most of the fields have specific
pre-defined types that cannot accommodate an encrypted data type. In general, the only exception, and the
only fields that can be encrypted, are the fields used to carry the attribute values to and from the target MIB.

1.3 High-Level Technology Viewpoint

This section presents the choices for implementation technologies used in the system as described in the
previous sections, at a global or high level. These choices have been made so as to cover a number of
requirements derived from the project goals and demands from the trials scenarios.

The figure below gives an overview of the technology viewpoint for this project.

GUI
HTML +
Java

CPN Info
Access

VASP:
Java

TTP:
JLDAP

Comms

Voyager
RMI
SSL

Comms

Voyager
RMI
SSL

MO
support

Java

MIB
JLDAP
LDAP
(JDB)

Control
Server
Java

PNO SL

HPOV

PNO NL
(NEL)
M4

Xuser/
CMIP

NEL
SNMP

TTP
LDAP
X.500

CPN VASP

PNO

EI1

EI2.1

EI3

EI4

Server
Gateway
CORBA
HPOV

EI2.2

Figure 3: Overview of Technology Deployment

There are four major sites, each with specific communication needs the; CPN, VASP, PNOs, TTP. These are
communication interfaces external to each domain and are labelled EI1-4. Although the components within
each site also have inter process communications, these are not highly problematic and need not be
considered in detail here. The communications channels considered are those which concern inter-domain
security.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 12 © 1998 Trumpet Consortium

Key to Figure 3:

CORBA: Common Object Request Broker. An Object Oriented RPC like system suitable for building
distributed systems over heterogeneous systems.

LDAP: Light weight Directory Access Protocol. A slimmed down implementation of X.500.

JLDAP: A Java API to LDAP

HTML: Hyper-Text Mark-up Language. A specialisation of SGML, adding functionality for linking
material together in a networked environment (although loosing much of the type setting and
document data base functionality of SGML).

Java: A trendy programming language plus a set of libraries suitable for building distributed systems
and (light weight) user interfaces. Cross platform portability is provided by defining a Virtual
Machine operating environment, rather than by forcing cross platform development in all
environments and the utilisation of platform independent communications (e.g. CORBA or
CMISE)

SNMP: Simple Network Management Protocol. For internet based network elements.

RMI: Remote Method Invocation. The low-level functionality for Java communications, in addition to
pipes and sockets.

Voyager: A product which extends / completes Java communications to cover full functionality of such
things as synchronous & asynchronous communications.

SSL: Secure Sockets Layer. A facility in Java for adding confidentiality, integrity and authentication to
the classic socket and pipe communication model.

M4: A OSI management interface at the network and network element level defined by the ATMForum
for ATM network management.

TTP: Is the trusted third party.

Summary of External Interfaces:

EI1: Between the Customer Premises and the VASP (customer) server. Using Java facilities. Low-level
over IP (backbone or over ISDN) , High level protocol to support object reference model as
supported by LDAP.

EI2: Between clients and TTP site. There are alternatives here supported by SecuDE; LDAP access
over IP or (full) X.500 (TBD).

EI3: Between VASP Control server and PNO sites. Xuser over CMIP. Requires Java to CMIP gateway
to be supported via CORBA.

EI4: From Network Elements Adapters to network elements. SNMP over IP.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 13 © 1998 Trumpet Consortium

2. SERVICE MANAGEMENT DEVELOPERS HANDBOOK

2.1 CPN User Application

2.1.1 Technology Object Model

Figure 4: Engineering Object Model of the CPN User Application

The Map and CustomerGUI components extend class NameConstants in order to share global constants.

• CustomerGUI: is an applet designed to display a map on which sites and connections can be displayed
and modified. The map on which the network is displayed is a background image of the applet. Buttons
and checkboxes are placed on the screen in order to allow modification to the network. Events relating
to the use of the buttons, mouse actions etc. are caught and methods of the Map class are called to make
network modifications.

• Map: the Map component manipulates the map image displayed in the CustomerGUI applet to show the
location of sites and the connections between them. Map also holds lists of the current sites and the
connections between them.

• Connection: an instance of this type exists for each connection on the map. It holds the information
required for each connection and has methods to modify or to obtain information on the connection.

• Site: an instance of this type exists for each site on the map. It holds the information required for each
site and has methods to modify or to obtain information on the connection.

• IO: this component performs the communication between the CustomerGUI and the VASP. It uses a
Queue class to store incoming and outgoing messages. The CallbackPanel passes messages from the
CustomerGUI through to the IO component, prepending a unique instance Id.

• Queue: this class is used to buffer message to be sent to, or that have been received from the VASP.

• CallbackPanel: this class passes messages from CustomerGUI to the IO, prepending a unique instance
Id.

CustomerGUI

Map IO NetworkManager

Connection Site Queue CallbackPanel VirtualCircuit

VASP

TCP/IP Socket

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 14 © 1998 Trumpet Consortium

• NetworkManager: this component handles messages to be passed to/from the vasp and calls
appropriate methods in the Map class to manipulate the map as required.

• VirtualCircuit: this is a class to hold a representation of a virtual circuit.

2.1.2 Required and supported component interfaces

The CPN user application (the GUI) has only one interface which is a connection to the CPN Trumpet
component via a socket.

• Messages to the CPN: messages are constructed as a string of tokens with the first token indicating the
type of message this is. The messages sent are described below.

• User Details: the message header contains the string “UserDetails”, the next two tokens in the string are
the distinguished name and the password for the VASP LDAP server.

• Get Connections: the message header is “getConnections, no other string tokens are required.

• Create Connections: the message header is “createConnection”. The following tokens describe the
connection details such as site, location etc.

• Messages from the CPN: status messages are passed back from the CPN.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 15 © 1998 Trumpet Consortium

2.2 CPN Server

2.2.1 Engineering Object Model

The CPN structure closely follows that described in deliverable 8. The component hierarchy is shown below:

Figure 5: Engineering Object Model of the CPN User Application

All CPN components except for CPN_IBCM extend class CPN_CONSTANTS in order to share global
constants between all components.

• CPN: invokes new instances of the other classes required constructing them with suitable parameters to
enable communication with the GUI and VASP. Callbacks from the VASP via Voyager are also handled
in this component as the use of Voyager precludes any other component performing this function. A
new CPN_LIF class is invoked each time a connection is made to the local socket on which the CPN
resides. This component also receives callbacks from the VASP using Voyager. This requires that the
CPN is made Voyager aware in order that it can be accessed as a remote object from the VASP.

• CPN_LIF: is the CPN local interface for interfacing with the local system (currently via the GUI
application). This component is threaded which allows more than one user to attach to the CPN. When
constructed, the LIF registers itself with the CPN_SAC component. The CPN_SAC keeping a table of
each connection with an associated id.

• CPN_SAC: the service access control point to provide a common interface between local facilities and
the VASP. All calls from the LIF and callbacks received from the CPN_IBCM and the CPN itself are
passed through the SAC.

• CPN_IBCM: provides the communications interface from the CPN to the VASP and uses Voyager as the
interface medium. Voyager allows an association to be made to a remote instance of the VASP and call
methods of the VASP object such as associate(), get() etc. directly.

• CPN_SEC: the security interface will handle security issues such as certification and key exchange.

2.2.2 Required and supported component interfaces

The CPN interfaces on one side to the graphical user interface using a TCP/IP socket and on the other side
to the VASP using Voyager.

• Interface to the Graphical User Interface: the CPN_LIF interfaces to the GUI via a socket. More than
one GUI can be connected to the CPN at any one time, a new instance of a CPN_LIF is created for each
GUI requesting connection. The LIF then listens on the socket for any requests from the GUI.
Currently, all requests from the GUI are passed to the method decodeDBQ which parses any messages
from the GUI and calls methods in the CPN_SAC as appropriate. Messages recognised, and the action
performed by the LIF are described below.

CPN

 CPN_LIF CPN_SAC CPN_IBCM CPN_SEC

Graphical user
interface

VASP

TCP/IP Socket Voyager (CPN to VASP)

Voyager (VASP to CPN)

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 16 © 1998 Trumpet Consortium

• User Details: the message header from the GUI contains the string “UserDetails”, the next two tokens in
the string are taken to be the distinguished name and the password for the VASP LDAP server. If
tokens are received as expected then call the Make Association method in the CPN_SAC as below:

call CPN_SAC.MakeAssociation(distinguished name, password)

• Get Connections: the message header from the GUI is “getConnections”, call the GetConnections
method in the LIF as below:

CPN_SAC.GetConnections()

• Create Connections: the message header is “createConnection”. Create an new instance of the virtual
connection class and write the tokens from the string received into appropriate variables of the virtual
connection class. Once completed successfully call the ReserveConnection method in the CPN_SAC as
below.

CPN_SAC.ReserveConnection(VC);

 VC is the instance of the virtual connection class created.

• Interface to the VASP: the interface between the CPN and the VASP is made using the Voyager
package. The CPN_IBCM component performs all interfacing TO the VASP. The IBCM must first
register an instance of the VASP virtual object VAssociationServer. In order for this to be successful,
the VASP must already be up and running. Once the association is made, the CPN can call methods in
the VassociationServer class. Calling associate() on the VassociationServer passes back a reference to a
VCustomerService class, which also resides in the VASP. The VcustomerService class has most of the
methods which the CPN uses to communicate with the VASP.

VAssociationServer supports the following method:

METHOD associate

SYNOPSIS
VCustomerService associate(distinguished name, password, CPN host URL)

DESCRIPTION

The CPN_IBCM calls associate to make an association to the VASP LDAP server giving the required
distinguished name and password. The path to the CPN is also given to allow the VASP to create a
reference to the voyager aware CPN. A reference to a voyager aware VCustomerService object on the VASP
is passed back.

VCustomerService supports the following methods:

METHOD get

SYNOPSIS
HashSet h = VCustomerService.get(
 distinguished name,
 scope,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 17 © 1998 Trumpet Consortium

 filter,
 Attribs);

DESCRIPTION

Returns a Voyager HashSet containing entries from the VASP LDAP server matching the arguments passed.

METHOD create

SYNOPSIS
vcs.create (Entryname, Entry);

DESCRIPTION

Create a new on the VASP with attributes as set in the Entry class passed. The Entry names recognized are
“Customer” to create a new customer and “VASPVPConnection", to create a new connection.

In order to receive communications from the VASP the CPN object requires a Voyager aware version. This
is constructed from the main() method in the CPN class. This object is then referenced remotely by the
VASP. Currently the only method that the VASP calls on the CPN is
 public void eventReport(String ConnectionID, boolean status)

which is used to pass back the current status of the given connection Id to the CPN.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 18 © 1998 Trumpet Consortium

2.3 VASP Customer Server

2.3.1 Engineering Object Model

From section seven of D8, “VASP Information and Computational Models” several computational objects
have to be realised as part of the Customer Server. The Computational objects incorporated into the
Customer Server all form part of the MIB, or Management Information Base. The elements of the MIB are as
follows:

• Customer MIB. This contains attributes such as Customer CPN ID, Termination point ID and Port ID.

• Connection MIB. This contains information about connection type, bandwidth and performance.

These are implemented using the classes Customer and VASPVPConnection. Both of these classes are
managed objects are therefore extend the class ManagedObject. As part of the CustomerServer there is a
facility for filtering and scoping for Managed Object selection. This is provided for by having Managed
Objects reproduced along with certain of their Attributes in an LDAP Directory Server. Therefore a major
function of Managed Objects is to make appropriate entries in the Directory Server. This is mostly
accomplished from within the class Managed Object.

2.3.1.1 The Class Managed object

Class ManagedObject
{
String DistinguishedName;
AttributeList ALAttributes;
LDAPConnection LDAPmyConnection;

public ManagedObject(Entry, LDAPConnection)
{

Constructs the managed object and assigns values to the above variables.
}

protected final void LDAPcreate(LDAPAttributeSet)

Customer

 VASPVPConnection

ManagedObject

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 19 © 1998 Trumpet Consortium

{

Takes the LDAPAttributeSet passed and constructs an Entry suitable for adding into the LDAP from
this and the Distinguished name.

}

public void AlterAttributes(String, String)
{

Adds an attribute into the AttributeList held by the object.
}

protected final LDAPAttributeSet organizeAttributes(boolean)
{

Takes the AttributeList held in the ManagedObject class and converts it into an LDAPAttributeSet. If
the value of the boolean is true, then the current Voyager Object Name is used as an LDAPAttribute to
identify the Object. Otherwise a new Voyager Object Name is generated and used.

}

public Entry ReturnSelectAttrs(String[])
{

The values of the Attributes held in the AttributeList are selected according to the contents of the
String array passed as a parameter to this method. These are then built up into an Entry and returned.

}

private final CMISException createAppropriateException(int iErr)
{

Generates and returns an appropriate error message.
}
}

2.3.1.2 The Class Customer
class Customer extends ManagedObject
{
public Customer(Entry, LDAPConnection)
{

calls the constructor of Managed Object with an Entry and a reference to the connection to the LDAP
Directory Server. Then calls organizeAttributes() to return an LDAPAttributeSet, adds the attribute
“objectClass” as being “Customer”. Then calls LDAPCreate() with this LDAPAttributeSet to create the
entry in the LDAP.

}
}

2.3.1.3 The class VASPVPConnection.
class VASPVPConnection extends ManagedObject
{
public VASPVPConnection(Entry, LDAPConnection)

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 20 © 1998 Trumpet Consortium

{

Calls the constructor of Managed Object with an Entry and a reference to the connection to the LDAP
Directory Server. Obtains the Connection ID of this particular Connection and adds it as an attribute
using AlterAttributes(). A message is then passed to the ControlServer for it to set up the connection
using reserveConnection().

Then calls organizeAttributes() to return an LDAPAttributeSet, adds the attribute “objectClass” as
being “VASPVPConnection”. Then calls LDAPCreate() with this LDAPAttributeSet to create the entry
in the LDAP.

}

public void createVPSegment(String, String, String, String, String)
{

This is called from the ControlServer to allocate the individual PNO Segments.
}
}

2.3.2 Required and supported component interfaces

There are two sets of interfaces to the Customer Server. One between the CustomerServer and the code
running on the Customer Premises Network, or CPN and one between the CustomerServer and the
ControlServer.

2.3.2.1 Interface to the CustomerServer as seen by the CPN.

There are currently three methods that interface to the CustomerServer as seen by the CPN:

public synchronised VCustomerService associate (String
DistinguishedName,
 String password,
 String address)

public EntrySet get(String BaseDN,
 int scope,
 String filter,
 String[] SAattrs)

public void create(String Stype,
 Entry Eentry)

2.3.2.2 Interface to the CPN as seen from the CustomerServer.
public void eventReport(String ConnectionID, boolean status)

2.3.2.3 Interface to the ControlServer as seen by the CustomerServer.

public void reserveConnection(String VaspVPId,
 String sourceCustId,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 21 © 1998 Trumpet Consortium

 String targetCustId,
 String sourceAddr,
 String targetAddr,
 ScheduleType schedule,
 QosSequenceTypeOpt qosParsOpt)

2.3.2.4 Interface to the CustomerServer as seen by the ControlServer.
public void AllocateSegment(String ConnectionID,
 String pnoID,
 String pnoSegmentID,
 String accesspoint1,
 String accesspoint2)

public void allocateConnection(String ConnectionID, boolean status)

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 22 © 1998 Trumpet Consortium

2.4 VASP Control Server

2.4.1 Engineering Object Model

The controlServer’s class hierarchy is rather flat. The only hierarchy that exists has to do with Managed
Objects (MO) and is shown below:

 m a n a g e d O b j

 v a s p V P C o n n e c t i o n

 v a s p V P S e g m e n t

 c u s t E n d P o i n t

Figure 6: Engineering Object Model of the VASP Control Server

The controlServer keeps a local copy of the connection MIB for its own use. The objects that comprise the
MIB are instances of the three leaf classes above. The class managedObj is an abstract class containing all
the operation to have to do with the containement tree representing the MIB. For example, by inheriting from
managedObj, all MIB objects are able to insert themselves into or remove themselves from the containement
tree.

The class VaspVpnManager is the core of the controlServer. Only one instance of it is created. It is
responsible for communicating with the customerServer on the one side, and the PnoConnectionMgr on the
other. It receives customer requests from customerServer and further negociates with and forwards the
requests to the involved PNOs, and vice versa, receives notifications from the PNOs and if necessary
forwards them to the customerServer. As a result of the different received requests and notifications the
MIB (containement tree) is updated.

The class ControlServer acts like a proxy of the vaspVpnManager with respect to the customerServer and
likewise has only one instance. In other words, it is the ControlServer that really receives the requests from
the customerServer. It then forwards them with no modification to the vaspVpnManager.

The rest of the classes are only support the functionality of the controlServer such as, reading the route
table or keeping a list of PNOs with active connections to the controlServer.

2.4.2 Required and Supported Component Interfaces

The VASP controlServer module interfaces on one side with the VASP customerServer module and on the
other side with the PnoConnectionManager object. This latter is an OrbixWEB proxy object representing the
Xuser-Agent.

2.4.3 Interfaces with the customerServer

There are two interfaces defined between the customerServer and the controlServer modules. One defines
the methods offered by the controlServer to the customerServer and is used to relay customer requests to
the controlServer. The other one defines the methods offered by the customerServer to the ControlServer
and is used to send notifications and the result of the requests to the customerServer. They are as follows:

2.4.3.1 ControlServer as seen by the CustomerServer
interface VPNService
{
public void reserveConnection(String VaspVPId,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 23 © 1998 Trumpet Consortium

 String sourceCustId,
 String targetCustId,
 String sourceAddr,
 String targetAddr,
 ScheduleType schedule,
 QoSSequenceTypeOpt qosParsOpt) throws vaspException;

public void modifyConnection(String VaspVPId,
 ScheduleTypeOpt schedOpt,
 QoSSequenceTypeOpt qosParsOpt) throws vaspException;

public void releaseConnection(String VaspVPId) throws vaspException;
}

2.4.3.2 customerServer as seen by the controlServer
interface customerServerFromControlServer
{
public void allocateConnection(String VaspVPId, boolean status);
public void activateConnection(String VaspVPId, boolean status);
public void releaseRequest(String VaspVPId);
public void modifyAccepted(String VaspVPId, boolean status);
public void releaseNotify(String VaspVPId);
public void notify(String VaspId ReasonType reason);
public void AllocateSegment(String VaspVPId, String PnoId,
String VaspSegId, String AccAddr1, String AccAddr2);
}

2.4.3.3 PnoConnectionManager as seen by the ControlServer
interface VPConnectionServiceOperations
{
public XuserTypes.ReserveConnectionResultType
reserveConnection(XuserTypes.ReserveConnectionInfoType
connectionInformation)
throws
 PnoConnectionMgr._VPConnectionService.ConnectionRequestFailure,
IE.Iona.Orbixe.CORBA.SystemException;

public void
modifyConnection(XuserTypes.ModifyConnectionInfoType
connectionInformation)
throws
 PnoConnectionMgr._VPConnectionService.ConnectionRequestFailure,
IE.Iona.Orbixe.CORBA.SystemException;

public void

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 24 © 1998 Trumpet Consortium

releaseConnection(XuserTypes.ReleaseConnectionInfoType
connectionInformation)
throws
 PnoConnectionMgr._VPConnectionService.ConnectionRequestFailure,
IE.Iona.Orbixe.CORBA.SystemException;
}

2.4.3.4 PnoConnectionManager as seen by the ControlServer
interface VPConnectionServiceEventHandlerOperations
{
public void
activateConnectionNotify(XuserTypes.NameType,
pnoId,XuserTypes.NameType, vpConnectionId, int status)
throws IE.Iona.Orbixe.CORBA.SystemException;

public void
releaseConnectionNotify(XuserTypes.NameType pnoId,
XuserTypes.NameType vpConnectionId,
XuserTypes.ReleaseReasonType reason)
throws IE.Iona.Orbixe.CORBA.SystemException;

public void
connectionNotify(XuserTypes.NameType pnoId, XuserTypes.ReasonType
reason, String eventInformation)
throws IE.Iona.Orbixe.CORBA.SystemException;
}

2.5 VASP CORBA/TMN Gateway

2.5.1 Engineering Object Model

The VASP CORBA/TMN Gateway has been introduced throughout the implementation design to provide
the glue between the JAVA -based VASP management system and the TMN management solution provided
for the PNO domain. Its primary purpose is to map between the TMN Xuser interface to an JAVA -based API
which can be integrated with the VASP Control Server.

The gateway provides a set of adapter objects which exhibit a subset of the TMN Xuser interface. The
interfaces of the adapter objects are defined using the interface definition language (IDL) which is part the
CORBA specification [OMG CORBA]. At the programming level the IDL interfaces are mapped to suitable
programming constructs (i.e. an JAVA API) according to language bindings. The implementation design of
the gateway as shown in Figure 7 represents a refinement of the computational design for the PNO Service
Layer Management which has been described in D8, Section 8.1.2 [TRUMPET-D8].

The object CORBA/TMN Gateway Server presents the initial object of the gateway which registers the
gateway application with the communications infrastructure. Moreover, it creates two factory objects which
are provided to the VASP Control Server to create and delete instances of the service objects. The gateway
provides two kinds of service objects called VPConnectionService and VPSubscriptionService which
represent the core interface to the PNO Service Management. These objects provide the required
functionality to manage VP connections and to maintain customer access points. Additionally, the
VPConnectionServiceEventHandler provides means to forward event reports of the PNO Service
Management to the VASP Control Server. This object is part of the VASP Control Server and provides
functions which may be invoked by the gateway to indicate event reports as described in D8, section 8.1.2.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 25 © 1998 Trumpet Consortium

The core implementation of the service objects VPConnectionService and VPSubscriptionService is
provided by the XuserMgrRequestHandler which maps the operations of the service objects down to CMIP
requests using the XMP/XOM API of HP OpenView DM. The request handler also serves as a co-ordinator
for the CORBA and HP-OV communication channels. It realises an event loop which is waiting for
indications of CORBA IIOP or CMIP protocol requests.

VASP CORBA/TMN GatewayVASP Control Server PNO Xuser Agent

CORBA/TMN GatewayServer

<<Skeleton>>
VPSubscriptionServiceFactory

<<Implementation>>
VPSubscriptionServiceFactory

<<Skeleton>>
VPConnectionServiceFactory

<<Implementation>>
VPConnectionServiceFactory

creates creates

<<Skeleton>>
VPSubscriptionService

<<Implementation>>
VPSubscriptionService

<<Skeleton>>
VPConnectionService

<<Implementation>>
VPConnectionService

creates creates

<<Proxy>>
VPConnectionServiceEventHandler

creates

calls

calls

calls

Xuser-Mgr Request Handler

calls
calls

Figure 7: Engineering Object Model of the VASP CORBA/TMN Gateway

2.5.2 Required and supported component interfaces

Figure 8 presents an overview on the required and supported interfaces of the VASP CORBA/TMN
gateway. All the supported interfaces are provided to the VASP Control Server which utilises the VP
connectivity services of the PNO Service Layer Management. For the notification on event reports received
from the PNO Service Layer Management a VPConnServiceEventHandler interface is required which is
provided by the VASP Control Server. Moreover, the VASP CORBA/TMN gateway makes use of the Xuser
interface which is provided by the PNO Xuser Agent.

VASP CORBA/TMN Gateway

PNO Xuser AgentVASP Control Server
VPConnServiceEventHandler

VPConnectionService VPSubscriptionService

TMN Xuser

VPConnectionServiceFactory VPSubscriptionServiceFactory

Required interface

Supported interface

Figure 8: Required and supported interfaces of the VASP CORBA/TMN Gateway

The remainder of this section only describes the details of the supported interfaces as the required
interfaces are described already in the corresponding sections of required and supported interfaces for the
VASP Control Server (Section 2.4.2) and for the PNO Xuser Agent (Section 2.6.2).

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 26 © 1998 Trumpet Consortium

2.5.2.1 VP Connection Service Factory

FUNCTION
PnoConnectionMgr::VPConnectionServiceFactory::create()

SYNOPSIS
VPConnectionService create(
 in XuserTypes::NameType pnoId,
 in VpnManager::VPConnectionServiceEventHandler eventHandler);

DESCRIPTION

Creates a new service object of type VPConnectionService for the interaction with the Service Layer
Management System of the PNO identified by pnoId . The new service object is associated with an event
handler which is referenced by the eventHandler parameter.

ARGUMENTS

• pnoId : Identifies the PNO Service Layer Management System. The identifier may be either a presentation
string containing the global distinguished name of the PNO MAE or a number which can be mapped to
the distinguished name according to an mapping table of the CORBA/TMN gateway.

• eventHandler: Contains an object reference to an event handler object VPConnectionServiceEvent-
Handler which is associated with the new service object. The event handler is triggered by the service
object if an event report from the PNO Service Layer Management System is indicated.

RESULTS

Returns an object reference to the new service object on success. If the service object cannot be created a
nil object reference is returned.

BUGS

An exception type should be defined to indicate possible failures (i.e., PNO not found, communication
failure, etc.)

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 27 © 1998 Trumpet Consortium

FUNCTION
PnoConnectionMgr::VPConnectionServiceFactory::delete()

SYNOPSIS
void delete(
 in VPConnectionService vpConnectionServiceRef);

DESCRIPTION

Deletes the service object of type VPConnectionService identified by the object reference given in
vpConnectionServiceRef. After successful deletion of the service object the event handler object which had
been be associated with service object will not be triggered anymore to indicate event reports.

ARGUMENTS

• vpConnectionServiceRef: Contains an object reference to an service object of type vpConnection-
ServiceRef.

RESULTS

∅.

BUGS

An exception type should be defined to indicate possible failures of this operation (i.e., object not found).

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 28 © 1998 Trumpet Consortium

2.5.2.2 VP Connection Service

FUNCTION
PnoConnectionMgr::VPConnectionService::reserveConnection()

SYNOPSIS
XuserTypes::ReserveConnectionResultType reserveConnection(
 in XuserTypes::ReserveConnectionInfoType connectionInformation)
 raises (ConnectionRequestFailure);

DESCRIPTION

Reserves a new VP connection at the associated PNO according to the details given by the parameter
connectionInformation.

ARGUMENTS

The parameter connectionInfo , contains the following components:

• userId: Identifies the user of the connectivity service offered by the PNO. According to the
TRUMPET scenario this parameter identifies the VASP.

• sourceE164AddressOpt: May contain the E164 source address of the customer access point.

• destinationE164Address: Contains the E164 destination address of the customer access point.

• connectionProtectionLevelOpt: May contain the protection level for the VP connection. Possible
values (if not omitted) are protected, unprotected-lowpriority, unprotected-highpriority.

• routingCriteriaOpt: May contain customised settings for the routing algorithm implemented as part
of the PNO’s connectivity service. Currently no options have been defined for the routing algorithm
used by the TRUMPET PNO Service Layer Management System.

• directionality: Identifies the directionality of the requested VP connection. The value may be either
unidirectional or bidirectional.

• schedule: Defines the schedule for the requested VP connection.

• qosParametersOpt: May contain a set of QOS parameters for the requested VP connection.

RESULTS

Returns an object type ReserveConnectionResultType on successful operation. This object contains the
connection id for the schedule connection and may additional contain the select source customer access
point. If the operation fails an exception of type ConnectionRequestFailure is raised which contains an
object of type ReasonType. In the current implementation of the CORBA/TMN gateway this object will
contain an error number.

BUGS

Instead of a general ConnectionRequestFailure exception which provides an error number, there should be
rather several exception types defined for different types of errors which may occur.

SEE ALSO
PnoConnectionMgr::VPConnectionServiceFactory

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 29 © 1998 Trumpet Consortium

FUNCTION
PnoConnectionMgr::VPConnectionService::modifyConnection()

SYNOPSIS
void modifyConnection(
 in XuserTypes::ModifyConnectionInfoType connectionInformation)
 raises (ConnectionRequestFailure);

DESCRIPTION

Modifies the characteristics of an pending or scheduled VP connection at the associated PNO as identified
by the parameter connectionInformation. Modifications of both the schedule and the set of QoS parameters
are possible.

ARGUMENTS

The parameter connectionInfo , contains the following components:

• userId: Identifies the user of the connectivity service offered by the PNO. According to the
TRUMPET scenario this parameter identifies the VASP.

• connectionId : Identifies the VP Connection to be modified.

• scheduleOpt: may contain a new schedule for the given VP connection.

• qosParametersOpt: May contain a set of QOS parameters for the given VP connection.

RESULTS

Nothing is returned on successful operation. If the operation fails an exception of type ConnectionRequest-
Failure is raised which contains an object of type ReasonType. In the current implementation of the
CORBA/TMN gateway this object will contain an error number.

BUGS

Instead of a general ConnectionRequestFailure exception which provides an error number, there should be
rather several exception types defined for different types of errors which may occur.

SEE ALSO
PnoConnectionMgr::VPConnectionServiceFactory

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 30 © 1998 Trumpet Consortium

FUNCTION
PnoConnectionMgr::VPConnectionService::releaseConnection()

SYNOPSIS
void releaseConnection(
 in XuserTypes::ReleaseConnectionInfoType connectionInformation)
 raises (ConnectionRequestFailure);

DESCRIPTION

Releases an pending or scheduled VP connection at the associated PNO as identified by the parameter
connectionInformation.

ARGUMENTS

The parameter connectionInfo , contains the following components:

• userId: Identifies the user of the connectivity service offered by the PNO. According to the
TRUMPET scenario this parameter identifies the VASP.

• connectionId : Identifies the VP Connection to be released..

RESULTS

Nothing is returned on successful operation. If the operation fails an exception of type ConnectionRequest-
Failure is raised which contains an object of type ReasonType. In the current implementation of the
CORBA/TMN gateway this object will contain an error number.

BUGS

Instead of a general ConnectionRequestFailure exception which provides an error number, there should be
rather several exception types defined for different types of errors which may occur.

SEE ALSO
PnoConnectionMgr::VPConnectionServiceFactory

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 31 © 1998 Trumpet Consortium

2.5.2.3 VP Subscription Service Factory

FUNCTION
PnoConnectionMgr::VPSubscriptionServiceFactory::create()

SYNOPSIS
VPSubscriptionService create(in XuserTypes::NameType pnoId);

DESCRIPTION

Creates a new service object of type VPSubscriptionService for the interaction with the Service Layer
Management System of the PNO identified by pnoId .

ARGUMENTS

• pnoId : Identifies the PNO Service Layer Management System. The identifier may be either a presentation
string containing the global distinguished name of the PNO MAE or a number which can be mapped to
the distinguished name according to an mapping table of the CORBA/TMN gateway.

RESULTS

Returns an object reference to the new service object of type VPSubscriptionService on success. If the
service object cannot be created a nil object reference is returned.

BUGS

An exception type should be defined to indicate possible failures (i.e., PNO not found, communication
failure, etc.)

FUNCTION
PnoConnectionMgr::VPSubscriptionServiceFactory::delete()

SYNOPSIS
void delete(in VPSubscriptionService vpSubscriptionServiceRef);

DESCRIPTION

Deletes the service object of type VPSubscriptionService identified by the object reference given in
vpSubscriptionServiceRef. After successful deletion of the service object the event handler object which
used to be associated with service object will not be triggered anymore to indicate event reports.

ARGUMENTS

• vpSubscriptionServiceRef: Contains an object reference to an service object of type vpSubscription-
ServiceRef.

RESULTS

∅.

BUGS

An exception type should be defined to indicate possible failures of this operation (i.e., object not found).

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 32 © 1998 Trumpet Consortium

2.5.2.4 VP Subscription Service

FUNCTION
PnoConnectionMgr::VPSubscriptionService::createAccessPoint

SYNOPSIS
void createAccessPoint(
 in XuserTypes::IdentifierType userId,
 in XuserTypes::NameType accessPointId,
 in XuserTypes::E164AddressType E164Address)
 raises (InvalidAccessPoint);

DESCRIPTION

Registers a customer access point with PNO Service Layer Management System for the user identified by
the parameter userId. Note, that in the TRUMPET scenario the user role is always taken by the VASP
management system which may register access points on behalf of its customers. The new access point is
identified by accessPointId which serves as the value for the naming attribute of the created object instance
within the PNO Service Layer Management System. The third parameter defines an globally unique number
which is associated with the new access point.

ARGUMENTS

• userId: Identifies the user of the connectivity service offered by the PNO. According to the TRUMPET
scenario this parameter identifies the VASP.

• accessPointId : Serves as the value for the naming value of the object instance to be created within the
PNO Service Layer Management System. For the given user the identifier provided has to be unique.

• E164Address: Defines an globally unique number which is associated with the new access point.

RESULTS

Nothing is returned on successful operation. If the operation fails an exception of type InvalidAccessPoint
is raised which indicates an invalid access point identifier or an invalid E164 address.

BUGS

Additional exception types should be defined to indicate the error conditions.

SEE ALSO
PnoConnectionMgr::VPSubscriptionServiceFactory

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 33 © 1998 Trumpet Consortium

FUNCTION
PnoConnectionMgr::VPSubscriptionService::deleteAccessPoint

SYNOPSIS
void deleteAccessPoint(
 in XuserTypes::IdentifierType userId,
 in XuserTypes::NameType accessPointId)
 raises (NotFound);

DESCRIPTION

Removes a customer access point from the PNO Service Layer Management System for the user identified
by the parameter userId. Note, that in the TRUMPET scenario the user role is always taken by the VASP
management system which may register access points on behalf of its customers. The access point to be
deleted is identified by accessPointId . Note, that access points can only be deleted by its creator.

ARGUMENTS

• userId: Identifies the user of the connectivity service offered by the PNO. According to the TRUMPET
scenario this parameter identifies the VASP.

• accessPointId : Serves as the value for the naming value of the object instance to be deleted within the
PNO Service Layer Management System. For the given user the identifier provided has to be unique.

RESULTS

Nothing is returned on successful operation. If the operation fails an exception of type InvalidAccessPoint
is raised which indicates an invalid access point identifier.

BUGS

Additional exception types should be defined to indicate the error conditions.

SEE ALSO
PnoConnectionMgr::VPSubscriptionServiceFactory

2.6 PNO Xuser-Agent

2.6.1 Engineering Object Model

The PNO Xuser-Agent realises the PNO Service Layer Management System which provides the VP
Connection Management Service. This service qualifies the VASP Management System to manage a
segment of an end-to-end virtual path between to customer access points of the public network domain.

The implementation design of the Xuser-Agent (see Figure 9) is based on the computational of the PNO
Service Layer Management which has been described in D8, Section 8.1.2 [TRUMPET-D8]. The TMN
Xuser-interface provided the Xuser-Agent has been adopted from the MISA project according to the
agreements between the TRUMPET and MISA projects. However, TRUMPET uses only a subset of the
Xuser-interface, namely those functions for the connection management (MISA Path Provisioning Ensemble
[MISA-D3-A1]) as well as some basic functions provided with the subscription management (MISA
Subscription Ensemble [MISA-D3-A2]).

The object PNO Xuser Agent Co-ordinator presents the initial object of the Xuser-Agent which registers
application with communication infrastructure, and creates the basic agent object, namely the MIT Manager
and Agent Request Handler. The MIT Manager is responsible for data management of the Management
Information Base and provides functions to invoke operations on the contained Managed Objects. The
Agent Request Handler realises an event loop which awaits indications for CMIP operation requests.
Moreover, the Agent Request Handler initially creates the Dispatcher Object which maps CMIP request to
operations called on Managed Object maintained by the MIT Manager.

Operations invoked on a Managed Objects will change the state of the Management Information Bases and
may also result in operation invocations on a managed resource. In particular this is the case for the
operations provided by GBCServiceProvider which are mapped internally to corresponding operation

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 34 © 1998 Trumpet Consortium

invocations on the underlying PNO Network Layer Management System. The handling of the operations of
the Network Layer Management System is provide by PNO Network Management.

PNO Xuser-Agent SL-OSCORBA/TMN Gateway PNO NL-OS

calls

PNO Xuser Agent Co-ordinator

creates creates

<<MO Implementation>>
GBCMServiceProvider

Agent Request Handler

calls

MIT Manager

<<MO Implementation>>
GBCMUser

<<MO Implementation>>
GBCMAccessPoint

<<MO Implementation>>
GBCMUser-Serv.Profile

<<MO Implementation>>
GBCMTroubleReport

Dispatcher

Network Manager

creates

calls

calls

calls

Figure 9: Engineering Object Model of the PNO Xuser-Agent

2.6.2 Required and supported component interfaces

The external interface provided by the Xuser-Agent corresponds to the Xuser-specification which has been
developed by the MISA project [MISA-D3A1]. It is therefore not described here in detail. The latest release
of the MISA Xuser specification which has been used as a basis for the implementation of the PNO Xuser-
Agent can be found in Section XXX. In the remainder of this section only the basic operations provided for
the connection management are described.

2.6.2.1 GBCServiceProvider

ACTION TYPE
reserveGBCConnection

BASE OBJECT CLASS
GBCMServiceProvider

BASE OBJECT INSTANCE
GBCMServiceProvider instance

DESCRIPTION

This action is performed by the GBCM User which requests a GBC connection reservation from the GBCM
Service Provider. The result of this action is the acceptance or reject of the connection reservation request
(regarding the start time, the stop time and eventually the periodicity requested). If the connection
reservation is rejected, the reason is returned (not available resources, not possible in the interval time,...). If
the connection reservation is accepted, a gBCConnection object instance is created.

ACTION INFORMATION

The information type reserveGBCConnectionInformation, contains the following components:

• gBCMUserId: Identifies the user of the connectivity service offered by the PNO.

• sourceE164Address: May contain the E164 source address of the customer access point.

• destinationE164Address: Contains the E164 destination address of the customer access point.

• connectionProtectionLevel: May contain the protection level for the VP connection. Possible values
(if not omitted) are protected, unprotected-lowpriority, unprotected-highpriority.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 35 © 1998 Trumpet Consortium

• routingCriteria: May contain customised settings for the routing algorithm implemented as part of
the PNO’s connectivity service. Currently no options have been defined for the routing algorithm
used by the TRUMPET PNO Service Layer Management System.

• gBCType: Identifies the type of connectivity service to be used. The current Xuser-specification
defines the ATM and SDH Path Provisioning Service (APPS, SPPS).

• gBCDirectionality: Identifies the directionality of the requested VP connection. The value may be
either unidirectional or bi-directional.

• gBCSchedule: Defines the schedule for the requested VP connection.

• gBCPPSparameters: May contain a set of QOS parameters for the requested VP connection.

ACTION RESULT

On successful operation the action results of type modifyGBCConnectionResult contains the connection id
for the schedule connection and may additional contain the select source customer access point. If the
operation fails the result contains an error number.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 36 © 1998 Trumpet Consortium

ACTION TYPE
modifyGBCConnection

BASE OBJECT CLASS
GBCMServiceProvider

BASE OBJECT INSTANCE
GBCMServiceProvider instance

DESCRIPTION

This action is performed by the GBCM User requesting the modification of the GBC connection. In case of
SPPS (SDH), it is possible that modification is not supported. In this case the action request will be
rejected."

ACTION INFORMATION

The information type modifyGBCConnectionInformation, contains the following components:

• gBCMUserId: Identifies the user of the connectivity service offered by the PNO.

• gBCConnectionId : Identifies the VP Connection to be modified.

• gBCSchedule: May contain a new schedule for the given VP connection.

• gBCPPSparameters: May contain a set of QOS parameters for the given VP connection.

ACTION RESULT

On successful operation the action results of type modifyGBCConnectionResult contains nothing. If the
operation fails the result contains an error number.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 37 © 1998 Trumpet Consortium

ACTION TYPE
releaseGBCConnection

BASE OBJECT CLASS
GBCMServiceProvider

BASE OBJECT INSTANCE
GBCMServiceProvider instance

DESCRIPTION

This action is performed by the GBCM User requesting the clearing down of the GBC Connection. This will
delete the gBCConnection object instance.

ACTION INFORMATION

The information type releaseGBCConnectionInformation, contains the following components:

• gBCMUserId: Identifies the user of the connectivity service offered by the PNO.

• gBCConnectionId : Identifies the VP Connection to be released.

ACTION RESULT

On successful operation the action results of type releaseGBCConnectionResult contains nothing. If the
operation fails the result contains an error number.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 38 © 1998 Trumpet Consortium

3. SERVICE MANAGEMENT INSTALLATION GUIDE

3.1 CPN User Application

3.1.1 Hardware and software pre-requisites

The CPN User Application (the GUI) is a Java application and therefore it should be possible to run on any
machine capable of running Java. N.B. in order to ensure that the user application works correctly with the
widest number of browsers, use JDK version 1.0.2 to compile it. Unfortunately, not all browsers which
claim to work with higher versions of Java do so in the correct manner, i.e. they have bugs. The file
CustomerGUI.html is the file that is invoked by the browser.

Parameters within the CustomerGUI.html file may require modification. These set the name of the host on
which the GUI will be run (default = localhost) and the socket with which communication is made with the
CPN (default = 3001).

• Components needed for the GUI

• The GUI components themselves, all in a single directory.

• A web browser which supports Java 1.0.2 or the appletviewer from the JDK used to compile the GUI

• JDK for 1.0.2 for compilation if required.

3.1.2 Installation and configuration instructions

The software will be provided as a set of files, or the same files in .zip format. Copy/uncompress all files to a
single directory.

The application is completely written in Java. If it is required to compile the Java code, make sure that the
path variable contains the path to JDK 1.0.2 binary files and execute the following command

Javac *.java

This will create all the required classes.

Parameters within the CustomerGUI.html file may require modification. These set the name of the host on
which the GUI will be run (default = localhost) and the socket with which communication is made with the
CPN (default = 3001).

3.1.3 Runtime

To run the user application, select the CustomerGUI.html file from a web browser package. Or use the JDK
appletviewer program to invoke the same file with the command

<path to JDK binary files>/appletviewer CustomerGUI.html

3.1.4 Version / release history

Version 2.0 to be released December 1997

3.1.5 1.2.5 Known bugs

None.

3.2 CPN Server

3.2.1 Hardware and software pre-requisites

The CPN is a Java application as are the associated packages. Thus it should be possible to run the CPN on
any machine capable of running Java. Components needed for the CPN:

• The CPN components themselves, placed in a single directory.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 39 © 1998 Trumpet Consortium

• Copies of the VASP Voyager aware classes VAssociationServer and VCustomerService

• Objectspace Voyager 1.0

• Objectspace JGL Version 2.0.2

• Netscape LDAP Java SDK 1.0

• JDK for 1.1.4 for compilation if required.

3.2.2 Installation and configuration instructions

The software will be provided as a set of files, or the same files in .zip format. Copy/uncompress all files to a
single directory.

The application is completely written in Java. If it is required to compile the Java code, make sure that the
path variable contains the path to JDK 1.0.2 binary files and execute the following command

javac *.java

The classes VAssociationServer and VCustomerService provide the interface to the VASP and must be
placed in the same directory as the CPN classes. Up to date versions of these classes must be obtained from
the authors of the VASP component.

The environment variable CLASSPATH must include references to the following:

• voyager\lib\voyager1.0.0.jar

• jgl\jgl_2_0

• netscape\ldap\classes
The PATH environment variable should include references to the Java JDK (1.1.4) binary and Voyager
executables directories. Ensure that the VASP Voyager objects are placed in the same directory as the CPN
server classes.

3.2.3 Runtime

To initiate the CPN execute the following command line:

java CPNServer <Socket to GUI> <VASP host> <VASP server port>

If no arguments are given, default values are used as listed below:

• Socket to GUI = 3001

• VASP host = "localhost"

• VASP port = 8000

3.2.4 Version / release history

Version 2.0 to be released December 1997

3.2.5 Known bugs

None.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 40 © 1998 Trumpet Consortium

3.3 VASP Customer Server

3.3.1 Hardware and software pre-requisites.

The software for the CustomerServer is comprised of the following classes: AssociationServer,
CustomerService, VASPVPConnection, Customer, VPSegment and the following associated classes for
handling data in the form of entries and its components: Attribute, AttributeList, Entry and EntrySet.

The files ControlServer.java and CustomerServercomm.java which facilitate communication between the
CustomerServer and the ControlServer.

Also included is the file Trumpet.new.ldif, which is used for building up the LDAP database and classes
which are used purely for testing purposes and which simulate the operation of other components of
Trumpet. These are: VASPgui.java, VCPN.java and CPN.java, which act as the CPN component, and
SharTest.java and vaspVpnManager.java which represent the operation of the ControlServer. It is
envisaged that these will eventually be discarded and the real CPN and ControlServer components will be
substituted.

The following will be required in order to run the classes that comprise the CustomerServer properly:

• JDK 1.1.3 or later installed and available.

• An LDAP Directory server. Currently Netscape’s Directory Server 1.02 is being used.

• ObjectSpace’s Voyager 1.0.0 installed and available.

• Netscape’s LDAPjava SDK1.0 available.

• Objectspace’s JGL 2.0.2 set of Data Structure classes.

3.3.2 Installation and configuration instructions

The software will be provided as a set of files, or the same files in .zip format. Copy/uncompress all files to a
single directory.

The application is completely written in Java. If it is required to compile the Java code, make sure that the
path variable contains the path to JDK 1.1.4 binary files and execute the following command

javac *.java

The environment variable CLASSPATH must include references to the following:

• voyager\lib\voyager1.0.0.jar

• jgl\jgl_2_0

• netscape\ldap\classes
The PATH environment variable should include references to the Java JDK (1.1.4) binary and Voyager
executables directories. Ensure that the VASP Voyager objects are placed in the same directory as the CPN
server classes.

3.3.3 Runtime

Execute the following instructions:

1. java AssociationServer.

2. Build up a database in the LDAP Directory Server using the file Trumpet.new.ldif which is supplied with
the release.

3. Run the CPN programs and when they call the Associate method supply a distinguished name, the
Directory Server password and the URL of the machine the CPN is running on. Using the supplied CPN
program the following would be entered:

java CPN “cn=Directory Manager, o=vasp” Directory-Server-Password URL-of-CPN-machine

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 41 © 1998 Trumpet Consortium

3.3.4 Version / release history

Version 1: November 1997.

3.3.5 Known bugs

None.

3.4 VASP Control Server

3.4.1 Hardware and software pre-requisites.

The following will be required in order to run the classes that comprise the ControlServer properly:

• JDK 1.1.3 or later installed and available.

• IONA OrbixWeb 2.1 RunRime

3.4.2 Runtime

This module is started by running the startContServer java class. This class contains only one main
method that creates one instance of the vaspVpnManager class. The main method expects one parameters
which is the Id of the VASP used in communication with the PNOs. Moreover, the controlServer module
uses a routing table containing static routing information. The routing information should be described in a
file, the routing table, prior to starting up the VASP.

The full name of this table file, i.e., the full path-name plus the file name, is made known to the controlServer
by means of Java’s property mechanis m. The property name chosen for the route table is
ROUTETABLE_PATH. The value of this property is set by mean of the -D option of the java command. For
example, assuming that the routing information is in the file myRoutingTable with a full path
myRoutingTablePath, and that the Id of the VASP is TRUMPETVasp, one should start up the VASP in the
following way:

java -DROUTETABLE_PATH=/myRoutingTablePath/myRoutingTable

 startContServer TRUMPETVasp

Note that if the ROUTETABLE_PATH is not set, no connection can be managed/set up.

The format of this file is given below in the form of an example that illustrates its content:

 cpnId: NR
 accesspoint: NRAtmSW1

 pnoId: pnoNorway
 accesspoint: nAccessAddress1
 accesspoint: nAccessAddress2

 pnoId: pnoSwiss
 accesspoint: swAccessAddress1
 accesspoint: swAccessAddress2

 pnoId: pnoScotland
 accesspoint: scAccessAddress1
 accesspoint: scAccessAddress2

 cpnId: EPFL
 accesspoint: EPFLAtmSW5

The semantic of this table is that the access point of the first customer (NR) connects to first access point of
the following PNO (pnoNorway), and the second access point of that PNO connects to the first access point
of the next PNO (pnoSwiss) in the list, and so on. Finally, the second access point of the last PNO in the list
(pnoScotland) connects to the access point of the other customer (EPFL).

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 42 © 1998 Trumpet Consortium

3.4.3 Version / release history

Version 1: November 1997.

3.4.4 Known bugs

None.

3.5 VASP CORBA/TMN Gateway

3.5.1 Hardware and software prerequisites

• SUN Solaris 2.x with SUN SPARCworks C++ compiler 4.x or HP HP-UX 10.x with HP aC++.

• IONA Orbix 2.x / C++

• IONA OrbixWeb

• HP Open View 4.21 DM

3.5.2 Installation and configuration instructions

3.5.2.1 Directory $TRUMPET_TOP/src/corbaGateway

This directory is composed of 3 subdirectories. The idl and manager subdirectories provide includes and
libraries, while the third one (adapter) contains the main program, acting as a CORBA server for the VASP
Control Server (JAVA client).

Files:

• Makefile: describes the list of different subdirectories needed during the compiling phase of the
corbaGateway.

• idl.mk : describes all the variables needed to access the includes and libraries implementing the IDL
definition.It is used in the manager and adapter directories.

• manager.mk : describes all the variables needed to access the includes and library implementing the
mapping between C++ objects and C structures and all the functions needed to allow protocol with
HP Open View and the Xuser agent. It is used in the manager and adapter directories.

• xuseragent.mk : describes all the variables needed to acces the includes and libraries needed to allow
protocol with the Xuser agent. It is used in the manager and adapter directories.

• runGateway.sh : shell script which sets different environmental variables and run the gateway
executable.

Directories:

• idl: contains source code for the includes/libraries implementing the IDL definition. This directory
creates 2 libraries. The server library is used by the CORBA part of the gateway,and will be linked
during the build process of the gateway, in the adapter directory. The client library is only used by a
client proces used for testing only.

• manager: contains source code for the includes/library implementing the mapping between C++
objects and C structures and all the functions needed to allow protocol with HP Open View and the
Xuser agent.

• adapter:

Installation instructions:

1. in the file ../Config.mk, check the following makefile variables:

• TRUMPET_TOP: name of the Trumpet top directory.

• CCC: access path to the C++ compiler.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 43 © 1998 Trumpet Consortium

• ORBIX_DIR: access path to the Orbix tool (Orbix_2.2MT means it is a multithreaded version, see
below)

• ORBIX_INC: add or suppress "-mt -D_REENTRANT" option whether the Orbix tool version is
multithreaded or not.

• ORBIX_LIB: add or suppress "-mt" whether the Orbix tool version is multithreaded or not.

• HPOV: access path to the HPOV tool

2. in the file xuseragent.mk: if the location of the Xuser agent code is not at the same level than the
corbaGateway directory, e.g. $(TRUMPET_TOP)/src/xuser, modify XUSERAGENT_DIR to the
appropriate location.

3. in the file runGateway.sh, check ...

4. the environmental variable SYSTEM must be set to an appropriate value: 'sun5' for Solaris 2.x, 'hp' for
HP-UX 10.x, thanks to a command like: setenv SYSTEM sun5

5. when everything is ready, first launch the command “make clean” to be sure that all object files and
executables have been deleted.

6. then launch the command “make depend” to be sure that the file deps.mk is corresponding to the
current operating system.

7. then launch the command “make”

3.5.2.2 Directory $TRUMPET_TOP/src/corbaGateway/idl

Files:

• Makefile: describes the list of different C++ files to be generated thanks to the IDL files and tools,
and how to generate the 2 libraries.

• ASN1Types.idl: basic IDL types declarations.

• XuserTypes.idl: IDL view of Xuser agent GDMO MIB described in the Xuser agent directories.

• PnoConnectionMgr.idl and VpnManager.idl: Trumpet definitions.

Installation / configuration instructions:

1. Usually, this is not a good idea to just recompile something in this directory. The build process
should be started from the $TRUMPET_TOP directory, in order to have all changes propagated
everywhere !

2. Follow the instructions 1,2,3,4,5,6,7,8 and 9 of the corbaGateway directory to compile and generate
the 2 libraries: libcidl and libsidl in both 2 different formats (static and shared).

3.5.2.3 Directory $TRUMPET_TOP/src/corbaGateway/manager

This directory creates a library used by the Xuser manager part of the CORBA/TMN gateway. It will be
linked during the build process of the gateway, in the adapter directory.

Files:

• Makefile: describes how to generate the library.

• manager.cc: supplies the basic methods to be used to launch the Xuser manager.

• process.cc: methods dealing with mapping from C++ objects to C structures.

• display.cc: useful functions to display data contents.

• init.cc: whole stuff for HP-OV initialization.

• action_req.cc: methods dealing with the XOM/XMP requests to the Xuser agent.

• action_cnf.cc: methods dealing with retrieving the results from the Xuser agent after a request.

• end.cc: function to terminate the use of HP-OV.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 44 © 1998 Trumpet Consortium

• error.cc: all basic functions processing errors.

• mem.cc: all the memory management functions to be supplied inside the Xuser manager.

• handler_mgr.cc: methods to process asynchronous events.

• receive.cc: functions to process asynchronous events from the Xuser agent

Installation instructions:

1. Xuser agent (supplied by GMD): everything has to be compiled. To be sure of that, only a "./make"
in the src/xuser directory is needed (after configuration of course !) ...

2. Xuser manager library: everything has to be compiled. To be sure of that, only a "make" command in
the manager directory is needed (after configuration of course !) ...

3. Usually, this is not a good idea to just recompile something in this directory. The build process
should be started from the $TRUMPET_TOP directory, in order to have all changes propagated
everywhere !

4. Follow the instructions 1,2,3,4,5,6 and 7 of the corbaGateway directory to compile and generate the
library: libmgr in both 2 different formats (static and shared).

3.5.2.4 Directory $TRUMPET_TOP/src/corbaGateway/adapter

This directory creates the main executable , used as a gateway between CORBA objects and HP-OV C
structures. It will be created thanks to

• Xuser agent (supplied by GMD): everything has to be compiled. To be sure of that, only a "./make" in
the src/xuser directory is needed (after configuration of course !) ...

• IDL library: the server library has to be compiled. To be sure of that, only a "make" command in the idl
directory is needed (after configuration of course !) ...

• Xuser manager library: everything has to be compiled. To be sure of that, only a "make" command in the
manager directory is needed (after configuration of course !) ...

Files:

• PnoConnectionMgrImpl.hh

• PnoConnectionMgrImpl.cc: implementation on the CORBA server side of the
PnoConnectionManager class.

• gateway.cc: core source code to launch the gateway.

• objGateway.cc: gateway methods and main CORBA server code.

• clientTest.cc: CORBA client code for testing

Installation / configuration instructions:

Usually, this is not a good idea to just recompile something in this directory. The build process should be
started from the $TRUMPET_TOP directory, in order to have all changes propagated everywhere !

3.5.3 Runtime

Different environment variables must be set before running the gateway. A shell script is available, setting
and using default values. This runGateway.sh shell script is available in the current directory
(corbaGateway). To run the CORBA/TMN gateway with default parameters, just type:./runGateway.sh

3.5.4 Version / release history

Version 1, November 1997.

3.5.5 Known bugs

None.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 45 © 1998 Trumpet Consortium

3.6 PNO Xuser-Agent

3.6.1 Hardware and software prerequisites

The current version has been tested on:

• HP-UX B10.10 and Solaris 2.x

• HP OpenView DM 4.21

To install Xuser Agent you may also need:

• GNU C, C++ compiler (v2.6+)

• GNU make utility (v3.7+).

3.6.2 Installation and configuration instructions

After uncompress the package and go into the directory where you see this README file, you should
modify "XUSER_TOP" in the "./make" and may change definitions in the file "./v2.0/XuserDefs.mk"
depending on your platform.

If everything is ready then under your shell type: “./make”, the makefile will detect your platform and finish
everything necessary.

3.6.3 Runtime

If your installation (default) using explicit ACSE facility, before you run the Xuser Agent you should set
"./etc/xuser.confi" correctly for your Agent AP-Title and P-Address etc.

If your installation using ACM supported by HP OpenView Platform, you should properly regist
"./etc/misaXuAgent-2.0.lrf" in the ORS.

To run Xuser Agent, type: ./runAgent

NOTE: You should set "XUSER_TOP" properly in this shell script file and set your environment variables
LD_LIBRARY_PATH including "./lib".

3.6.4 Version / release history

Version 2.0: September 29th 1997.

3.6.5 Known bugs

None.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 46 © 1998 Trumpet Consortium

4. SECURITY DEVELOPERS HANDBOOK

4.1 Security Profile Management

4.1.1 Engineering Object Model

The SecPolicyInfo interface as described in D9 Section 4.8 and supported by the SecPolicy object described
in D9 Section 4.7.2 is realized by a C++ class definition with public interface:

class SecurityPolicy {
public:
 SecurityPolicy();
 ~SecurityPolicy();
 SecurityProfile* secProfileQuery(DistName& initiatorTitle,
 ManagingRole initiatorRole,
 DistName& responderTitle,
 QoP); //is not being used
};

Security profiles are read from file (for format of this file cf. Section 5.2) in the SecurityPolicy constructor.

4.1.2 Required and supported component interfaces

The SecurityPolicy class does not make use of any other TRUMPET component. It supports an interface
for the SMASC.

Security rules for interacting with a remote peer are provided by calling the secProfileQuery method. The
return type of secProfileQuery is SecurityProfile and the public part of this class definition is:

class SecurityProfile {
public:
 RWCString aCDirectory();
 SecProfileType secProfile();
};

The aCDirectory method returns a value that is the name of a directory containing access rules to be used
by the access control component (passed on to this module by the SMASC). Four different security profiles
are recognized and may be returned by the secProfile method (although only two are actually supported by
TRUMPET). The profile values are given in the definition of SecProfileType:

enum SecProfileType {
 NULLP, //supported by TRUMPET
 MIN, //not supported
 BASIC, //supported
 ADV //not supported
};

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 47 © 1998 Trumpet Consortium

The parameters to secProfileQuery are of three different types; ManagingRole, QoP and DistName .
ManagingRole can be either agent or manager and is defined as an enumeration type:

enum ManagingRole {
 AGENT_ROLE,
 MANAGER_ROLE
};

As QoP is not in use in TRUMPET, it is defined as an enumeration type with one possible value only:

enum QoP {
 NULLQ = 0
};

The class DistName is used by several components in the security package. The aspects of DistName
relevant to the interface to an object of class SecurityPolicy can be described like this:

class DistName {
public:
 DistName();
 DistName(const char*);

 const char* dN() const;

 //equality operator overload
 int operator== (const DistName& dn) const;
 int operator!= (const DistName& dn) const;
};

The secProfileQuery method throws three exceptions that all have one public method each:

class UnknownInitiator { public: char* msg(); };
class UnknownResponder { public: char* msg(); };
class BadInitiatorResponderPair { public: char* msg(); };

It is up to the SMASC to dispose of the message returned with a delete operation on the returned value.

The types SecurityProfile, SecProfileType, ManagingRole, QoP and all three exceptions are defined along
with SecurityPolicy in the secpolicy.hh header file. DistName is used more extensively in the security
package and is defined elsewhere (but included by secpolicy.hh).

4.1.3 Example

The intended usage of the SecurityPolicy class from the SMASC can be illustrated like this:
#include <trumpet/secpolicy.hh>

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 48 © 1998 Trumpet Consortium

SecurityPolicy sPol;

DistName initiatorTitle("cn=bm, OU=NR, O=TRUMPET Project");
DistName responderTitle("cn=bm, OU=UCL, O=TRUMPET Project");
ManagingRole initiatorRole = MANAGER;
SecurityProfile* sP;

try {
 sP = sPol.secProfileQuery(initiatorTitle,
 initiatorRole,
 responderTitle,
 NULLQ);
}
catch (UnknownInitiator ui) {
 msg = ui.msg(); cout << msg; delete msg;
}
catch (UnknownResponder ur) {
 msg = ur.msg(); cout << msg; delete msg;
}
catch (BadInitiatorResponderPair irp) {
 msg = irp.msg(); cout << msg; delete msg;
}

//some code to consider the attributes of *sP should
//be inserted here, before sP is being disposed of

delete sP;

4.2 Security Support Object

4.2.1 Engineering Object Model

SECUDE (formerly SecuDE - Security Development Environment) is a security toolkit which incorporates
well known and established symmetric and public-key cryptography. It offers a library of security functions,
security APIs and a number of utilities.

4.2.1.1 SECUDE APIs

SECUDE contains the following APIs:

• AF - Authentication Framework and Certification: this module adds X.509 certification functionality to
SECUDE. Both local (i.e. PSE-located) certificates and directory-located certificates can be addressed.
Therefore SECUDE offers an integrated X.500 Directory User Agent or alternatively an AF-Database,
which is an emulation of an X.500 Directory running on a file system. Additionally ASN.1 encoding and
decoding routines and a lot more auxiliary functions are available.

• CRYPT - cryptographic algorithms

• GSS - Generic Security Services

• PKCS - Public Key Cryptography Standard

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 49 © 1998 Trumpet Consortium

• PEM - Privacy Enhanced Mail Support: this module converts functions, which realize the Internet
Specifications RFC 1421 - 1424. The basic idea of PEM is to define document oriented message
encipherment and authentication procedures for the protection of messages through the use of end-to-
end cryptography between originator and recipient with no special processing requirements imposed on
the message transfer system. This makes them transparent to the mail transfer systems and applicable for
local security services, too.

• SECURE - Personal Security Environment and Cryptography: the SECURE API provides functions for
the secure storage of data and basic cryptographic functions for the generation and verification of
digital signatures, and encryption and decryption of data. All security relevant objects of a user are
stored in a Personal Security Environment (PSE). The PSE typically contains the user's private key, user
certificate, public root key. Two PSE realisations are available either a smartcard or a software PSE. No
higher level functionality, like certificate processing, is provided by this API.

• S/MIME - Secure MIME

4.2.1.2 PSE Personal Security Environment

In order to achieve a system independant bit representation, all security objects which are stored on files or
exchanged via communication protocols are defined as ASN.1 structures and encoded by applying the
Basic Encoding Rules for ASN.1 (BER) with X.509 DER restrictions to these ASN.1 structures. This is simply
called DER code in the following.

Within a C-program those objects have corresponding C-structure representations. The following table
describes all objects of the PSE with their ASN.1 definitions, the corresponding C-structures and the Object
Identifiers. The mapping between the program internal C-structures and the corresponding ASN.1 DER-code
and vice versa is provided by the respective encoding and decoding routines:

PSE_object

C-structure Object Identifier Content

SignCert Certificate { 1 3 36 2 1 1 } certificate of public
verification key (two-
keypair PSE only)

EncCert Certificate { 1 3 36 2 1 2 } certificate of public
encryption key (two-
keypair PSE only)

SignCSet SET_OF_Certificate { 1 3 36 2 2 2 } cross-certificates of
public encryption key
(two-keypair PSE only)

Cset SET_OF_Certificate { 1 3 36 2 2 3 } cross-certificates of
public key (one-keypair
PSE only)

CrossSet SET_OF_CertificatePair { 1 3 36 2 8 1 } cross-certificate pairs
from CA Directory entry

SignSK KeyInfo { 1 3 36 2 3 1 } secret signature key
(two-keypair PSE only)

DecSKnew KeyInfo { 1 3 36 2 3 2 } secret decryption key
(two-keypair PSE only)

Sknew KeyInfo { 1 3 36 2 3 4 } secret key (one-keypair
PSE only)

FCPath FCPath { 1 3 36 2 4 1 } forward certification
path

PKRoot PKRoot { 1 3 36 2 5 1 } top level public

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 50 © 1998 Trumpet Consortium

verification key

PKList SET_OF_ToBeSigned { 1 3 36 2 6 1 } list of trusted public
verification keys

EKList SET_OF_ToBeSigned { 1 3 36 2 6 2 } list of trusted public
encryption keys (two-
keypair PSE only)

PCAList SET_OF_ToBeSigned { 1 3 36 2 6 3 } list of recognized PCAs

CrlSet CrlSet { 1 3 36 2 9 1 } list of revocation lists

SerialNo OctetString { 1 3 36 2 10 1 } current serial number
(CAs_only)

EDBKey KeyInfo { 1 3 36 2 11 1 } DSA database
encryption key

AliasLst aliaslist { 1 3 36 2 12 1 } user's alias list

QuipuPWD char { 1 3 36 2 13 1 } password for X.500
directory access

Dhparam AlgId { 1 3 36 2 15 1 } algorithm parameters for
a Diffie-Hellman key
agreement

DSAcomm AlgId { 1 3 36 2 15 4 } common algorithm
parameters for the
Digital Signature
Algorithm (DSA)

4.2.2 Required and supported component interfaces

The trumpet interface offers 3 functions to the SMASC:

4.2.2.1 Function: server_acquire_creds

FUNCTION

server_acquire_creds

SYNOPSIS
int server_acquire_creds(char * service_name, gss_cred_id_t *
server_creds)

DESCRIPTION

Imports service name and acquires credentials for it. The service name is imported with gss_import_name,
and service credentials are acquired with gss_acquire_cred. If either opertion fails, an error message is
displayed and -1 is returned; otherwise, 0 is returned.

ARGUMENTS

• service_name (r) the ASCII service name.

• server_creds (w) the GSS-API service credentials.

RESULTS

Returns: 0 on success, -1 on failure.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 51 © 1998 Trumpet Consortium

4.2.2.2 Function: client_establish_context

FUNCTION

client_establish_context

SYNOPSIS
int client_establish_context(char * service_name,
 gss_ctx_id_t * gss_context
 gss_buffer_desc recv_tok,
 gss_buffer_desc send_tok)

DESCRIPTION

establishes a GSS-API context with a specified service and returns the context handle. service_name is
imported as a GSS-API name and a GSS-API context is established with the corresponding service;The
default GSS-API mechanism is used, and mutual authentication and replay detection are requested. If
successful, the context handle is returned in context. If unsuccessful, the GSS-API error messages are
displayed on stderr and -1 is returned. returns 1 on GSS_S_CONTINUE_NEDDED.

ARGUMENTS

• service_name (r) the ASCII service name of the service.

• context (w) the established GSS-API context.

• recv_tok (r) the received token. Has to be set to = GSS_C_NO_BUFFER for the first call.

• send_tok (w) the token to send if 1 is returned.

RESULTS

Returns: 0 on success, 1 on GSS_S_CONTINUE_NEDDED, -1 on failure.

4.2.2.3 Function: server_establish_context

FUNCTION

server_establish_context

SYNOPSIS
int server_establish_context(gss_cred_id_t server_creds,
 gss_ctx_id_t *context,
 gss_buffer_t client_name,
 gss_buffer_desc recv_tok,
 gss_buffer_desc send_tok)

DESCRIPTION

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 52 © 1998 Trumpet Consortium

establishses a GSS-API context as a specified service with an incoming client, and returns the context
handle and associated client name. Any valid client request is accepted. If a context is established, its
handle is returned in context and the client name is returned in client_name and 0 is returned. If
unsuccessful, an error message is displayed and -1 is returned. 1 is returned on
GSS_S_CONTINUE_NEDDED.

ARGUMENTS

• service_creds (r) server credentials, from gss_acquire_cred

• context (w) the established GSS-API context

• client_name (w) the client's ASCII name

• recv_tok (r) the received token

• send_tok (w) the token to send if 1 is returned

RESULTS

Returns: 0 on success, 1 on GSS_S_CONTINUE_NEDDED, -1 on failure.

4.3 Access Control

4.3.1 Engineering Object Model

This is the object model for the access control component implementation:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 53 © 1998 Trumpet Consortium

Figure 10: Engineering Object Model of the Access Contro Servicel

4.3.2 Required and supported component interfaces

The access control component interfaces with the SMASC. It does not depend on other TRUMPET system
components.

The class ADF provides the external interface of the access control component:

class ADF {
public:
 ADF (const DistName& initiator, const RWCString& domain);
 Permission associationPermission (const DistName& target);
 Permission operationPermission (
 Operation operation,
 RWTValSlist<ac_target>& targets,
 RWTValSlist<ac_target>& denied);
};

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 54 © 1998 Trumpet Consortium

METHOD

ADF: generates a new access decision context

SYNOPSIS
#include <trumpet/securityPackage/acControl/adf.hh>
ADF (const DistName& initiator, const RWCString& domain);

DESCRIPTION

This function is used to instantiate a new access decision context. It contains the name of the associated
initiator and the set of access control rules to be used.

ARGUMENTS

• initiator: the application entity title of the requesting MAE (distinguished name form).

• domain: identifies the access control domain.

RESULTS

This function may return: Allow, DenyWithResponse, DenyWithoutResponse, AbortAssociation

METHOD

associationPermission: determine access control permission for association between given MAEs

SYNOPSIS
#include <trumpet/securityPackage/acControl/adf.hh>

AccessDecision associationPermission (const DistName& target)

DESCRIPTION

This function determines the access permission of the initiator MAE to establish an association to the target
MAE.

ARGUMENTS

• target: the application entity title of the peer MAE to connect to. This must be a distinguished name.

RESULTS

This function may return: Allow, DenyWithResponse, DenyWithoutResponse, AbortAssociation

METHOD

operationPermission: determine access permissions to perform operation on given management information
objects.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 55 © 1998 Trumpet Consortium

SYNOPSIS
#include <trumpet/securityPackage/acControl/adf.hh>

AccessDecision operationPermission (
 OM_sint primitive,
 List<ac_target>& targets,
 List<ac_target>& denied);

DESCRIPTION

This function is used to determine the access permissions of the initiator to perform the given operation on
the set of managed objects.

ARGUMENTS

• primitive Identifies which type of operation has been requested. Possible values are:
MP_GET_IND, MP_SET_IND, MP_ACTION_IND, MP_CREATE_IND, MP_DELETE_IND

• targets Identifies the set of managed objects selected for the operation. The type of
list elements is ac_target. which is defined as:

struct ac_target {
OM_object object;
AccessDecision permission;
void* link};

• object identifies a MO instance. It is an instance of OM class Base-Managed-Object-
Id.

• permission returns the permission to perform the operation determined by the access
decision function.

• link can be used by the caller to establish a link between the structure and the MO
instance.

RESULTS

• targets: subset of objects access is granted. permission is set to Allow.

• denied: set of object access is denied. permission is set to one of the following values:
DenyWithResponse, DenyWithoutResponse, AbortAssociation.

This function may return: Allow, DenyWithResponse, DenyWithoutResponse, AbortAssociation

4.4 Secure Management Association

4.4.1 Engineering Object Model

The Secure Management Association Support Component (SMASC) is that component of the management
system which provides the management applications with the means to secure the management association
with other management applications located in another management system. The main purpose of the
SMASC is to isolate the security-related components from the application code. This approach has the
following advantages:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 56 © 1998 Trumpet Consortium

• the security can easily be added to / removed from an existing application, without affecting its internal
structure,

• the security-related code can be designed, programmed and verified independently by security-aware
personnel,

• the addition of auditing capacities for security-related events is made easier and safer,

• the resulting code can easily be customised to accommodate new security policies.

On behalf of a management entity, the SMASC authenticates and control the access to peer management
applications; it also initialises the security context for further security services to be used on the
association, in particular it establishes a session secret key if the requested Quality of Protection requires
integrity and / or confidentiality of communicated data.

Figure 11 shows the main components of the security architecture, the internal structure of the SMASC and
the contract interfaces of the SMASC to other comp onents. The security services of the SMASC can be
accessed through Adapter Components. The purpose of the Adapter Components is to transform
technology specific syntax (e.g. XOM objects [XOM]) to generic data structures (e.g. BER encoding). With
this approach, platform specific code can be restricted to the Adapter Component and the SMASC can be
reused without major modifications for other management platforms. The SMASC is also interfaced with:

• the AccessControl component to control the access to the management association,

• the Security Event Logging and Forwarding (SELF) component to keep track of all relevant security
events occurring on the management associations.

The SMASC is decomposed into object classes as follows:

• a Secure Management Association Support (SMAS) object which co-ordinates the behaviour of the
whole component,

• a SSO object, which provides generic security services such as peer authentication, integrity, encryption
and digital signatures; the SMAS accesses the SSO through the Generic Security Service API (GSS-API).
The SSO may be implemented using already existing commercial products which provide a standard
[RFC 1508] interface.

• a SecPolicy object which contains the policy rules for inter-domain security to interact with a remote
MAE,

• a CertificateHandling object, which performs key handling such as caching, fetching certificates from
directories and checking certificates revocation lists. The CertificateHandling object may interact with
external services for certificate and CRL dis tribution, for example offered in conjunction with a CA TTP.
Use of the LDAP protocol (RFC 1777, 1995) is envisaged for fetching of certificates and CRLs.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 57 © 1998 Trumpet Consortium

SMAS

Secure Management
Association Support

component

EventPreproc

SELF component

ADF

AccessControl
component

SSOGSS-API

SecPolicy
Certificate
Handling

MAE

Mngt
Service
Comp.
MSC

Adapter
Component

Adapter

LDAP

ControlAccessSecEventReport

SecureAssocProvision

ASN1Codec

Figure 11: Graphical Representation of the Secure Management Association Component

Note that in order to establish a secure management association, a management entity must have disabled
any type of automatic connection mechanism and take explicit control over the association.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 58 © 1998 Trumpet Consortium

4.4.2 Required and supported component interfaces

NAME

 smasc_assoc_req - Initiates the authentication process with the peer entity

SYNOPSIS
 #include <smasc.h>

 int smasc_assoc_req(
 char *target,
 smasc_token *token);

DESCRIPTION

This function is used by the Adapter(s) to initiate the authentication process by computing the first
token to be sent to the target MAE.

Parameters

target The target MAE’s LDAP Distinguished Name.

token Returned upon successful completion of the function call. The
authentication token to be sent to the target MAE.

RESULTS

This function may return:

0 Function successfully completed

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 59 © 1998 Trumpet Consortium

NAME

 smasc_assoc_rec - Forwards the authentication token in the incoming PDU to the SSO

SYNOPSIS
 #include <smasc.h>

 int smasc_assoc_rec(
 char *target,
 smasc_token token);

DESCRIPTION

This function is used by the Adapter(s) to forward the input authentication token received in an
association request/response to the SSO.

Parameters

target The target MAE’s LDAP Distinguished Name.

token The authentication token to be forwarded to the SSO.

RESULTS

This function may return:

0 Function successfully completed

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 60 © 1998 Trumpet Consortium

NAME

 smasc_assoc_rsp - Calculates the next token in the authentication process

SYNOPSIS
 #include <smasc.h>

 int smasc_assoc_rsp(
 char *target,
 smasc_token *token);

DESCRIPTION

This function is used by the Adapter(s) to initiate the get the next token needed in the authentication
process with the target MAE.

Parameters

target The target MAE’s LDAP Distinguished Name.

token Returned upon successful completion of the function call. The next
authentication token to be sent to the target MAE.

RESULTS

This function may return:

-1 The authentication process is unsuccessfull

0 The authentication process is completed and successfull

1 Another token is needed in the authentication process

4.5 Adapter Object

4.5.1 Engineering Object Model

The X/Open Management Protocol (XMP) API provides a common access mecanism to both CMIP and
SNMP services. XMP employs the X/Open OSI-Abstract-Data Manipulation (XOM) API to manipulate
variables and parameters.

XMP consists of a library of C functions that reflect the services of CMIS and SNMP. It embodies the
object-oriented OSI model of management. Manager applications use XMP to access managed objects, and
agents applications use XMP to respond. XMP can be used synchronously or asynchronously.

The functions in XOM are used to create, examine, modify and destroy the arguments to XMP functions. It
provides a generalized data handling mechanism, and manipulates data types that arise from Abstract
Syntax Notation 1 (ASN.1) definitions.

As reflected in Figure 12, all network management applications can use XMP, with XOM, for standards-
based process-to-process communications.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 61 © 1998 Trumpet Consortium

Management
Application

Entity

XOM
XMP

Communication
Infrastructure

(CMIP or SNMP)

Network

Figure 12: XOM, XMP and MAE

The XMP Adapter is responsible for securing the XMP function calls, which in turn map to CMIP requests
and responses.

The approach chosen in Trumpet is to modify the MAE's source code to include security-related calls to the
adapter where appropriate. The MAE is then made "security-aware".

As the adapter must protect all PDU exchanged between manager and agents applications, implementers
have to insert security-related code before XMP "send request" function calls to protect the outgoing PDU
; and after XMP "get response" function calls to deprotect the incoming PDU.

The adapter interface is designed to simplify this process, as all the functions defined closely match that of
XMP, having the same name and accepting similar arguments.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 62 © 1998 Trumpet Consortium

4.5.1.1 Secured Association Establishment

When using XMP, you can either rely on TMN Platform Infrastructure to control associations, providing
automatic establishment and release, or you can retain application control over these functions. The
Association Control Service Element (ACSE) extensions to the XMP API give you this capability.

Explicit association control is very useful in certain situations:

• an application may need to set certain ACSE parameters in order to interoperate with peer applications
based on other TMN Platforms,

• with explicit association control, an application can establish multiple associations with a peer, each
association having its own context. This can be useful if several kinds of transactions are occurring
between pair of applications,

• a management association established using the XMP ACSE extensions is never terminated unless one
side explicitly terminates it, or unless connectivity between the two sides is lost. Therefore, a
management application can set up an association and use it as a test of connectivity with the remote
peer: connectivity can be tested at any time by sending a message on that association.

Management associations established with Automatic Connection Management (ACM) are shared
associations , that can be used by any Management Application Entity residing on the same host. By
contrast, a management association established by two applications, both using the ASCE extensions, is a
private association between those applications, and can only be used by them.

When using the Trumpet security package, secured associations estalibshed between applications must be
private: each secured association rely on a distinct security context that must be negotiated during the
association establishment, and terminated when releasing the association. Therefore, the ACSE extensions
must be used by client Management Application Entities when they want to establish secured associations.

The XMP ACSE extensions add five functions to the XMP API. They are listed and descibed in Table 4. For
more details, see the manpage for each function.

ASCE Function Desciption

mp_assoc_req() Called after mp_bind() to request the establishment
of a connected session.

mp_assoc_rsp() Used to reply to a previously invoked association
request.

mp_release_req() Used to request the release of a connected session.

mp_release_rsp() Used to reply to a previously invoked release
request.

mp_abort_req() Used to abort a management association. This
service is defined as non-confirmed.

Table 1: ACSE Functions

The XMP Adapter provides a set of functions that are responsible for negociating the security context.
Calls to these functions must be inserted in the MAE's source code before any ACSE function is called.
They act by inserting and/or transforming proper parameters in the XOM structures that are later used by
the ACSE functions.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 63 © 1998 Trumpet Consortium

Table 5 lists and describes the ACSE-related functions that are provided by the XMP Adapter.

XMP Adapter Function Desciption

sp_assoc_req() Called before mp_assoc_req() to supply the
necessary security parameters for the establishment
of a connected session.

sp_assoc_rsp() Called before mp_assoc_rsp() to supply the
necessary security parameters for the reply to a
previously invoked association request.

sp_release_req() Called before mp_release_req() to supply the
necessary security parameters to request the release
of a connected session.

sp_release_rsp() Called before mp_release_rsp() to supply the
necessary security parameters to release a connected
session.

sp_abort_req() Called before mp_release_rsp() to supply the
necessary security parameters to abort a connected
session.

Table 2: ACSE-related Adapter functions

Figure 13 outlines the steps needed in order to establish and release a secured association. For the sake of
simplicity, calls to XOM functions are not presented, but the main parameters needed to XMP functions are
indicated where appropriate.

Requestor MAE Responder MAE

mp_initialize() mp_initialize()

mp_negociate(...disable ACM...) mp_negociate(...disable ACM...)

mp_bind() mp_bind()

sp_assoc_req()
mp_assoc_req()

 mp_receive(...MP_ASSOC_IND...)
sp_receive()

 sp_assoc_rsp()
mp_assoc_rsp()

mp_receive(...MP_ASSOC_CNF...)
sp_receive()

(XMP calls) (XMP calls)

sp_release_req()
mp_release_req()

 mp_receive(...MP_RELEASE_REQ...
)
sp_receive()

 sp_release_rsp()
mp_release_rsp()

mp_receive(...MP_RELEASE_RSP...
)

sp_receive()

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 64 © 1998 Trumpet Consortium

Figure 13: Secured association establishment & release

The sequence of operations is exactly the same as for a non-secured association ; calls to the Trumpet
security package are just are inserted before all XMP functions that send data and after all XMP functions
that receive data (the mp_receive() and sp_receive() functions are described later).

4.5.1.2 Secured XMP Requests

As previously mentionned, XMP supports the seven CMIS services through the CMIS OM package. The
CMIS services are mapped to XMP function names, as shown in Table 6.

CMIS service XMP functions Description (of request only)

ACTION mp_action_req()
mp_action_rsp()

Requests that the responder perform one of
the actions defined for an object.

CANCEL-GET mp_cancel_get_req()
mp_cancel_get_rsp()

Requests that the responder terminate
servicing an earlier "get" request that has not
yet completed.

CREATE mp_create_req()
mp_create_rsp()

Requests that the responder create an
instance (object) of the specified object class.

DELETE mp_delete_req()
mp_delete_rsp()

Requests that the responder destroy a
particular instance (object) of an object class.

EVENT-REPORT mp_event_report_req()
mp_event_report_rsp()

Issues one of the notifications (events)
defined for a managed object.

GET mp_get_req()
mp_get_rsp()

Requests that the responder supply the
value(s) of one or more object attributes.

SET mp_set_req()
mp_set_rsp()

Requests that the responder modify the
value(s) of one or more object attributes.

Table 3: XMP functions to support CMIS services

As mentioned earlier, security-related calls to the adapter have to be made before XMP "send request"
function calls and after XMP "get response" function call.

These calls are described in Table 7 below, they basically share the same input parameters as the
corresponding XMP function calls. Their role is either to protect or deprotect an XOM object, provided as
an input argument, and providing the result in an output OM object.

Protection of the OM input arguments, depending on the security context and policy requirements, can
consist of confidentiality and/or integrity.

The returned protected XOM objects must not be modified or tampered in any way after they are produced ;
they can only be send to the peer entity through the corresponding XMP call.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 65 © 1998 Trumpet Consortium

CMIS service XMP functions Corresponding Adapter functions

ACTION mp_action_req()
mp_action_rsp()

sp_action_req()
sp_action_rsp()

CANCEL-GET mp_cancel_get_req()
mp_cancel_get_rsp()

sp_cancel_get_req()
sp_cancel_get_rsp()

CREATE mp_create_req()
mp_create_rsp()

sp_create_req()
sp_create_rsp()

DELETE mp_delete_req()
mp_delete_rsp()

sp_delete_req()
sp_delete_rsp()

EVENT-REPORT mp_event_report_req()
mp_event_report_rsp()

sp_event_report_req()
sp_event_report_rsp()

GET mp_get_req()
mp_get_rsp()

sp_get_req()
sp_get_rsp()

SET mp_set_req()
mp_set_rsp()

sp_set_req()
sp_set_rsp()

Table 4: CMIS-related Adapter functions

4.5.1.3 Secured Asynchronous Operations

When a synchronous function call is performed, the function does not return unless the effect of the call is
complete. In opposition, asynchronous function calls do start some process and return. They are used by
applications that need to do multiple independent function calls, an example being a network management
application that interrogates multiple distinct network equipment.

The XMP API allows you to make any call (except mp_cancel_get_req()) synchronously, and to use
any requester function asynchronously.

When you make synchronous requester calls, the parameters returned by the responder application are
available through the result_return OM object, provided the request was successfully processed.

When you make an asynchronous function call, the XMP interface first determines if the call is valid. If so,
the transaction with the responder is initiated. Your application is then allowed to continue processing while
the request is serviced. If a response is expected, you must later call mp_receive() to determine the
outcome of the request.

When such asynchronous function calls are secured with the Trumpet security package, the requester
application must call the sp_receive() function in order to exploit the information provided by the
mp_receive()function.

On the responder side, the application has no knowledge whether the call is performed synchronously or
asynchronously, therefore the sequence of operations is the same as described in the previous chapter.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 66 © 1998 Trumpet Consortium

4.5.2 Required and supported component interfaces

NAME

 sp_abort_req - Protects the parameters to an ACSE association abort request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_assoc_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to an ACSE association abort request just before the
corresponding XMP function call is made.

Parameters

session The OM object against which the operation will be performed. It must be a
private OM object previously returned as part of an Assoc-Argument or
Assoc-Result object. This object must belong to an ACM-disabled
workspace.

context Represents the management context to be used for this operation. This must
be a private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument The unprotected information supplied as the argument of an Abort
operation. It is an instance of a subclass of the OM class Abort-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_abort_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

MP_ACCESS_CONTROL_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 67 © 1998 Trumpet Consortium

NAME

 sp_action_req - Protects the parameters to a CMIS Action request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_action_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Action request just before the
corresponding XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation/notification will be requested. This must be a private OM object
previously returned from mp_bind(). This object must belong to an ACM-
disabled workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument An unprotected OM object which provides the information about the
Action request and the data for that action. It is an instance of a subclass of
the OM class Action-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_action_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 68 © 1998 Trumpet Consortium

NAME

 sp_action_rsp - Protects the parameters to a CMIS Action reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_action_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Action reply just before the corresponding
XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation/notification was requested. This must be a private OM object
previously returned from mp_bind(). This object must belong to an ACM-
disabled workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response An unprotected OM object supplied as a response information about the
Action request. It is an instance of one of the following OM classes: Action-
Result, Linked-Reply-Argument, Absent-Object or Service-Error.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_action_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 69 © 1998 Trumpet Consortium

NAME

 sp_assoc_req - Protects the parameters to an ACSE association establishment request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_assoc_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to an ACSE association establishment request just
before the corresponding XMP function call is made.

Parameters

session The OM object against which the operation will be performed. It must be a
private OM object previously returned from mp_bind(). This object must
belong to an ACM-disabled workspace.

context Represents the management context to be used for this operation. This must
be a private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument The unprotected information that represents the argument of an Associate
operation. It is an instance of a subclass of the OM class Assoc-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_assoc_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

MP_ACCESS_CONTROL_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 70 © 1998 Trumpet Consortium

NAME

 sp_assoc_rsp - Protects the parameters to an ACSE association establishment reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_assoc_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to an ACSE association establishment reply just
before the corresponding XMP function call is made.

Parameters

session The OM object against which the operation will be performed. It must be a
private OM object previously returned from mp_bind(). This object must
belong to an ACM-disabled workspace.

context Represents the management context to be used for this operation. This must
be a private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response The unprotected information supplied as a response of an Associate
operation. It is an instance of a subclass of the OM class Assoc-Result.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_assoc_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_ACCESS_CONTROL_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 71 © 1998 Trumpet Consortium

NAME

 sp_cancel_get_req - Protects the parameters to a CMIS Cancel-Get request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_cancel_get_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Cancel-Get request just before the
corresponding XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument An unprotected OM object which provides the information about which Get
operation is to be cancelled. It is an instance of a subclass of the OM class
Cancel-Get-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_cancel_get_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 72 © 1998 Trumpet Consortium

NAME

 sp_cancel_get_rsp - Protects the parameters to a CMIS Cancel-Get reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_cancel_get_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Cancel-Get reply just before the
corresponding XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response An unprotected OM object supplied as a response information about the
result of the Cancel-Get operation. It is an instance of one of the following
OM classes: Absent-Object or Service-Error.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_cancel_get_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 73 © 1998 Trumpet Consortium

NAME

 sp_create_req - Protects the parameters to a CMIS Create request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_create_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Create request just before the
corresponding XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument An unprotected OM object which provides the information about the
managed object to create and any data values attributes of the managed
object. It is an instance of a subclass of the OM class Create-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_action_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 74 © 1998 Trumpet Consortium

NAME

 sp_create_rsp - Protects the parameters to a CMIS Create reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_create_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Create reply just before the corresponding
XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response An unprotected OM object supplied as a response information about the
Create request. It is an instance of one of the following OM classes: Create-
Result, Absent-Object or Service-Error.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_create_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 75 © 1998 Trumpet Consortium

NAME

 sp_delete_req - Protects the parameters to a CMIS Delete request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_delete_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Delete request just before the
corresponding XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument An unprotected OM object which provides the information about the
managed object to delete. It is an instance of a subclass of the OM class
Delete-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_delete_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 76 © 1998 Trumpet Consortium

NAME

 sp_delete_rsp - Protects the parameters to a CMIS Delete reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_delete_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Delete reply just before the corresponding
XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response An unprotected OM object supplied as a response information about the
Delete operation. It is an instance of one of the following OM classes:
Delete-Result, Linked-Reply-Argument, Absent-Object or Service-Error.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_delete_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 77 © 1998 Trumpet Consortium

NAME

 sp_event_report_req - Protects the parameters to a CMIS Event-Report request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_event_report_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Event-Report request just before the
corresponding XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument An unprotected OM object which provides the information about the event
to be generated. It is an instance of a subclass of the OM class Event-
Report-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_event_report_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 78 © 1998 Trumpet Consortium

NAME

 sp_event_report_rsp - Protects the parameters to a CMIS Event-Report reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_event_report_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a CMIS Event-Report reply just before the
corresponding XMP function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response An unprotected OM object supplied as a response information about the
Event-Report. It is an instance of one of the following OM classes: Event-
Report-Result, Absent-Object or Service-Error.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_event_report_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 79 © 1998 Trumpet Consortium

NAME

 sp_get_req - Protects the parameters to a Get request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_get_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a Get request just before the corresponding XMP
function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument An unprotected OM object which provides the information about which
attributes are to be retrieved. It is an instance of a subclass of the OM class
Get-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_get_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 80 © 1998 Trumpet Consortium

NAME

 sp_get_rsp - Protects the parameters to a Get reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_action_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a Get reply just before the corresponding XMP
function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response An unprotected OM object supplied as a response information about the
Get operation. It is an instance of one of the following OM classes: Get-
Result, Linked-Reply-Argument, Absent-Object or Service-Error.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_get_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 81 © 1998 Trumpet Consortium

NAME

 sp_receive - Unprotects the result or notification to an asynchronous operation.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_receive(
 OM_private_object session,
 OM_private_object context,
[other parameters might be needed]
 OM_object protected,
 OM_object *result);

DESCRIPTION

This function is used to unprotect the partial or complete result of an invoked management
operation, or its reported management notification.

Parameters

session An OM object that identifies the management session in which the
operation or notification was performed. This must be a private OM object
previously returned from mp_bind(). This object must belong to an ACM-
disabled workspace.

context The context in which the operation was performed. This must be a private
OM object ; the constant Default-Context
{ MP_DEFAULT_CONTEXT } is explicitly not permitted.

protected An protected OM object obtained through a preceeding
mp_receive()function call. The abstract class of this object is dependent
on the value of the primitive and completion_flag parameters. It might be
an instance of one of the following OM classes: Action-Argument, Action-
Result, Cancel-Get-Argument, Absent-Object, Create-Argument, Create-
Result, Delete-Argument, Delete-Result, Event-Report-Argument, Event-
Report-Result, Get-Argument, Get-Result, Set-Argument, Set-Result,
Assoc-Argument, Assoc-Result, Release-Argument, Release-Result or
Abort-Argument.

protected Returned upon successful completion of the function call. This object is of
the same OM class as the protected argument.

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 82 © 1998 Trumpet Consortium

NAME

 sp_release_req - Protects the parameters to an ACSE association release request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_release_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to an ACSE association release request just before
the corresponding XMP function call is made.

Parameters

session The OM object against which the operation will be performed. It must be a
private OM object previously returned as part of an Assoc-Argument or
Assoc-Result object. This object must belong to an ACM-disabled
workspace.

context Represents the management context to be used for this operation. This must
be a private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument The unprotected information that represents the argument of a Release
operation. It is an instance of a subclass of the OM class Release-
Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_release_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 83 © 1998 Trumpet Consortium

NAME

 sp_release_rsp - Protects the parameters to an ACSE association release reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_assoc_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to an ACSE association release reply just before the
corresponding XMP function call is made.

Parameters

session The OM object against which the operation will be performed. It must be a
private OM object previously returned as part of an Assoc_Argument or
Assoc-Result object. This object must belong to an ACM-disabled
workspace.

context Represents the management context to be used for this operation. This must
be a private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response The unprotected information supplied as a response to a Release operation.
It is an instance of a subclass of the OM class Release-Result.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_release_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 84 © 1998 Trumpet Consortium

NAME

 sp_set_req - Protects the parameters to a Set request.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_get_req(
 OM_private_object session,
 OM_private_object context,
 OM_object argument,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a Set request just before the corresponding XMP
function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

argument An unprotected OM object which provides the information about which
attributes are to be modified. It is an instance of a subclass of the OM class
Set-Argument.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to mp_set_req().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 85 © 1998 Trumpet Consortium

NAME

 sp_set_rsp - Protects the parameters to a Set reply.

SYNOPSIS
 #include <xom.h>
 #include <tsp.h>

 SP_status sp_action_rsp(
 OM_private_object session,
 OM_private_object context,
 OM_object response,
 OM_object *protected);

DESCRIPTION

This function is used to protect the parameters to a Set reply just before the corresponding XMP
function call is made.

Parameters

session An OM object that identifies the management session in which the
operation will be requested. This must be a private OM object previously
returned from mp_bind(). This object must belong to an ACM-disabled
workspace.

context The context in which the operation should be performed. This must be a
private OM object or the constant Default-Context
{ MP_DEFAULT_CONTEXT }.

response An unprotected OM object supplied as a response information about the
Set operation. It is an instance of one of the following OM classes: Set-
Result, Linked-Reply-Argument, Absent-Object or Service-Error.

protected Returned upon successful completion of the function call. The protected
information that is to be supplied to the mp_set_rsp().

RESULTS

This function may return:

MP_SUCCESS

MP_NO_WORKSPACE

MP_INVALID_SESSION

MP_INSUFFICIENT_RESSOURCES

SP_NO_SECURITY_CONTEXT

SP_ACCESS_CONTROL_FAILURE

SP_AUDIT_ALARM_FAILURE

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 86 © 1998 Trumpet Consortium

4.6 Audit and Alarm

4.6.1 Engineering Object Model

4.6.1.1 Implementation of the Security Audit Manager

4.6.1.1.1 Introduction

The implementation of the audit management is described in this section with emphasis on the Graphical
User Interface, the Event Forwarding Discriminator management and the security related event collecting
and displaying. In the Graphical User Interface, a collection of user friendly mask windows are defined and
realised to help the user to access easily to the event forwarding discriminator construction and the alarm
reporting function. The security related event management is implemented using the XMP API.

The implementation work is composed of:

• The basic audit management function library

• The top level GUI

• The GUI for alarm viewing

• The GUI for EFD management

• The GUI for log management

• The graphical editor for DiscriminatorConstruct

4.6.1.1.2 Implementation Architecture

The audit management is performed by the security alarm management application and the audit trail
management application.

These management applications collect security-related events from a set of known agents according to the
conditions defined in the Event Forwarding Discriminators. The alarm manager allows these events to be
displayed in human readable format, as the audit trail manager saves them into a log for further analysis.

The audit management is implemented in one process.

The GUI provides:

• an agent viewer to show the location and the state of the agents

• an agent controller to manage the EFD in that agent (EFD creation, deletion, etc.)

• an alarm viewer to display collected security alarms

• an event log browser

The Security Alarm Manager implements the following management functions:

• event forwarding discriminator management

• security alarm collection (the alarm detection is performed by the agent side)

• alarm reporting

The Audit Trail Manager logs not only security alarms (SecurityServiceAndMechanism-
Violation: a subset of security-related events) but also ServiceReport. These events are very
valuable resources for further security audit analysis.

4.6.1.1.3 GUI

This section presents the design of the GUI for managing audit functions, including Event Forwarding
Discriminators and security-related event collecting and displaying. The corresponding sponsor
component, accepting messages from the audit management application and mapping them to real resources
mechanisms is not discussed here.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 87 © 1998 Trumpet Consortium

In the GUI a collection of user-friendly mask windows are defined and realised to help the user access easily
the event forwarding discriminator construction and the alarm reporting function. The security-related
event management is implemented using the XMP API.

The main goal of the GUI is to allow the user not necessarily familiar with the security management concept
and the OSI model to be able to access the management functions. This is the reason for which the GUI
should be user-friendly not only as to how the information is displayed, but also in the manner in which the
user participates in the management process.

Top-Level Window

This window allows to start the TRUMPET management session. The administrator can select the security
services to select in the Administration menu: currently only the audit management is implemented;
potentially, management of the security policy, management of the authentication and access control
services and key management could be added. The Security Status menu displays the number of security
alarms for each severity level. Two buttons allow to display more information about the alarms.

Agent Configuration Window

This window allows to see each agent configuration from which security alarms will be collected. In its menu
bar, the administrator can select an audit manager configuration containing some agent bitmaps which he
can move on the trials bit map and perform actions on them., see agent specifications ...

Agent-EFD Control Window

This window gives some useful information on the selected agent and controls the EFD on it. The agent
control panel shows the name and the current co-ordinates of the agent. The user can give the current
operational state of the agent (present, running, locked, etc.). Using the EFD panel, the user can create a
new EFD instance in the selected agent. A scroll list shows the EFDs currently associated with the agent;
by choosing one of the EFD identifier from the list, the user may delete, edit or get help from it. When the
user clicks on the Modify or Create button, the EFD construction mask window is displayed.

EFD Construction Mask Window

This window contains all the attributes of the EFD class. The security administrator can specify the
appropriate value to build a new EFD or edit an existing EFD. By clicking on the corresponding button, the
administrator is displayed a specific window to fill all the EFD attributes fields: Discriminator Construct, Start
Time, Stop Time, Intervals of Days, Week Mask, Destination, Backup Destination List, Active Destination,
Administrative State, Operational State, Availability Status, Confirmed Mode.

Filters Editor Window

This window allows to construct a discriminator graphically. On the drawing area, the administrator has to
click on a rectangle bitmap and to control it by using the mouse menu button.

Control Window for Managing Logs

This windows is used for log management. The existing logs are displayed as icons with log names below.
The security auditor can select a log with the mouse to display the contents of the log or delete the log. He
can create a new log (Log Creation Window). By double-clicking on the log icon, the administrator can
display the log attributes.

Log Creation Window

This window allows the creation of a new log. A default log can be created or the administrator can create a
customised log by specifying – using the same windows as for the EFDs – the discriminator construct, the
start time, the stop time, the intervals of days, the week mask. He can modify the operational and
administrative state of the log.

Log Attributes Display Window

The administrator can display and modify the attributes of the selected log.

Alarm Viewer Window

This window shows the collected security alarms. Only 10 alarms can be displayed simultaneously. The
alarm buffer size is limited. The older alarms will be discarded when the buffer is full.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 88 © 1998 Trumpet Consortium

4.6.1.1.4 Basic audit management function library

This library provides some basic functions to:

• initialise the XMP library

• create OpenView kernel EFD

• create, delete, enable and disable EFD in the specified agent

• wait an event (with time out)

This library is written upon the XMP interface.

4.6.1.1.5 Interprocess Communication Interface Library

The Interprocess Communication Interface Library defines a specific protocol and a set of service functions
to allow one or more management application processes to communicate with the GUI process. The protocol
is based on message passing mechanisms.

4.6.1.1.5.1 Principle

Management applications can not be implemented using event driven scheme. They have to perform a loop
to wait for the CMIP messages and GUI commands. The X11 main loop does the same thing. It is possible to
add into X11 main loop the CMIP messages .

The GUI implemented in X11 and Motif incorporates the messages from management processes
(XtAppAddInput). The XMP based applications will include the GUI command handler into their main
loop.

The GUI is responsible to load and shutdown a XMP process. The GUI can also control the XMP process
execution, for example pause and resume the alarm collection.

4.6.2 Required and supported component interfaces

• The manager audit and alarms communicates with the agent ovead of the HP OpenView 4.21 plateform
through XMP.The GDMO model used for XOM objects is the GDMO X721 (ems.mib) of the
plateform.The manager manages object of class HPEventForwardingDiscriminator.

• The manager exchanges with SELF agent with XMP: Event Report which field Event Info is of class
SecurityAlarmInfo (in ems.mib) or ServiceReport (GDMO X740).

 Contents of the Event Report

Name of the attribute (GDMO) Contents

Managed Object Class Service which raise the event (integer
converted in oid)

Managed Object Instance

(in the attribute value of the first
ava)

Instance of the service (integer)

Event Time actual time (generalized time)

Event Type oid of the notification

Event Info Security Alarm Info or Security Audit Info

 Contents of the Security Alarm Info

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 89 © 1998 Trumpet Consortium

Name of the attribute (GDMO) Contents

Security Alarm Cause oid of the security alarm cause

Security Alarm Severity integer

Security Alarm Detector empty

Service User (attribute Detail) oid of the entity which caused the raising of
the alarm

Service Provider (attribute Detail) oid of the entity which has been «attacked »

 Contents of the Security Audit Info (Service Report)

Name of the attribute (GDMO) Contents

Service Report Cause oid of the service report cause

Additional Text oid of the entity which caused the raising of
the report

Additional Information oid of the entity which has been «attacked »

4.7 SELF

4.7.1 Engineering Object Model

There is a number of XOM objects used to implement the audit agent. These are as follows:

• feature_list (MP_feature): negotiate the features of the platform environment where the agent runs.

• attributeId , ava , ds_rdn , ds_dn (OM_descriptor): they are used to identify an instance of a
security service.

• bmoi: (OM_descriptor): is used to identify a managed object class which is a class of a service. An
integer is used converted to an OID.

• bmoc: (OM_descriptor): is used to identify an instance of a managed object class i.e. an instance of
a service using an integer.

• eType: (OM_descriptor): it contains the OID of the notification.

• sUser: (OM_descriptor): DN of the initiator MAE.

• sProvider: (OM_descriptor): DN of the target MAE.

• addInfo: (OM_descriptor): OID of the target MAE in case of emmision of a service report
notification.

• addText: (OM_descriptor): OID of the initiator MAE in case of emmision of a service report
notification.

• sACause: (OM_descriptor): OID of the security alarm cause.

• sASeverity: (OM_descriptor): Severity of the event (MAJOR / MINOR / WARNING / CRITICAL /
INTERMEDIATE)

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 90 © 1998 Trumpet Consortium

• srCause: (OM_descriptor): OID of the service report cause.

• saInfo: (OM_descriptor): Security Alarm Info in case of a service report notification.

• setEventReport: (OM_descriptor) contains a CMIP event report.

• eInfo - Security Alarm Info.

4.7.2 Required and supported component interfaces

4.7.2.1 Interface between the Self and the SMASC

The SMASC and the Self communicate through a UNIX socket created at the current directory where the
agent runs. The definition is as follows:
#define SER_ADDR "./server.soc

The above and all the definitions that follow reside in the AA.h file which represents the library used by the
SMASC in order to communicate with the agent. There is a number of security events that the SMASC
sends to the agent and these are listed below.

/* Security events as defined in D9 + "NULL string event" in order to
use the serviceReport Notification */
#define AUTH_F "authenticationFailure"
#define KEY_EXP "keyExpired"
#define IMD "informationModificationDetected"
#define DI "duplicateInformation"
#define BOC "breachOfConfidentiality"
#define UAA "unauthorizedAccessAttempt"
#define OOS "outOfService"
#define HAA "outOfHoursActivity"
#define UR "unspecifiedReason"
#define NO_EVENT "NULL"

In what follows the structure of the notification information received by the agent process is described:

FUNCTION open_AA_connection

SYNOPSIS
void open_AA_connection ()

DESCRIPTION

This function is used to open a connection with the agent process.

ARGUMENTS

None.

FUNCTION send_info

SYNOPSIS
void send_info(enum Service_Type service, char *EType, char *Suser,
char *Sprovider)

DESCRIPTION

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 91 © 1998 Trumpet Consortium

This is the function used to send the notification. For the moment only the first four in the set of services
are considered since there is no connection of the TRUMPET management system with SMASC. Later
versions may include the rest of the services.

ARGUMENTS

• service defines a service chosen from the available set of services defined by the Service_Type
type (Auth,KeyMgmnt,Int_Conf,AC,Assoc,Mgmnt,Notif,Other)

• EType defines the event from the list of available events described above.

• Suser represents the DN of the initiator MAE

• Sprovider represents the DN of the target MAE.

FUNCTION send_AA_notif

SYNOPSIS
int send_AA_notif (char *str)

DESCRIPTION

This function sends actually the notification by filling in the notification string with other information, which
is the library version and the instance of the service.

FUNCTION close_AA_connection

SYNOPSIS
void close_AA_connection ()

DESCRIPTION

This function closes the connection to the agent process and should always be called after sending the
notification.

4.7.2.2 Interface between the Self and the audit manager

This interface is accomplished though a number of XOM objects (all of type OM_descriptor) since the
communication between the agent and the manager is done using the CMIP protocol:

• setEventReport: this is the XOM object representing the CMIP event report sent to the manager. It
follows the X736, X740 standards and the type of information set includes the Managed Object Class,
the Managed Object Instance the Event Type the Event Time and the Event Info. The Event Info is
realised by the following two XOM objects.

• eInfo: this object is used for a security related event.

• saInfo: this object is used when a service report notification is sent.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 92 © 1998 Trumpet Consortium

5. SECURITY INSTALLATION GUIDE

5.1 Security Profile Management

5.1.1 Hardware and software prerequisites

• RogueWave version 6.0.4 or later.

5.1.2 Installation / configuration instructions

The Security Profile Management module is present in the distribution in the location:
src/securityPackage/secProfile

It consists of the files:

• README

• Makefile -- the Makefile

• secpolicy.cc -- policy object c++ file

• secpolicyP.cc -- policy object c++ file

• trumpet/secpolicy.hh -- the header file to include for users

• trumpet/secpolicyP.hh -- private header file

• sp-tst.cc -- an example/test program

• secprofs.txt -- a sample policy file

Installation is done by doing a make and a make install. The example/test program is not installed as it is
considered to be of little general interest.

Security Policy rules are set up as a table of entries:

(initiatorTitle, initiatorRole, responderTitle, accessControlDirectory, securityProfile).

The table that defines the security profiles to be used is expected to be found on a file which name is
retrieved from the environment variable SECURITY_PROFILES. In case this variable is not set, a file
secprofs.txt is looked for, and in case this file neither exists, an empty table is set up.

A file with security profiles must have entries like this:

 iT: cn=BMA,OU=NR,O=TRUMPET Project

iR: [AGENT | MANAGER]

 rT: cn=ABMA,OU=NR,O=TRUMPET Project

 aC: /path/to/access/control/directory

 sP: [NULL | BASIC]

where each group of five lines are separated with one or more lines starting with a space (or just newline). If
multiple (iT,iR,rT) tuples are present in the file, the last one is used. In case of a bad entry specification, the
entry is skipped.

The meaning of the two sP values are:

• NULL: No security

• BASIC: Access Control & Authentication & Alarm, Audit, Recovery & Integrity

A sample secprofs.txt file:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 93 © 1998 Trumpet Consortium

iT: cn=BMA, OU=NR,O=TRUMPET Project
iR: AGENT
rT: cn=ABMA,OU=NR,O=TRUMPET Project
aC: /path/to/null-rules
sP: NULL

iT: cn=BMA,OU=NR,O=TRUMPET Project
iR: AGENT
rT: cn=mv,OU=UCL,O=TRUMPET Project
aC: /path/to/basic-rules
sP: BASIC

5.1.3 Runtime

If the security profile file is named secprofs.txt and exists in the current directory, no environment variable
needs to be set to point out the file. If the file is called something else, or is placed in another directory, the
environment variable SECURITY_PROFILES must be set to file's full or relative path. If no file is indicated,
one way or the other, no security profiles will be known to the system.

5.1.4 Version / release history

The implementation was updated after the integration meeting held beginning of November and a new
version released on the 12th. This version is by the end of November still the last one, and no new one is
planned.

5.1.5 Known bugs

None.

5.2 Security Support Object

5.2.1 Hardware and software prerequisites

The Security Support Objects are implemented with the SECUDE security software package:

• SECUDE-5.1 Preview Release III

5.2.2 Installation / configuration instructions

You have downloaded a SECUDE package: secude-5.0c-<platform>.<packer>

where <platform> is the selected platform, <packer> is one of

"zip" - ZIP, unpack with 'unzip <package>.zip'

"tgz" - GNU TAR + Zip, unpack with 'tar zxf <package>.tgz'

"tz" - Unix TAR + COMPRESS, unpack with 'cat <package>.tz | uncompress | tar xv'

To develop secured programs, SECUDE delivers all necessary header files. Unpack the following file:

../<your-secude-directory>/lib/include.<packer>

Unpack it to a directory of your choice. Then copy the file

../<your-secude-directory>/lib/configur.h

to that directory.

SECUDE ships the following files:

Unix platforms:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 94 © 1998 Trumpet Consortium

 ../RELEASE known bugs within SECUDE 5.0c

 ../bin/secude SECUDE Single Utility

 ../lib/libsecude.[o or so] SECUDE shared library

 ../lib/configur.h system dependend configuration file;

 it belongs to SECUDEs include files.

 ../lib/include.<packer> SECUDE packed header files

 ../etc/af-db <empty>

After unpacking the downloaded SECUDE package, run the platform-specific setup procedures.

Unix platforms:

On some UNIX-Systems, you have to add the path to SECUDEs shared library to

LD_LIBRARY_PATH (e.g. SunOS, DEC) and to add the path to SECUDEs binary to your path.On others
you only have to modify your path settings.

The following environment settings are mandatory:

HOME HOME <directory>,

 default path for a PSE - Personal Security Environment.

SECUDE_ETC SECUDE_ETC <directory>,

 path for some secude relevant configuration files; the

 directory is also used as repository for testkeys.

 The default is set to /usr/local/secude/etc. If you

 have no access to /usr/local/secude/etc, set it to a

 directory of your choice.

5.2.3 Known bugs

None.

5.3 Access Control

5.3.1 Hardware and software prerequisites

To compile and run the access control component you need to have the RogueWave Tools.h++ installed
(v6.0 or above).

5.3.2 Installation / configuration instructions

The access control domains used in a program are configured by ASCII files contained in UNIX directories
with the same name. These directories must be located in the directory the program is started from or the
path can be specified by defining the environment variable MIB_PATH. The directory must contain the
following files (filenames are fixed):

• initiator.MIB contains a set of initiator groups which can be referred by rules.

An initiator group definition consists of a name followed by at least one initiator name (string DN). All
of this had to be on separate lines. A definition will be closed by a line starting with the character ‘#’.

EXAMPLE:

; initiators
initiators1
 DN1

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 95 © 1998 Trumpet Consortium

 DN2

initiators2
 DN1
 DN3

• target.MIB contains a set of target groups which can be referred by rules.

An target group definition consists of a name followed by at least one target. All of this had to be on
separate lines.

A target is defined by the name of a base object instance (string DN) otional followed by scope in
brackets. A scope is specified according to this:

[*] whole subtree

[-n] base to nth Level

[n] individual Level n

A definition will be closed by a line starting with the character ‘#’.

EXAMPLE:

; targets
targets1
 DN1
 DN2[2]

targets2
 DN1[*]
 DN2[-3]

• rule.MIB describes the rules of the access control domain

A rule definition consists of a name followed by at least one initiator group reference, a set of target
group references and an access right specification. The different parts are separated by a line starting
with the character ‘-’ (minus).

The access rigths are defined starting with the permission followed by an optional list of operations. If
no operation is specified the rule is valid for all operations.

A definition will be closed by a line starting with the character ‘#’.

EXAMPLE:

; access control rules
globalRule1
 initiators1
 initiators2
 -
 -
 allow create
end rule
itemRule1
 initiators2
 -
 targets2
 -
 deny

• ruleDefault.MIB contains the default rule of the access control domain

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 96 © 1998 Trumpet Consortium

A default rule is specified by a line with one permission for each operation separated by ‘:’. The
sequence of operations is:

 get, set, create, delete, action

EXAMPLE:

; Default permission for
; get:set:create:delete:action
allow:deny:allow:deny:deny

5.3.3 Runtime

5.3.4 Version / release history

• v1.0 Initial Release Nov 97

5.3.5 Known bugs

None.

5.4 Secure Management Association

5.4.1 Hardware and software prerequisites

The SMASC compiles with any C++ compiler on Solaris or HPUX workstations. It requires all the other
security components (Security Profile Manager, Security Support Object, Access Control, SELF, Audit and
Alarm).

5.4.2 Installation / configuration instructions

At a unix shell prompt, type:
 cd Trumpet.cur/src/secPackage/smasc

 make all

 make install

5.4.3 Version / release history

0.1 Basic integration with the SSO and SELF components.

5.4.4 Known bugs

Still much work to be done.

5.5 Adapter Object

5.5.1 Hardware and software prerequisites

The Adapter Object compiles with any C++ compiler on Solaris or HPUX workstations. It requires:

• HP Open View 4.21 or later (DM, OSI and XMP packages installed).

• TRUMPET SMP (SMASC and all the other security components).

5.5.2 Installation / configuration instructions

At a unix shell prompt, type:
 cd Trumpet.cur/src/secPackage/xmpV7_adapter

 make all

 make install

A simple testing program is provided with the XMP Adapter. It can be installed using:
 cd Trumpet.cur/src/secPackage/xmpV7_assoc

 make all

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 97 © 1998 Trumpet Consortium

To run this testing tool, open two shell windows (xterms). Type ag in the first one and then ma in the
second. The output messages are self-explicit.

5.5.3 Version / release history

0.1 First level of capability: authentication.

5.5.4 Known bugs

The authentication-Method and authentication-Value ACSE Session fields are not transmitted to the target
MAE. This bug might be platform-specific and may not appear under HPUX.

5.6 Audit and Alarm

5.6.1 Hardware and software prerequisites

• HP OpenView version 4.21

• Motif 1.2

• C compiler

5.6.2 Installation / configuration instructions

In the main directory of the application, you have a file Makefile which is used by the command make to
generate the executable « auditman » and the needed library «smli_audit.a ».

In the file Makefile you need to set the following variables with the appropriate paths specific to the current
host:

• INCLUDE must contain all the paths of the include files needed to compile (standard C, Motif, X11,
XMP, XOM).

• LDFLAGS contains the path of the HP OpenView and standard C libraries.

• LDFLAGS_X contains the path of the Motif and X11 libraries.

When all these variables are filled, you run the compilation by executing the make command.

To install the audit and alarm manager, you need:

• the executable auditman, to exe cute you need to type « auditman » with no parameter, in the
directory /auditman,

• a configuration file audit.cfg which contains the IP address of the manager and agent in the same
directory as the executable, this file must have 2 lines:one for the agent and one for the manager
with the following information:

[AGENT]

Section1: EntityName;coordinates X;coordinates Y;Graphical object class;

Section2: XMP requestor/responder title and addresses. The AE-Title should be declared in form2. The
structure is: entityName;AP-title-form2;AE-qualifier-form2;psel;ssel;tsel;nadd;

[MANAGER]

Section1:EntityName;Graphical object class;

Section2: XMP requestor/responder title and addresses. The AE-Title should be declared in form2. The
structure is: entityName;AP-title-form2;AE-qualifier-from2;psel;ssel;tsel;nadd;

Here is an example:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 98 © 1998 Trumpet Consortium

[MANAGER]:
 auditman;1.9.2.134.145.116;1;
#0302;030100;0101;08005ac7442d;
[END]
[AGENTS]:
 Selfagent;220;460;1.9.2.134.145.116;1;
#0202;020200;0202;08005ac7442d;
[END]

• a directory « log » to create the log files in the same directory as the executable.

5.6.3 Runtime

To run the audit and alarm manager, you need:

• 2 generated packages (with ovpacgen): HP_DMI_PKG (from /opt/gdmo_mibs/ems.mib) and
AUD_PKG on the plateform HP Openview in the directory pacgen. In order to use these packages, it
is necessary to set the environmental variables:

setenv MP_PACKAGE_DIR $HOME/pacgen

setenv MP_PACKAGE_DIR_NAME package.dir

• the postmaster of the platform and the ovead agent need to be started.

5.6.4 Version / release history

Actually, the agent of the HP OpenView platform does not implement the behaviour of all the packages of
X721 GDMO. The Duration package is not implemented in the ovead agent, the GUI implements the
Duration package (week mask, intervals of day, ...), but since it is not implemented in the agent, setting these
attributes in the manager will have no effect on the behaviour.

5.6.5 Known bugs

None.

5.7 SELF

5.7.1 Hardware and software prerequisites

In order to run the Self component HP OpenView libraries should be in place. Also the directory /pacgen
should be present. In there the MIB resides.

5.7.2 Software installation

All the following sources are available:Selfagent1.c , Selfagent.h (MIB file) , tools.h, macrotools.h, AA.h,
tools.c, mactorools.c (additional libraries). Using the make command, the executable Self will be generated.

5.7.3 Runtime

The steps in order to run the agent are as follows:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 99 © 1998 Trumpet Consortium

1. The following environmental variables have to be set, thanks to the commands:

 setenv MP_PACKAGE_DIR $HOME/pacgen

 setenv MP_PACKAGE_DIR_NAME package.dir

2. The Self component is the audit and alarm agent. You can run at the /audagent directory by typing at
the prompt Self &. This command runs the agent at the background. The agent behaves as a server
process.

3. The input comes from the SMASC. There are 5 different client programs that contain instructions for
opening and closing the socket and sending notifications. The source code for these clients exists in
the /sockets directory under the prefix test_client. These lines of code should appear somewhere in the
code of SMASC.

4. So each time you run one of these clients the Self agent sends an event report to the manager. So while
the agent runs in the background if you type e.g. Client1 then the client sends the notification and the
agent preprocess it and sends the CMIP event report to the manager.

5. The client programs should be run from the same directory so they exist (the executables) in the
audagent directory. This is so, because the socket the server opens exists in the current directory where
the Self runs so the client program should read from it (the socket is a file). In the trials this should be
set to a fixed directory on the filing system of the machine where the SMASC and the agent run.

6. The Self code should always be compiled with the AA.h library. The SMASC code should be compiled
using the AA.c and AA.h files. These two exist in the /sockets directory and there is a Makefile of how
to use AA.c and AA.h. In this Makefile the test_client.c resembles the SMASC and the server.c
resembles the Self agent.

5.7.4 Version / release history

version 1.0 , November 1997.

5.7.5 Known bugs

None.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 100 © 1998 Trumpet Consortium

6. REFERENCES
[Gos95] The Java Language Environment, A White Paper, James Gosling, Henry

McGilton, Sun Microsystems, October 1995.
[Kern83] The ANSI C Programming Language, Brian Kernighan and Dennis Ritchie,

Prentice Hall, 1983.
[MISA-D3-A1] Initial MISA High Level Design, Annex A1: Xuser Interface Definition, ACTS

AC080 MISA Deliverable 3, Annex A1, September 1996
[MISA-D3-A2] Initial MISA High Level Design, Annex A2: Path Provisioning Ensemble, ACTS

AC080 MISA Deliverable 3, Annex A2, September 1996
[Orbix96a] Orbix 2 Programming Guide, IONA Technologies, October 1996.
[Orbix96b] The Orbix Architecture, IONA Technologies, November 1996.
[Orfali97] Client/Server Programming with JAVA and CORBA, Robert Orfali and Dan

Harkey, John Wiley & Sons, Inc., ISBN 0-471-16351-1, USA, 1997.
[OMG CORBA] http://www.omg.org
[OMG-970301] IDL/Java Language Mapping, Joint Revised Submission, OMG TC Document

orbos/97-03-01, 19/3/1997
[RFC 1508] RFC 1508, “Generic Security Service Application Program Interface”, September

1993
[Str86] The C++ Programming Language, Bjarne Stroustrup, Addison Wesley, 1986
[TRUMPET-D6] ACTS AC112 Trumpet Deliverable 6, NIL-Security Prototype Report, February

1997.
[TRUMPET-D8] ACTS AC112 TRUMPET Deliverable 8, "Detailed Component and Scenario

Design ", June. 1997
[TRUMPET-D9] ACTS AC112 TRUMPET Deliverable 9, " System Component Specification ",

October. 1997
[UML] Unified Modelling Language, RATIONAL Software Corporation,

http://www.rational.com/
[XOM] X/Open Company Limited & X.400 API Association, XOM, OSI-Abstract-Data

Manipulation API, CAE Specification, 1991

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 101 © 1998 Trumpet Consortium

7. ACRONYMS

API Application Programmer’s Interface
ATM Asynchronous Transfer Mode
BSP Binary Space Partition
CA Certification Authority
CIM Common Information Model
CIS Communications Interface System
CMIP Common Management Information

Protocol
CMIS Common Management Information Service
CMISE CMIS Element
CORB
A

Common Object Request Broker
Architecture

CPN Customer Premises Network
CRL Certificate Revocation List
DII Dynamic Invocation Interface
DN Distinguished Name
DSI Dynamic Skeleton Interface
EML Element Management Layer
EMS Event Management System
GBC Global Broadband Connection
GBCM Global Broadband Connectivity

Management
GDMO Guidelines for the Definition of Managed

Objects
GUI Graphical User Interface
HMM Hyper-Media Management
HPOV Hewlert-Packard Open View
HTML Hyper-Text Mark-up Language
HTTP Hyper-Text Transfer Protocol
IBC Integrated Broadband Connection
IDL Interface Definition Language
IIOP Internet Inter-ORB Protocol
IP Internet Protocol
JDBC Java DataBase Connectivity
JDK Java Development Kit
JLDAP Java LDAP
JMAPI Java Management API
LAN Local Area Network
LDAP Lite Weight Directory Access Protocol
LIF Local Interface
MIB Management Information Base
MO Managed Object
MOS Managed Object Server
NEL Network Element Layer
NEV Network Element View
NL Network Layer
NML Network Management Layer
NMS Network Management System
NV Network View
ODP Open Distributed Processing
OMG Object Management Group
ONP Open Network Provision
ORB Object Request Broker
OS Operation System

OSF Operation System Function
OSI Open Systems Interconnection
PC Personal Computer
PNO Public Network Operator
PTT Postal, Telegraph and Telephone
QAF Q Adapter Function
QATM ATM QAF
QoS Quality of Service
RDN Relative Distinguished Name
RMI Remote Method Invocation
SAC Service Access Control
SDH Synchronous Digital Hierarchy
SII Static Invocation Interface
SL Service Layer
SME Small and Medium Enterprise (Market)
SNC Subnetwork Connection (as in releaseSNC,

etc.)
SNMP Simple Network Management Protocol
SOHO Small Office Home Office (Market)
SSI Static Skeleton Interface
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TMN Telecommunications Management Network
TTP Trusted Third Party
UML Unified Modelling Language
URL Universal Resource Locator
VASP Value Added Service Provider
VP Virtual Path
VPI Virtual Path Identifier
WAN Wide Area Network
WPx Work Package Number x

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 102 © 1998 Trumpet Consortium

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 103 © 1998 Trumpet Consortium

8. APPENDIX A - CORBA/TMN GATEWAY INTERFACE
This section contains the complete set interface definitions for the CORBA/TMN gateway. Parts of this
interface definitions have been derived from the MISA Xuser GDMO specification (see Section 10)
according to the mapping rules have been developed within the Network Management Forum to map
between GDMO and IDL definitions. The specification is organised as follows:

• PNO Connection Manager: contains all the supported interfaces of the CORBA/TMN gateway
excluding the parameter types which are defined separately as Xuser types.

• VASP VPN Manager: contains the definition of the interfaces which is required from the VASP Control
Server.

• Xuser Types: Defines all the parameter types and its constituents.

• ASN.1 Types: Defines types definitions according to ASN.1 basic types.

8.1 PNO Connection Manager
/* $Id:$ */

/*
** Copyright (C) 1997
** by GMD - German National Research Center for Information Technology
**
** Permission to use, copy, modify, distribute, and sell this software
** and its documentation for any purpose is hereby granted without fee,
** provided that the above copyright notice appear in all copies and
** that both that copyright notice and this permission notice appear
** in supporting documentation, and that the name of GMD not be used in
** advertising or publicity pertaining to distribution of the software
** without specific, written prior permission. GMD makes no
** representations about the suitability of this software for any
** purpose. It is provided "as is" without express or implied warranty.
**
** GMD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
** ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
** SHALL GMD BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/

#ifndef _PnoConnectionMgr_IDL_
#define _PnoConnectionMgr_IDL_

#include "XuserTypes.idl"
#include "VpnManager.idl"

module PnoConnectionMgr {
/*
This IDL module defines the supported external interfaces of the component
PNO Connection Manager. The PNO Connection Manager requires the
external interface VpnManager::VPConnectionServiceEventHandler which
is needed to propagate Xuser event reports to the VASP. This interface
is defined by the IDL module VpnManager.
*/

//forward declaration of interfaces
interface VPConnectionServiceFactory;
interface VPConnectionService;
interface VPSubscriptionServiceFactory;
interface VPSubscriptionService;
interface VPConnectionServiceEventHandler;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 104 © 1998 Trumpet Consortium

//__________________ Interface: VPConnectionServiceFactory ______________________

interface VPConnectionServiceFactory {
 exception ServiceProfileNotFound {
 };

 VPConnectionService
 create(in XuserTypes::NameType pnoId,
 in VpnManager::VPConnectionServiceEventHandler eventHandler);

 void
 destroy(in VPConnectionService vpConnectionServiceRef);
};

//__________________ Interface: VPConnectionService ______________________

interface VPConnectionService {

 exception ConnectionRequestFailure {
 XuserTypes::ReasonType reason;
 };

 XuserTypes::ReserveConnectionResultType
 reserveConnection(
 in XuserTypes::ReserveConnectionInfoType connectionInformation)
 raises (ConnectionRequestFailure);

 void
 modifyConnection(
 in XuserTypes::ModifyConnectionInfoType connectionInformation)
 raises (ConnectionRequestFailure);

 void
 releaseConnection(
 in XuserTypes::ReleaseConnectionInfoType connectionInformation)
 raises (ConnectionRequestFailure);

};

//__________________ Interface: VPSubscriptionServiceFactory

interface VPSubscriptionServiceFactory {
 exception ServiceProfileNotFound {
 };

 VPSubscriptionService
 create(in XuserTypes::NameType pnoId);

 void
 destroy(in VPSubscriptionService subscriptionServiceRef);
};

//__________________ Interface: VPSubscriptionService ______________________

interface VPSubscriptionService {

 exception InvalidAccessPoint {
 };

 exception NotFound {
 };

 void
 createAccessPoint(in XuserTypes::IdentifierType userId,
 in XuserTypes::NameType accessPointId,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 105 © 1998 Trumpet Consortium

 in XuserTypes::E164AddressType E164Address)
 raises (InvalidAccessPoint);

 void
 deleteAccessPoint(in XuserTypes::IdentifierType userId,
 in XuserTypes::NameType accessPointId)
 raises (NotFound);
};

}; // End of Module

#endif

8.2 VP Connection Manager
/* $Id:$ */

/*
** Copyright (C) 1997
** by GMD - German National Research Center for Information Technology
**
** Permission to use, copy, modify, distribute, and sell this software
** and its documentation for any purpose is hereby granted without fee,
** provided that the above copyright notice appear in all copies and
** that both that copyright notice and this permission notice appear
** in supporting documentation, and that the name of GMD not be used in
** advertising or publicity pertaining to distribution of the software
** without specific, written prior permission. GMD makes no
** representations about the suitability of this software for any
** purpose. It is provided "as is" without express or implied warranty.
**
** GMD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
** ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
** SHALL GMD BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/

#include "XuserTypes.idl"

module VpnManager {
/*
*/

//__________________ Interface: VPConnectionServiceEventHandler

interface VPConnectionServiceEventHandler {

 oneway void
 activateConnectionNotify(in XuserTypes::NameType pnoId,
 in XuserTypes::NameType vpConnectionId,
 in XuserTypes::ActivationNotifInfoType status);

 oneway void
 releaseConnectionNotify(in XuserTypes::NameType pnoId,
 in XuserTypes::NameType vpConnectionId,
 in XuserTypes::ReleaseReasonType reason);

 oneway void
 connectionNotify(in XuserTypes::NameType pnoId,
 in XuserTypes::ReasonType reason,
 in ASN1_PrintableString eventInformation);
};

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 106 © 1998 Trumpet Consortium

}; // End of Module

8.3 ASN.1 Basic Types
//
// ASN1Types.idl
//

#ifndef _ASN1TYPES_IDL_
#define _ASN1TYPES_IDL_

// ASN.1 base types

typedef octet ASN1_Null;
//const ASN1_Null ASN1_NullValue = 0;
typedef boolean ASN1_Boolean;
typedef long ASN1_Integer;
typedef long ASN1_Integer64[2];
typedef float ASN1_Real;
typedef sequence<octet> ASN1_BitString; // PIDL defined
typedef sequence<octet> ASN1_OctetString;
typedef string ASN1_ObjectIdentifier;
typedef any ASN1_Any;
typedef any ASN1_DefinedAny;

struct ASN1_External {
 ASN1_ObjectIdentifier syntax;
 ASN1_DefinedAny data_value; // by syntax
};

// ASN.1 strings which may not contain binary zeros

typedef string ASN1_IA5String;
typedef string ASN1_NumericString;
typedef string ASN1_PrintableString;
typedef string ASN1_TeletexString;
typedef string ASN1_T61String;
typedef string ASN1_VideotexString;
typedef string ASN1_VisibleString;

typedef ASN1_VisibleString ASN1_GeneralizedTime; // PIDL defined
typedef ASN1_VisibleString ASN1_UTCTime;

// ASN.1 strings which may contain binary zeros

typedef sequence<octet> ASN1_BMPString;
typedef sequence<octet> ASN1_GeneralString;
typedef sequence<octet> ASN1_GraphicString;
typedef sequence<octet> ASN1_ISO646String;
typedef sequence<octet> ASN1_UniversalString;

typedef ASN1_GraphicString ASN1_ObjectDescriptor;

// define constants for ASN.1 Real infinity

//#include "ASN1Limits.idl"

#endif /* _ASN1TYPES_IDL_ */

8.4 Xuser Types
/* $Id:$ */

/*
** Copyright (C) 1997
** by GMD - German National Research Center for Information Technology
**

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 107 © 1998 Trumpet Consortium

** Permission to use, copy, modify, distribute, and sell this software
** and its documentation for any purpose is hereby granted without fee,
** provided that the above copyright notice appear in all copies and
** that both that copyright notice and this permission notice appear
** in supporting documentation, and that the name of GMD not be used in
** advertising or publicity pertaining to distribution of the software
** without specific, written prior permission. GMD makes no
** representations about the suitability of this software for any
** purpose. It is provided "as is" without express or implied warranty.
**
** GMD DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
** ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
** SHALL GMD BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/

#ifndef _XuserTypes_IDL_
#define _XuserTypes_IDL_

#include "ASN1Types.idl"

module XuserTypes {
/*
This IDL module defines the basic types of the CORBA adapter object to
the Xuser interface. The type definitions has been translated from
corresponding definitions of the MISA Xuser ASN.1 Module using
the translation algorithm resulted from JIDM (X/Open-NMF joint activity).
However, in some cases, the translated definitrions have been slightly
modified to simply their usage for the application programmer.
*/

//_______________________ Type: ActivationNotifInformation ______________________

/* Corresponding MISA-Xuser ASN.1 type definition

ActivationNotifInformation::= ENUMERATED { ok(0), ko(1)}
*/

enum ActivationNotifInfoType {ok, ko
};

//__________________ Type: NameType ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from M.3100)

NameType::= CHOICE {
 numericName INTEGER,
 pString GraphicString
}

NOTE: TRUMPET uses PrintableString instead of GraphicString to
simplify the handling of pString components. GraphicString is
mapped to sequence<octect> and PrintableString is mapped
to string. The latter implies the limitation that the sequence
of chars shall not include the null char (binary zeros for 8-bit chars).
*/

enum NameTypeChoice { numericName, pString };

union NameType switch(NameTypeChoice) {
 case numericName: ASN1_Integer numericName;
 case pString: ASN1_PrintableString pString;
};

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 108 © 1998 Trumpet Consortium

//__________________ Type: Time24Type ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from SMI):

Time24::= SEQUENCE {
 hour INTEGER (0..23),
 minute INTEGER (0..59)
}
*/

struct Time24Type{
 unsigned short hour;
 unsigned short minute;
};

//__________________ Type: DaySlot ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ETSI ETS300653):

GBCDaySlot::= SEQUENCE {
 slotBegin Time24,
 slotEnd Time24
}
*/

struct DaySlotType {
 Time24Type slotBegin;
 Time24Type slotEnd;
};

//__________________ Type: DailySchedule ______________________

/* Corresponding MISA-Xuser ASN.1 type definition
 (originally taken from ETSI ETS300653):

GBCDailySchedule::= SEQUENCE OF GBCDaySlot
*/

typedef sequence < DaySlotType > DailyScheduleType;

//_______________________ Type: WeekDay ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ETSI ETS300653):

WeekDay::= ENUMERATED {
 sunday (0),
 monday (1),
 tuesday (2),
 wednesday (3),
 thursday (4),
 friday (5),
 saturday (6)
}
*/

enum WeekDayType{sunday, monday, tuesday, wednesday, thursday, friday, saturday};

//_______________________ Type: StopTime ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from SMI):

StopTime::= CHOICE {
 specific GeneralizedTime,
 continual NULL
}

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 109 © 1998 Trumpet Consortium

*/

enum StopTimeTypeChoice{
 specificChoice,
 continualChoice
};

union StopTimeType switch(StopTimeTypeChoice){
 case specificChoice: ASN1_GeneralizedTime specific;
 case continualChoice: ASN1_Null continual;
};

//_______________________ Type: NA4StartTime ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ETSI ETS300653):

NA4StartTime::= StopTime
*/

typedef StopTimeType NA4StartTimeType;

//_______________________ Type: TimeWeek ______________________

/*
TimeWeek::= SEQUENCE {
 weekDay WeekDay,
 time Time24
}
*/

struct TimeWeekType {
 WeekDayType weekDay;
 Time24Type time;
};

//_______________________ Type: WeekSlot ______________________

/* Corresponding MISA-Xuser ASN.1 type definition
 (originally taken from ETSI ETS300653):

GBCWeekSlot::= SEQUENCE {
 slotBegin TimeWeek,
 slotEnd TimeWeek
}
*/

struct WeekSlotType {
 TimeWeekType slotBegin;
 TimeWeekType slotEnd;
};

//_______________________ Type: WeeklySchedule ______________________

/* Corresponding MISA-Xuser ASN.1 type definition
 (originally taken from ETSI ETS300653):

GBCWeeklySchedule::= SEQUENCE OF GBCWeekSlot
*/

typedef sequence < WeekSlotType > WeeklyScheduleType;

//_______________________ Type: OccasionalSlot ______________________

/* Corresponding MISA-Xuser ASN.1 type definition
 (originally taken from ETSI ETS300653):

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 110 © 1998 Trumpet Consortium

GBCOccasionalSlot::= SEQUENCE {
 slotBegin NA4StartTime,
 slotEnd StopTime
}
*/

struct OccasionalSlotType {
 NA4StartTimeType slotBegin;
 StopTimeType slotEnd;
};

//_______________________ Type: OccasionalSchedule ______________________

/* Corresponding MISA-Xuser ASN.1 type definition
 (originally taken from ETSI ETS300653):

GBCOccasionalSchedule::= SEQUENCE OF GBCOccasionalSlot
*/

typedef sequence < OccasionalSlotType > OccasionalScheduleType;

//__________________ Type: E164Address ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

E164Address::= PrintableString
*/

typedef ASN1_PrintableString E164AddressType;

//__________________ Type: Identifier ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

Identifier::= INTEGER
*/

typedef ASN1_Integer IdentifierType;

//_______________________ Type: ProtectionLevel ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ProtectionLevel::= ENUMERATED {
 protected (0),
 unprotected-lowpriority (1),
 unprotected-hightpriority (2)}
*/

enum ProtectionLevelType {
 protected, unprotected_lowpriority, unprotected_hightpriority
};

//__________________ Type: Reason ______________________

typedef NameType ReasonType;

/* Corresponding MISA-Xuser ASN.1 type definition:

Reason::= NameType
*/

//__________________ Type: Schedule ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 111 © 1998 Trumpet Consortium

GBCSchedule::= SEQUENCE {
 startTime NA4StartTime,
 stopTime StopTime,
 CHOICE { durationSchedule [0] NULL,
 dailySchedule [1] GBCDailySchedule,
 weeklySchedule [2] GBCWeeklySchedule,
 monthlySchedule [3] GBCMonthlySchedule,
 occasionalSchedule [4] GBCOccasionalSchedule
}
*/

enum ScheduleItemTypeChoice {
 durationSchedule,
 dailySchedule,
 weeklySchedule,
 occasionalSchedule
};

union ScheduleItemType switch(ScheduleItemTypeChoice) {
 case durationSchedule: ASN1_Null durationSchedule;
 case dailySchedule: DailyScheduleType dailySchedule;
 case weeklySchedule: WeeklyScheduleType weeklySchedule;
 case occasionalSchedule: OccasionalScheduleType occasionalSchedule;
};

struct ScheduleType {
 NA4StartTimeType startTime;
 StopTimeType stopTime;
 ScheduleItemType scheduleChoice;
};

union ScheduleTypeOpt switch(boolean) {
 case TRUE: ScheduleType schedule;
 default: ASN1_Null undefined;
};

//_______________________ Type: QosClass ______________________

/* Corresponding MISA-Xuser ASN.1 type definition
 (adopted from ATMforum M4):

QoSClass::= INTEGER {
 cbr(0),
 rt-vbr(1),
 nrt-vbr(2),
 ubr(3),
 abr(4),
 sdh-cbr(5)
}

NOTE: sdh-cbr does not apply for TRUMPET

*/

typedef ASN1_Integer QoSClassType;

const QoSClassType cbr=0;
const QoSClassType rt_vbr=1;
const QoSClassType nrt_vbr=2;
const QoSClassType ubr=3;
const QoSClassType abr=4;
const QoSClassType sdh_cbr=5;

//_______________________ Type: MaxNumVp ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 112 © 1998 Trumpet Consortium

MaxNumVp::= INTEGER
*/

typedef ASN1_Integer MaxNumVpType;

//_______________________ Type: PeakBitRate ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

PeakBitRate::= INTEGER
*/

typedef ASN1_Integer PeakBitRateType;

//_______________________ Type: MaxCellTransferDelay ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

MaxCellTransferDelay::= SEQUENCE {
 acceptableMaxCTD [0] INTEGER OPTIONAL,
 cumulativeMaxCTD [1] INTEGER OPTIONAL
 }
*/

union AcceptableMaxCTDTypeOpt switch(boolean) {
 case TRUE: ASN1_Integer acceptableMaxCTD;
 default: ASN1_Null undefined;
};

union CumulativeMaxCTDTypeOpt switch(boolean) {
 case TRUE: ASN1_Integer cumulativeMaxCTD;
 default: ASN1_Null undefined;
};

struct MaxCellTransferDelayType {
 AcceptableMaxCTDTypeOpt acceptableMaxCTD;
 CumulativeMaxCTDTypeOpt cumulativeMaxCTD;
};

//_______________________ Type: PeakToPeakCellDelayVariation

/* Corresponding MISA-Xuser ASN.1 type definition:

PeakToPeakCellDelayVariation::= SEQUENCE {
 acceptablePeakToPeakCDV [0] INTEGER OPTIONAL,
 cumulativePeakToPeakCDV [1] INTEGER OPTIONAL }
*/

union CDVTypeOpt switch(boolean) {
 case TRUE: ASN1_Integer acceptablePeakToPeakCDV;
 default: ASN1_Null undefined;
};

struct PeakToPeakCellDelayVariationType{
 CDVTypeOpt acceptablePeakToPeakCDV;
 CDVTypeOpt cumulativePeakToPeakCDV;
};

//__________________ Type: CellLossRatio ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

CellLossRatio::= INTEGER (1..15)
*/

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 113 © 1998 Trumpet Consortium

typedef unsigned short CellLossRatioType;

//__________________ Type: MaxDelay ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

MaxDelay::= INTEGER (1..15)
*/

typedef ASN1_Integer MaxDelayType;

//__________________ Type: PeakCellRate ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T I.751):

PeakCellRate::= SEQUENCE {
 peakCellRateCLP0plus1 [0] INTEGER OPTIONAL,
 peakCellRateCLP0 [1] INTEGER OPTIONAL
}
*/

union PeakCellRateCLPTypeOpt switch(boolean){
 case TRUE: ASN1_Integer peakCellRate;
 default: ASN1_Null undefined;
};

struct PeakCellRateType {
 PeakCellRateCLPTypeOpt peakCellRateCLP0plus1;
 PeakCellRateCLPTypeOpt peakCellRateCLP0;
};

//__________________ Type: MaxBurstSize ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T I.751):

/*
MaxBurstSize::= SEQUENCE {
 maxBurstSizeCLP0plus1 [0] INTEGER OPTIONAL,
 maxBurstSizeCLP0 [1] INTEGER OPTIONAL
}
*/

union MaxBurstSizeCLPTypeOpt switch(boolean) {
 case TRUE: ASN1_Integer maxBurstSize;
 default: ASN1_Null undefined;
};

struct MaxBurstSizeType{
 MaxBurstSizeCLPTypeOpt maxBurstSizeCLP0plus1;
 MaxBurstSizeCLPTypeOpt maxBurstSizeCLP0;
};

//__________________ Type: MinimumCellRate ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T I.751):

MinimumCellRate:= PeakCellRate
*/

typedef ASN1_Integer MinimumCellRateType;

//__________________ Type: SustainableCellRate ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T I.751):

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 114 © 1998 Trumpet Consortium

/*
SustainableCellRate::= SEQUENCE {
 sustainableCellRateCLP0plus1 [0] INTEGER OPTIONAL,
 sustainableCellRateCLP0 [1] INTEGER OPTIONAL
}
*/

union SustainableCellRateCLPTypeOpt switch(boolean) {
 case TRUE: ASN1_Integer sustainableCellRate;
 default: ASN1_Null undefined;
};

struct SustainableCellRateType {
 SustainableCellRateCLPTypeOpt sustainableCellRateCLP0plus1;
 SustainableCellRateCLPTypeOpt sustainableCellRateCLP0;
};

//__________________ Type: FloatingPointCoding ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T I.751):

/*
FloatingPointCoding::= SEQUENCE {
 e INTEGER (0..31),
 w INTEGER (0..31)
}
*/

struct FloatingPointCodingType{
 unsigned short e;
 unsigned short w;
};

//__________________ Type: CDVToleranceCoding ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T I.751):

/*
CDVToleranceCoding::= CHOICE {
 integerCoding INTEGER,
 floatingPointCoding FloatingPointCoding
}
*/

enum CDVToleranceCodingTypeChoice{
 integerCodingChoice,
 floatingPointCodingChoice};

union CDVToleranceCodingType switch(CDVToleranceCodingTypeChoice) {
 case integerCodingChoice: ASN1_Integer integerCoding;
 case floatingPointCodingChoice: FloatingPointCodingType floatingPointCoding;
};

//__________________ Type: CDVTolerance ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T I.751):

/*
CDVTolerance::= SEQUENCE {
 sustainableCellRateCLP0plus1 [0] INTEGER OPTIONAL,
 sustainableCellRateCLP0 [1] INTEGER OPTIONAL
}
*/

union CDVToleranceCLPTypeOpt switch(boolean) {
 case TRUE: CDVToleranceCodingType sustainableCellRate;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 115 © 1998 Trumpet Consortium

 default: ASN1_Null undefined;
};

struct CDVToleranceType{
 CDVToleranceCLPTypeOpt cellDelayVariationToleranceCLP0plus1;
 CDVToleranceCLPTypeOpt cellDelayVariationToleranceCLP0;
};

//_______________________ Type: Directionality ______________________

/* Corresponding MISA-Xuser ASN.1 type definition (from ITU-T M.3100):

Directionality::= ENUMERATED {
 unidirectional(0),
 bidirectional(1)
}
*/

enum DirectionalityType {unidirectional, bidirectional};

//__________________ Type: BlockErrorRate ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

BlockErrorRate::= INTEGER
*/

typedef ASN1_Integer BlockErrorRateType;

//__________________ Type: QoSSequenceType ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ATMSpecificParameters::= SEQUENCE {
 qosClass [0] QoSClass OPTIONAL,
 maxCTD [1] MaxCellTransferDelay OPTIONAL,
 peakToPeakCDV [2] PeakToPeakCellDelayVariation OPTIONAL,
 cellLossRatio [3] CellLossRatio OPTIONAL,
 peakCellRate [4] PeakCellRate OPTIONAL,
 sustainableCellRate [5] SustainableCellRate OPTIONAL,
 pcrCDVTolerance [6] CDVTolerance OPTIONAL,
 scrCDVTolerance [7] CDVTolerance OPTIONAL,
 maxBurstSize [8] MaxBurstSize OPTIONAL,
 minCellRate [9] MinimumCellRate OPTIONAL }

APPSQoSSequence::= SEQUENCE {
 forward [0] ATMSpecificParameters OPTIONAL,
 backward [1] ATMSpecificParameters OPTIONAL
}

APPSQoSSequence::= SEQUENCE {
 forward [0] ATMSpecificParameters OPTIONAL,
 backward [1] ATMSpecificParameters OPTIONAL
}

GBCQoSSequence::= SEQUENCE {
 aPPSQoSSequence [0] APPSQoSSequence OPTIONAL,
 sPPSQoSSequence [1] SPPSQoSSequence OPTIONAL
}

Note: APPSQoSSequence is mapped directly onto GBCQoSSequenceType since
SDH QoS parameters are not required for TRUMPET (SPPSQoSSequence)
*/

union QoSClassTypeOpt switch(boolean) {
 case TRUE: QoSClassType qosClass;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 116 © 1998 Trumpet Consortium

 default: ASN1_Null undefined;
};

union MaxCTDTypeOpt switch(boolean) {
 case TRUE: MaxCellTransferDelayType maxCTD;
 default: ASN1_Null undefined;
};

union PeakToPeakCDVTypeOpt switch(boolean) {
 case TRUE: PeakToPeakCellDelayVariationType peakToPeakCDV;
 default: ASN1_Null undefined;
};

union CellLossRatioTypeOpt switch(boolean) {
 case TRUE: CellLossRatioType cellLossRatio;
 default: ASN1_Null undefined;
};

union PeakCellRateTypeOpt switch(boolean) {
 case TRUE: PeakCellRateType peakCellRate;
 default: ASN1_Null undefined;
};

union SustainableCellRateTypeOpt switch(boolean){
 case TRUE: SustainableCellRateType sustainableCellRate;
 default: ASN1_Null undefined;
};

union PcrCDVToleranceTypeOpt switch(boolean) {
 case TRUE: CDVToleranceType pcrCDVTolerance;
 default: ASN1_Null undefined;
};

union ScrCDVToleranceTypeOpt switch(boolean) {
 case TRUE: CDVToleranceType scrCDVTolerance;
 default: ASN1_Null undefined;
};

union MaxBurstSizeTypeOpt switch(boolean) {
 case TRUE: MaxBurstSizeType maxBurstSize;
 default: ASN1_Null undefined;
};

union MinCellRateTypeOpt switch(boolean) {
 case TRUE: MinimumCellRateType minCellRate;
 default: ASN1_Null undefined;
};

struct ATMSpecificParametersType {
 QoSClassTypeOpt qosClass;
 MaxCTDTypeOpt maxCTD;
 PeakToPeakCDVTypeOpt peakToPeakCDV;
 CellLossRatioTypeOpt cellLossRatio;
 PeakCellRateTypeOpt peakCellRate;
 SustainableCellRateTypeOpt sustainableCellRate;
 PcrCDVToleranceTypeOpt pcrCDVTolerance;
 ScrCDVToleranceTypeOpt scrCDVTolerance;
 MaxBurstSizeTypeOpt maxBurstSize;
 MinCellRateTypeOpt minCellRate;
};

union ATMQosTypeOpt switch(boolean) {
 case TRUE: ATMSpecificParametersType parameters;
 default: ASN1_Null undefined;
};

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 117 © 1998 Trumpet Consortium

struct QoSSequenceType {
 ATMQosTypeOpt forward;
 ATMQosTypeOpt backward;
};

union QoSSequenceTypeOpt switch(boolean) {
 case TRUE: QoSSequenceType qosSequence;
 default: ASN1_Null undefined;
};

//_______________________ Type: RoutingCriteria ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

RoutingCriteria::= NameType
*/

typedef NameType RoutingCriteriaType;

//__________________ Type: ReserveConnectionInformation ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ReserveGBCConnectionInformation::= SEQUENCE {
 gBCMUserId Identifier,
 sourceE164Address [0] E164Address OPTIONAL,
 destinationE164Address E164Address,
 connectionProtectionLevel [1] ProtectionLevel OPTIONAL,
 routingCriteria RoutingCriteria OPTIONAL,
 gBCType GBCType,
 gBCDirectionality Directionality
 gBCSchedule GBCSchedule,
 gBCPPSparameters GBCQoSSequence OPTIONAL }

NOTE: The GBCType component is not mapped since TRUMPET only
uses/supports ATM Path Provisioning Service (APPS)

*/

union E164AddressTypeOpt switch(boolean) {
 case TRUE: E164AddressType sourceE164Address;
 default: ASN1_Null undefined;
};

union ProtectionLevelTypeOpt switch(boolean) {
 case TRUE: ProtectionLevelType connectionProtectionLevel;
 default: ASN1_Null undefined;
};

union RoutingCriteriaTypeOpt switch(boolean) {
 case TRUE: RoutingCriteriaType routingCriteria;
 default: ASN1_Null undefined;
};

struct ReserveConnectionInfoType {
 IdentifierType userId;
 E164AddressTypeOpt sourceE164AddressOpt;
 E164AddressType destinationE164Address;
 ProtectionLevelTypeOpt connectionProtectionLevelOpt;
 RoutingCriteriaTypeOpt routingCriteriaOpt;
 DirectionalityType directionality;
 ScheduleType schedule;
 QoSSequenceTypeOpt qosParametersOpt;
};

//__________________ Type: ReserveConnectionResult ______________________

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 118 © 1998 Trumpet Consortium

/* Corresponding MISA-Xuser ASN.1 type definition:

ReserveGBCConnectionResult::= CHOICE {
 successful [0] SEQUENCE {
 gBCConnectionId GBCConnectionId,
 gBCAccessPointId GBCAccessPointId OPTIONAL},
 unsuccessfull [1] Reason
}
*/

union AccessPointIdTypeOpt switch(boolean) {
 case TRUE: NameType accessPointId;
 default: ASN1_Null undefined;
};

struct ReserveConnectionResultType {
 AccessPointIdTypeOpt accessPointIdOpt;
 NameType connectionId;
};

/*
NOTE: The type mapping only reflects the results returned on
successful operation of the reserveGBCConnection ACTION operation.
Failures will be indicated through an exception of type
ConnectionRequestFailure which is associated with the
reserveConnection operation.
*/

//__________________ Type: ModifyConnectionInformation ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ModifyGBCConnectionInformation::= SEQUENCE {
 gBCMUserId Identifier,
 gBCConnectionId GBCConnectionId,
 gBCSchedule [0] GBCSchedule OPTIONAL,
 gBCPPSparameters [1] GBCQoSSequence OPTIONAL}
*/

struct ModifyConnectionInfoType {
 IdentifierType userId;
 NameType connectionId;
 ScheduleTypeOpt durationOpt;
 QoSSequenceTypeOpt qosParametersOpt;
};

//__________________ Type: ModifyConnectionResult ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ModifyGBCConnectionResult::= CHOICE {
 successful NULL,
 unsuccessfull Reason }
*/

/*
NOTE: No type definition is needed since the modifyGBCConnection ACTION operation
returns NULL on successful completion. Failures will be indicated through an
exception of type ConnectionRequestFailure which is associated with the
modifyConnection operation.
*/

//__________________ Type: ReleaseConnectionInformation ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 119 © 1998 Trumpet Consortium

ReleaseGBCConnectionInformation::= SEQUENCE {
 gBCMUserId Identifier,
 gBCConnectionId GBCConnectionId,
 reason Reason }
*/

struct ReleaseConnectionInfoType{
 IdentifierType userId;
 NameType connectionId;
 ReasonType reason;
};

//__________________ Type: ReleaseConnectionResult ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ReleaseGBCConnectionResult::= CHOICE {
 successful NULL,
 unsuccessfull Reason }
*/

/*
NOTE: No type definition is needed since the modifyGBCConnection ACTION operation
returns NULL on successful completion. Failures will be indicated through an
exception of type ConnectionRequestFailure which is associated with the
modifyConnection operation.
*/

//_______________________ Type: ReleaseReason ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ReleaseReason::= CHOICE {
 fromPNO ENUMERATED {enduserRelease (0), timeout (1),
 pnoRelease (2), other (3) },
 fromOriginCPN PrintableString }
*/

enum ReleaseReasonfromPNOChoiceType {
 enduserRelease, timeout, pnoRelease, other
};

enum ReleaseReasonTypeChoice {
 fromPNOChoice, fromOriginCPNChoice
};

union ReleaseReasonType switch(ReleaseReasonTypeChoice) {
 case fromPNOChoice: ReleaseReasonfromPNOChoiceType fromPNO;
 case fromOriginCPNChoice: ASN1_PrintableString fromOriginCPN;
};

//_______________________ Type: ReleaseNotifInformation ______________________

/* Corresponding MISA-Xuser ASN.1 type definition:

ReleaseNotifInformation::= ReleaseReason
*/

typedef ReleaseReasonType ReleaseNotifInfoType;

}; // End of Module

 #endif

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 120 © 1998 Trumpet Consortium

9. APPENDIX B - CORBA/TMN GATEWAY LIBRARY
Different functions are offered by this library, allowing the gateway to handle all the requests sent by the
VASP Control Server.

Some of these functions are available to allow a correct initialization with the HP-OV postmaster daemon:

FUNCTION initManager

SYNOPSIS
int initManager(void)

DESCRIPTION

initialization of all required HP OpenView data.

ARGUMENTS

∅

RESULTS

returns 0 if success, -1 if not.

FUNCTION exitManager

SYNOPSIS
void exitManager()

DESCRIPTION

release and free all data allocated for HP OpenView use.

ARGUMENTS

∅

RESULTS

∅

FUNCTION getManagerFileDescriptor

SYNOPSIS
int getManagerFileDescriptor()

DESCRIPTION

retrieves the file descriptor on HP OpenView postmaster daemon, in order to process asynchronous events
coming from the Xuser agent.

ARGUMENTS

∅

RESULTS

On success, returns a filedescriptor value to the HPOV postmaster daemon..

In case of error, returns -1.

FUNCTION processEventFromAgent

SYNOPSIS
void processEventFromAgent()

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 121 © 1998 Trumpet Consortium

DESCRIPTION

processing of an incoming event sent by the Xuser agent to the manager.

ARGUMENTS

∅

RESULTS

∅

The next functions are called in the implementation side of the CORBA part of the gateway. Precisely, each
function is used appropriately in the methods of the class PnoConnectionMgImpl, when the VASP Control
Server issues a request:

FUNCTION processReserveConnection

SYNOPSIS
XuserTypes::ReserveConnectionResultType *
processReserveConnection (const XuserTypes::ReserveConnectionInfoType
connectionInfo)

DESCRIPTION

processes a mapping from the C++ infornation given by the parameter to a C structure, and sends to the
Xuser agent the ReserveConnection request with XOM/XMP facilities. After receiving a successful result,
processes a mapping from the C Xuser agent result to a C++ gateway result and returns it. Then, the
CORBA server side is able now to translate this in a required form, understandable by the CORBA client
(the VASP Control Server written in Java).

ARGUMENTS

connectionInfo , composed of the following attributes:

• userId: User Id.

• sourceE164AddressOpt: optional source address.

• destinationE164Address: destination address.

• connectionProtectionLevelOpt: optional protection level.

• RoutingCriteriaOpt: optional routing criteria.

• Directionality: directionality.

• Schedule: schedule.

• qosParametersOpt: optional QOS parameters.

RESULTS

In case of success, returns a memory block containing all relevant information sent by the Xuser agent, after
a ReserveConnection CMIP request, with the following attributes:

• accessPointIdOpt: optional access point Id.

• connectionId: connection Id.

In case of error, an exception is raised, of type ConnectionRequestFailure, and containing the reason of the
failure.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 122 © 1998 Trumpet Consortium

FUNCTION processModifyConnection

SYNOPSIS
void processModifyConnection (const XuserTypes::ModifyConnectionInfoType
connectionInfo)

DESCRIPTION

process a mapping from the C++ infornation given by the parameter to a C structure, and sends to the Xuser
agent the ModifyConnection request with XOM/XMP facilities. After receiving a successful result, does
nothing else.

ARGUMENTS

connectionInfo , composed of the following attributes:

• userId: User Id.

• connectionId: connection Id.

• ScheduleOpt: optional schedule.

• qosParametersOpt: optional QOS parameters.

RESULTS

In case of success, nothing is returned. In case of error, an exception is raised, of type
ConnectionRequestFailure, and containing the reason of the failure.

FUNCTION processReleaseConnection

SYNOPSIS
void processReleaseConnection (const
XuserTypes::ReleaseConnectionInfoType connectionInfo);

DESCRIPTION

process a mapping from the C++ infornation given by the parameter to a C structure, and sends to the Xuser
agent the ReleaseConnection request with XOM/XMP facilities. After receiving a successful result, does
nothing else.

ARGUMENTS

connectionInfo , composed of the following attributes:

• userId: User Id.

• connectionId: connection Id.

RESULTS

In case of success, nothing is returned. In case of error, an exception is raised, of type
ConnectionRequestFailure, and containing the reason of the failure.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 123 © 1998 Trumpet Consortium

10. APPENDIX C - XUSER INTERFACE DEFINITION
This section contains the complete specification of the external interface to the TRUMPET PNO Xuser
Agent. According to the collaboration between the TRUMPET and MISA project this specification has
been adopted from MISA [MISA-D3-A1]. The GDMO definitions included below represent the latest
revision of the MISA Xuser specification which has been used as a basis for the implementation of the PNO
Xuser Agent and the VASP CORBA/TMN gateway in TRUMPET.

-- Filename/type = xuser.mib
-- Created automatically by MMF generator
--
-- Xuser Interface GDMO Specification
--
-- Editor: G. Liu, T. Zhang (GMD FOKUS)
--
-- DEPENDENCIES:
-- "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992"
-- "ITU-T Rec. M.3100 (1995)"
-- "I-ETS 300 653: 1996"
-- "ITU-T Rec. I.751 (1996)"
-- "ITU-T Rec. X.790 (1995)"
--
-- REVISION INFORMATION
--
-- Revision 2.3 1997/11/08 00:00:00 liu
-- Use the registration tree reserved for MISA Xuser
-- Change the syntax of gBCMUserId from INTEGER to M.3100 NameType
-- Enhance some NOTIFICATION definitions
--
-- Revision 2.2 1997/10/12 00:00:00 liu
-- Conclude the concrete class identifiers (integer) for QoSClass
-- Enhance some BEHAVIOUR definitions
-- Add an explicit directionality field for GBC reservation
-- Replace some text for more appropriate expressions
--
-- Revision 2.1 1997/09/26 00:00:00 liu
-- Modify definitions for GBC scheduling, GBC QoS parameters
-- and GBC Traffic parameters
--
-- Revision 2.0 1997/09/04 00:00:00 liu
-- Insert high level Probable Cause according to AC1 definitions
-- Add ReserveNotifReply for destination GBCMuser checking
--
-- Revision 1.6 1997/07/30 00:00:00 liu
-- Modify some definitions for Fault Management Ensemble
-- Modify some definitions for QoS issues
--
-- Revision 1.5 1997/02/17 00:00:00 zhang
-- Modify some BEHAVIOUR descriptions responding to Dieter's
--
-- Revision 1.4 1996/12/17 00:00:00 liu
-- Replace some identifiers, labels and references for
-- the globally unique identities in the MISA specifications.
--
-- Revision 1.3 1996/12/16 00:00:00 liu/zhang
-- Extent the functionalities to support the destination GUI etc.
--
-- Revision 1.2 1996/11/14 00:00:00 liu
-- Support the specification of RP1 interface which is out of
-- the scope of the Xuser Protocol itself.
-- This part should be struck off in the formal version of the
-- Xuser GDMO specification.
--

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 124 © 1998 Trumpet Consortium

-- Revision 1.1 1996/10/14 00:00:00 liu
--
-- Revision 1.0 1996/09/30 00:00:00 liu
--
-- Revision 0.0 1996/09/27 00:00:00 liu
-- Construct this file from the MISA resource provided by zhang
--
--
-- OTHER CHANGES
-- Deviations from original:
-- 16 DEC 96: aro (ZRL)
-- - define statements added for OID resolution.
-- - changed all references to X.721, M.3100 to use the format shown above
-- under Dependancies.
-- - Added reference to "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992"
-- for attribute logRecordId, logId and class log, alarmRecord
-- - globally replaced gBCServiceProvider with gBCMServiceProvider

-- Index
--
 -- ASN.1 Module
 -- MANAGED OBJECT CLASS
 -- PACKAGE
 -- ATTRIBUTE
 -- ACTION
 -- NOTIFICATION
 -- BEHAVIOUR
 -- NAME BINDING

-- **
 -- MANAGED OBJECT CLASS
-- **

gBCServiceProvider MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":system;
 CHARACTERIZED BY
 gBCServiceProviderPackage,
 gBCMServicePerformerPackage;
REGISTERED AS {misaXuserObjectClass 1};

gBCMUser MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992": top;
 CHARACTERIZED BY
 gBCMUserPackage,
 gBCMReconfigurationPackage;
 CONDITIONAL PACKAGES
 gBCMTroubleReportFormatObjectPtrPkg
 PRESENT IF "an instance supports it.";
REGISTERED AS {misaXuserObjectClass 2};

gBCMUserServiceProfile MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992": top;
 CHARACTERIZED BY
 gBCMUserServiceProfilePackage;
REGISTERED AS {misaXuserObjectClass 3};

gBCAccessPoint MANAGED OBJECT CLASS
 DERIVED FROM "I-ETS 300 653: 1996": networkTP;
 CHARACTERIZED BY
 gBCAccessPointPackage,
 gBCAccessPointAlarmReportPackage;
 CONDITIONAL PACKAGES
 gBCAccessPointNotifPackage
 PRESENT IF "It is supported.";
REGISTERED AS {misaXuserObjectClass 4};

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 125 © 1998 Trumpet Consortium

gBCConnection MANAGED OBJECT CLASS
 DERIVED FROM "I-ETS 300 653: 1996": connectivity;
 CHARACTERIZED BY
 gBCConnectionPackage,
 gBCAlarmReportPackage,
 "ITU-T Rec. M.3100 (1995)": createDeleteNotificationsPackage;
 CONDITIONAL PACKAGES
 gBCPPSParameterPackage
 PRESENT IF "The GBCConnection has SDH/ATM specific
parameters";

REGISTERED AS {misaXuserObjectClass 5};

gBCTroubleReport MANAGED OBJECT CLASS
 DERIVED FROM "ITU-T Rec. X.790 (1995)": troubleReport;
 CHARACTERIZED BY
 gBCTroubleReportPkg,
 "ITU-T Rec. X.790 (1995)": trObjectCreationDeletionPkg,
 "ITU-T Rec. X.790 (1995)": trAttributeValueChangePkg;
 CONDITIONAL PACKAGES
 "ITU-T Rec. X.790 (1995)": trTroubleClearancePersonAttributePkg
 PRESENT IF "It is necessary to record the information",
 "ITU-T Rec. X.790 (1995)": trRelatedTroubleReportListPkg
 PRESENT IF "One trouble has certain close relationship
with others";
REGISTERED AS {misaXuserObjectClass 6};

reconfigurationRecord MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":
eventLogRecord;
 CONDITIONAL PACKAGES
 "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":
eventTimePackage
 PRESENT IF "The event time parameter was presenting in the
received RequiredReconfigurationNotification event report";
REGISTERED AS {misaXuserObjectClass 7};

troubleCreationRecord MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":
objectCreationRecord;
REGISTERED AS {misaXuserObjectClass 8};

troubleDeletionRecord MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":
objectDeletionRecord;
REGISTERED AS {misaXuserObjectClass 9};

gBCMTroubleNotificationRecord MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":
eventLogRecord;
 CHARACTERIZED BY gBCMTroubleNotificationRecordPkg PACKAGE
 ATTRIBUTES
 "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992": eventTime GET,
 "ITU-T Rec. X.790 (1995)": managedObjectInstance GET,
 "ITU-T Rec. X.790 (1995)": receivedTime GET,
 "ITU-T Rec. X.790 (1995)": troubleFound GET;;;
 CONDITIONAL PACKAGES gBCMTroubleTypePkg
 PRESENT IF "an instance supports it.";
REGISTERED AS {misaXuserObjectClass 10};

gBCService MANAGED OBJECT CLASS
 DERIVED FROM "ITU-T Rec. X.790 (1995)": service;
 CHARACTERIZED BY
 gBCServicePkg PACKAGE
 BEHAVIOUR

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 126 © 1998 Trumpet Consortium

 gBCServiceBehaviour BEHAVIOUR
 DEFINED AS "gBCService is a class of managed objects
 that represents the offerings from a GBC service
 provider which supplies APPS(ATM Path Provisioning
 Service) and/or SPPS(SDH Path Provisioning Service)
 to one or more customers.";;
 ATTRIBUTES
 gBCServiceDescription GET;;;
 CONDITIONAL PACKAGES
 gBCMTroubleReportFormatObjectPtrPkg
 PRESENT IF "an instance supports it.";
REGISTERED AS {misaXuserObjectClass 11};

gBCTroubleReportFormatDefn MANAGED OBJECT CLASS
 DERIVED FROM "ITU-T Rec. X.790 (1995)": troubleReportFormatDefn;
 CONDITIONAL PACKAGES
 gBCTroubleFormatPackage
 PRESENT IF "an instance supports it.";
REGISTERED AS {misaXuserObjectClass 12};

gBCAlarmRecord MANAGED OBJECT CLASS
 DERIVED FROM "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":
alarmRecord;
 CONDITIONAL PACKAGES
 gBCAlarmTypePackage
 PRESENT IF "an instance supports it.";
REGISTERED AS {misaXuserObjectClass 13};

-- **
 -- PACKAGE
-- **

gBCServiceProviderPackage PACKAGE
 BEHAVIOUR gBCServiceProviderBehaviour;
 ATTRIBUTES
 administrativeAddress GET-REPLACE;
REGISTERED AS {misaXuserPackage 1};

gBCMServicePerformerPackage PACKAGE
 BEHAVIOUR gBCMServicePerformerBehaviour;
 ACTIONS
 reserveGBCConnection,
 modifyGBCConnection,
 releaseGBCConnection,
 removeSubscription;
REGISTERED AS {misaXuserPackage 2};

gBCMUserPackage PACKAGE
 BEHAVIOUR gBCMUserBehaviour;
 ATTRIBUTES
 gBCMUserId GET,
 gBCMUserCategory GET-REPLACE,
 gBCMUserAdminAddress GET-REPLACE;
REGISTERED AS {misaXuserPackage 3};

gBCMUserServiceProfilePackage PACKAGE
 BEHAVIOUR gBCMUserServiceProfileBehaviour;
 ATTRIBUTES
 serviceProfileId GET,
 gBCMServiceType GET-REPLACE;
REGISTERED AS {misaXuserPackage 4};

gBCAccessPointPackage PACKAGE
 BEHAVIOUR gBCAccessPointBehaviour;
 ATTRIBUTES
 gBCAccessPointId GET,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 127 © 1998 Trumpet Consortium

 e164Address GET,
 gBCConnectionPtr GET,
 serviceProfilePtr GET-REPLACE,
 qoSLimitsSequence GET-REPLACE;
REGISTERED AS {misaXuserPackage 5};

gBCConnectionPackage PACKAGE
 BEHAVIOUR gBCConnectionBehaviour;
 ATTRIBUTES
 gBCSchedule GET-REPLACE,
 connectionProtectionLevel GET-REPLACE,
 routingCriteria GET-REPLACE,
 gBCConnectionId GET,
 gBCAccessPointPtr GET,
 listOfDestAddr GET-REPLACE;
 NOTIFICATIONS
 activationNotif,
 deactivationNotif,
 releaseNotif,
 modifyGBCConnectionNotif;
REGISTERED AS {misaXuserPackage 6};

gBCPPSParameterPackage PACKAGE
 BEHAVIOUR gBCPPSParameterBehaviour;
 ATTRIBUTES
 gBCQoSSequence GET-REPLACE;
REGISTERED AS {misaXuserPackage 7};

gBCMReconfigurationPackage PACKAGE
 BEHAVIOUR
 gBCMReconfigurationBehaviour BEHAVIOUR
 DEFINED AS "In case of requiring reconfiguration on the
GBCM user's side due to the fault affecting the managed resources, a
requiredReconfigurationNotif is emitted to indicate the essential reconfiguration.
";;
 NOTIFICATIONS
 requiredReconfigurationNotif;
REGISTERED AS {misaXuserPackage 8};

gBCTroubleFormatPackage PACKAGE
 BEHAVIOUR
 gBCMTroubleFormatBehaviour BEHAVIOUR
 DEFINED AS "In this package, there is only one attribute
troubleReportFormat which contains the templates for trouble reporting. Its value
can be updated by the manager.";;
 ATTRIBUTES
 troubleReportFormat GET-REPLACE;
REGISTERED AS {misaXuserPackage 9};

gBCAccessPointAlarmReportPackage PACKAGE
 BEHAVIOUR
 gBCAccessPointAlarmReportBehaviour BEHAVIOUR
 DEFINED AS "This package only contains one notification.
The emitting of this notification is as a consequence of faults reported by the
MISA network level OS regarding the GBC access point. ";;
 NOTIFICATIONS
 gBCAccessPointAlarmReportNotif;
REGISTERED AS {misaXuserPackage 10};

gBCAlarmReportPackage PACKAGE
 BEHAVIOUR
 gBCAlarmReportBehaviour BEHAVIOUR
 DEFINED AS "This package only contains one notification. The
emitting of this notification is as a sonsequence of faults reported by the MISA
netwrk level OS regarding the GBC";;
 NOTIFICATIONS

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 128 © 1998 Trumpet Consortium

 gBCAlarmReportNotif;
REGISTERED AS {misaXuserPackage 11};

gBCTroubleReportPkg PACKAGE
 BEHAVIOUR
 gBCTroubleReportBehaviour BEHAVIOUR
 DEFINED AS "The gBCTroubleReport managed object represents the
problem detected by the GBCM user and reported to the GBCM provider. Instances of
this class describe the nature of the problem as well as ongoing status. ";;
 NOTIFICATIONS
 troubleNotif;
REGISTERED AS {misaXuserPackage 12};

gBCAccessPointNotifPackage PACKAGE
 BEHAVIOUR
 gBCAccessPointNotifBehaviour BEHAVIOUR
 DEFINED AS "In case a GBC connection is reserved at the
destination access point, the related GBCMUser should informed.";;
 NOTIFICATIONS
 reserveGBCConnectionNotif;
REGISTERED AS {misaXuserPackage 13};

gBCMTroubleReportFormatObjectPtrPkg PACKAGE
 ATTRIBUTES
 "ITU-T Rec. X.790 (1995)": troubleReportFormatObjectPtr GET;
REGISTERED AS {misaXuserPackage 14};

gBCMTroubleTypePkg PACKAGE
 ATTRIBUTES
 "ITU-T Rec. X.790 (1995)": troubleType GET;
REGISTERED AS {misaXuserPackage 15};

gBCAlarmTypePackage PACKAGE
 BEHAVIOUR gBCAlarmTypeBehaviour
 BEHAVIOUR DEFINED AS "The gBCAlarmType indicate the type
 of GBC alarm.";;
 ATTRIBUTES
 gBCAlarmType GET;
REGISTERED AS {misaXuserPackage 16};

-- **
 -- ATTRIBUTE
-- **

administrativeAddress ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.AdministrativeAddress;
 MATCHES FOR EQUALITY;
 BEHAVIOUR administrativeAddressBehaviour;
REGISTERED AS {misaXuserAttribute 1};

connectionProtectionLevel ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.ProtectionLevel;
 MATCHES FOR EQUALITY, ORDERING;
 BEHAVIOUR connectionProtectionLevelBehaviour;
REGISTERED AS {misaXuserAttribute 2};

e164Address ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.E164Address;
 MATCHES FOR EQUALITY;
 BEHAVIOUR e164AddressBehaviour;
REGISTERED AS {misaXuserAttribute 3};

gBCAccessPointId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCAccessPointId;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCAccessPointIdBehaviour;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 129 © 1998 Trumpet Consortium

REGISTERED AS {misaXuserAttribute 4};

gBCAccessPointPtr ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCAccessPointPtr;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCAccessPointPtrBehaviour;
REGISTERED AS {misaXuserAttribute 5};

gBCConnectionId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCConnectionId;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCConnectionIdBehaviour;
REGISTERED AS {misaXuserAttribute 6};

gBCConnectionPtr ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCConnectionPtr;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCConnectionPtrBehaviour;
REGISTERED AS {misaXuserAttribute 7};

gBCMServiceType ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCMServiceType;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCMServiceTypeBehaviour;
REGISTERED AS {misaXuserAttribute 8};

gBCMUserAdminAddress ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.AdministrativeAddress;
 MATCHES FOR EQUALITY;
 BEHAVIOUR administrativeAddressBehaviour;
REGISTERED AS {misaXuserAttribute 9};

gBCMUserCategory ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCMUserCategory;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCMUserCategoryBehaviour;
REGISTERED AS {misaXuserAttribute 10};

gBCMUserId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCMUserId;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCMUserIdBehaviour;
REGISTERED AS {misaXuserAttribute 11};

gBCQoSSequence ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCQoSSequence;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCQoSSequenceBehaviour;
REGISTERED AS {misaXuserAttribute 12};

listOfDestAddr ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.ListOfDestAddr;
 MATCHES FOR EQUALITY;
 BEHAVIOUR listOfDestAddrBehaviour;
REGISTERED AS {misaXuserAttribute 13};

qoSLimitsSequence ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.QoSLimitsSequence;
 MATCHES FOR EQUALITY, ORDERING;
 BEHAVIOUR qoSLimitsSequenceBehaviour;
REGISTERED AS {misaXuserAttribute 14};

gBCSchedule ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCSchedule;
 MATCHES FOR EQUALITY;
 BEHAVIOUR gBCScheduleBehaviour;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 130 © 1998 Trumpet Consortium

REGISTERED AS {misaXuserAttribute 15};

routingCriteria ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.RoutingCriteria;
 MATCHES FOR EQUALITY;
 BEHAVIOUR routingCriteriaBehaviour;
REGISTERED AS {misaXuserAttribute 16};

serviceProfileId ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.ServiceProfileId;
 MATCHES FOR EQUALITY;
 BEHAVIOUR serviceProfileIdBehaviour;
REGISTERED AS {misaXuserAttribute 17};

serviceProfilePtr ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.ServiceProfilePtr;
 MATCHES FOR EQUALITY;
 BEHAVIOUR serviceProfilePtrBehaviour;
REGISTERED AS {misaXuserAttribute 18};

troubleReportFormat ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.TroubleReportFormat;
 MATCHES FOR EQUALITY;
REGISTERED AS {misaXuserAttribute 19};

gBCServiceDescription ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCServiceDescription;
 BEHAVIOUR gBCServiceDescriptionBehaviour
 BEHAVIOUR DEFINED AS "The gBCServiceDescription describes
 the distinguishing characteristics of a specific GBC service
 provided by the GBC service provider. They are what a service
 provider can serve its customers";;
REGISTERED AS {misaXuserAttribute 26};

gBCAlarmType ATTRIBUTE
 WITH ATTRIBUTE SYNTAX MisaXuserASN1Module.GBCAlarmType;
REGISTERED AS {misaXuserAttribute 27};

-- **
 -- ACTION
-- **

reserveGBCConnection ACTION
 BEHAVIOUR reserveGBCConnectionBehaviour;
 MODE CONFIRMED;
 WITH INFORMATION SYNTAX
 MisaXuserASN1Module.ReserveGBCConnectionInformation;
 WITH REPLY SYNTAX MisaXuserASN1Module.ReserveGBCConnectionResult;
REGISTERED AS {misaXuserAction 1};

modifyGBCConnection ACTION
 BEHAVIOUR modifyGBCConnectionBehaviour;
 MODE CONFIRMED;
 WITH INFORMATION SYNTAX
 MisaXuserASN1Module.ModifyGBCConnectionInformation;
 WITH REPLY SYNTAX MisaXuserASN1Module.ModifyGBCConnectionResult;
REGISTERED AS {misaXuserAction 2};

releaseGBCConnection ACTION
 BEHAVIOUR releaseGBCConnectionBehaviour;
 MODE CONFIRMED;
 WITH INFORMATION SYNTAX
 MisaXuserASN1Module.ReleaseGBCConnectionInformation;
 WITH REPLY SYNTAX MisaXuserASN1Module.ReleaseGBCConnectionResult;
REGISTERED AS {misaXuserAction 3};

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 131 © 1998 Trumpet Consortium

removeSubscription ACTION
 BEHAVIOUR removeSubscriptionBehaviour;
 MODE CONFIRMED;
 WITH INFORMATION SYNTAX MisaXuserASN1Module.RemoveSubscriptionInformation;
 WITH REPLY SYNTAX MisaXuserASN1Module.RemoveSubscriptionResult;
REGISTERED AS {misaXuserAction 4};

-- **
 -- NOTIFICATION
-- **

activationNotif NOTIFICATION
 BEHAVIOUR activationNotifBehaviour;
 WITH INFORMATION SYNTAX MisaXuserASN1Module.ActivationNotifInformation;
REGISTERED AS {misaXuserNotification 1};

releaseNotif NOTIFICATION
 BEHAVIOUR releaseNotifBehaviour;
 WITH INFORMATION SYNTAX MisaXuserASN1Module.ReleaseNotifInformation;
REGISTERED AS {misaXuserNotification 2};

gBCAlarmReportNotif NOTIFICATION
 BEHAVIOUR
 gBCAlarmReportNotifBehaviour BEHAVIOUR
 DEFINED AS "Any failure and warnings which affect GBC Connection
are triggered conditions of this notification. The alarm over and protection
switching is also a triggered conditions of this notification.
 At the Xuser interface the following high level ProbableCause(s)
are defined:
 - interDomainLinkInavailable is used when the primary alarm
affects an interdomain access point.
 - foreignConnectionInavailable is used when primary alarm affects
a GBCSubnetworkConnection in a different domain to the one to which the user
access point is located.
 - localConnectionInavailable is used when primary alarm affects a
GBCSubnetworkConnection in the domain where the user access point is located.
 - networkFault is used when PNO wants to be as much generic as
possible, e.g. because the real primary alarm has not been detected (just AIS
and/or RDI defects have been received).";;
 WITH INFORMATION SYNTAX
 MisaXuserASN1Module.GBCAlarmReportNotifInfo
 AND ATTRIBUTE IDS
 typeOfAlarm gBCAlarmType,
 probableCause "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": probableCause,
 perceivedSeverity "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": perceivedSeverity,
 notificationIdentifier "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": notificationIdentifier,
 specificProblems "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": specificProblems,
 correlatedNotifications "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": correlatedNotifications,
 monitoredAttributes "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": monitoredAttributes,
 proposedRepairActions "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": proposedRepairActions,
 additionalText "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": additionalText;
REGISTERED AS {misaXuserNotification 3};

gBCAccessPointAlarmReportNotif NOTIFICATION
 BEHAVIOUR
 gBCAccessPointAlarmReportNotifBehaviour BEHAVIOUR

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 132 © 1998 Trumpet Consortium

 DEFINED AS "Any failure and warnings which affect GBC Access Point
are triggered conditions of this notification. The alarm over is also a triggered
conditions of this notification.";;
 WITH INFORMATION SYNTAX
 MisaXuserASN1Module.GBCAlarmReportNotifInfo
 AND ATTRIBUTE IDS
 typeOfAlarm gBCAlarmType,
 probableCause "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": probableCause,
 perceivedSeverity "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": perceivedSeverity,
 notificationIdentifier "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": notificationIdentifier,
 specificProblems "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": specificProblems,
 correlatedNotifications "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": correlatedNotifications,
 monitoredAttributes "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": monitoredAttributes,
 proposedRepairActions "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": proposedRepairActions,
 additionalText "CCITT Rec. X.721 (1992) | ISO/IEC 10165-
2: 1992": additionalText;
REGISTERED AS {misaXuserNotification 4};

requiredReconfigurationNotif NOTIFICATION
 BEHAVIOUR requiredReconfigurationNotifBehaviour;
 WITH INFORMATION SYNTAX
 MisaXuserASN1Module.RequiredReconfigurationNotifInfo;
REGISTERED AS {misaXuserNotification 5};

troubleNotif NOTIFICATION
 BEHAVIOUR troubleNotifBehaviour;
 WITH INFORMATION SYNTAX
 MisaXuserASN1Module.TroubleNotifInfo
 AND ATTRIBUTE IDS
 managedObjectInstance "ITU-T Rec. X.790 (1995)":
managedObjectInstance,
 receivedTime "ITU-T Rec. X.790 (1995)": receivedTime,
 troubleFound "ITU-T Rec. X.790 (1995)": troubleFound,
 troubleType "ITU-T Rec. X.790 (1995)": troubleType;
REGISTERED AS {misaXuserNotification 6};

reserveGBCConnectionNotif NOTIFICATION
 BEHAVIOUR
 reserveGBCNotifBehaviour BEHAVIOUR
 DEFINED AS "To notify the destination GBCMUser of the
reservation.";;
 WITH INFORMATION SYNTAX
MisaXuserASN1Module.ReserveGBCConnectionNotifInformation;
 WITH REPLY SYNTAX MisaXuserASN1Module.ReserveNotifReply;
REGISTERED AS {misaXuserNotification 7};

modifyGBCConnectionNotif NOTIFICATION
 BEHAVIOUR
 modifyGBCNotifBehaviour BEHAVIOUR
 DEFINED AS "To notify the modification of GBC connection.";;
 WITH INFORMATION SYNTAX
MisaXuserASN1Module.ModifyGBCConnectionNotifInformation;
REGISTERED AS {misaXuserNotification 8};

deactivationNotif NOTIFICATION
 BEHAVIOUR
 deactivationNotifBehaviour BEHAVIOUR
 DEFINED AS "To notify the deactivation of the connections
according to the schedule.";;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 133 © 1998 Trumpet Consortium

 WITH INFORMATION SYNTAX MisaXuserASN1Module.DeactivationNotifInformation;
REGISTERED AS {misaXuserNotification 9};

-- **
 -- NAME BINDING
-- **

gBCMUser-gBCServiceProvider NAME BINDING
 SUBORDINATE OBJECT CLASS gBCMUser;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":system AND SUBCLASSES;
 WITH ATTRIBUTE gBCMUserId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 1};

gBCAccessPoint-gBCMUser NAME BINDING
 SUBORDINATE OBJECT CLASS gBCAccessPoint;
 NAMED BY
 SUPERIOR OBJECT CLASS gBCMUser;
 WITH ATTRIBUTE gBCAccessPointId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 2};

gBCMUserServiceProfile-gBCMUser NAME BINDING
 SUBORDINATE OBJECT CLASS gBCMUserServiceProfile;
 NAMED BY
 SUPERIOR OBJECT CLASS gBCMUser;
 WITH ATTRIBUTE serviceProfileId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 3};

gBCConnection-gBCMUser NAME BINDING
 SUBORDINATE OBJECT CLASS gBCConnection;
 NAMED BY
 SUPERIOR OBJECT CLASS gBCMUser;
 WITH ATTRIBUTE gBCConnectionId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 4};

gBCTroubleReport-gBCMUser NAME BINDING
 SUBORDINATE OBJECT CLASS gBCTroubleReport;
 NAMED BY
 SUPERIOR OBJECT CLASS gBCMUser;
 WITH ATTRIBUTE "ITU-T Rec. X.790 (1995)": troubleReportID;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 5};

log-gBCServiceProvider NAME BINDING
 SUBORDINATE OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":log AND SUBCLASSES;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 134 © 1998 Trumpet Consortium

 NAMED BY
 SUPERIOR OBJECT CLASS gBCServiceProvider AND SUBCLASSES;
 WITH ATTRIBUTE "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2: 1992":logId;
REGISTERED AS {misaXuserNameBinding 6};

gBCAlarmRecord-log NAME BINDING
 SUBORDINATE OBJECT CLASS gBCAlarmRecord;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":log AND SUBCLASSES;
 WITH ATTRIBUTE "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":logRecordId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 7};

reconfigurationRecord-log NAME BINDING
 SUBORDINATE OBJECT CLASS reconfigurationRecord;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":log AND SUBCLASSES;
 WITH ATTRIBUTE "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":logRecordId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 8};

troubleCreationRecord-log NAME BINDING
 SUBORDINATE OBJECT CLASS troubleCreationRecord;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":log AND SUBCLASSES;
 WITH ATTRIBUTE "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":logRecordId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 9};

troubleDeletionRecord-log NAME BINDING
 SUBORDINATE OBJECT CLASS troubleDeletionRecord;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":log AND SUBCLASSES;
 WITH ATTRIBUTE "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":logRecordId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;
 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 10};

gBCMTroubleNotificationRecord-log NAME BINDING
 SUBORDINATE OBJECT CLASS gBCMTroubleNotificationRecord;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":log AND SUBCLASSES;
 WITH ATTRIBUTE "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":logRecordId;
 CREATE
 WITH-AUTOMATIC-INSTANCE-NAMING;

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 135 © 1998 Trumpet Consortium

 DELETE
 ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {misaXuserNameBinding 11};

gBCService-gBCServiceProvider NAME BINDING
 SUBORDINATE OBJECT CLASS gBCService;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":system AND SUBCLASSES;
 WITH ATTRIBUTE "ITU-T Rec. X.790 (1995)":serviceID;
REGISTERED AS {misaXuserNameBinding 12};

gBCTroubleReportFormatDefn-gBCServiceProvider NAME BINDING
 SUBORDINATE OBJECT CLASS gBCTroubleReportFormatDefn AND SUBCLASSES;
 NAMED BY
 SUPERIOR OBJECT CLASS "CCITT Rec. X.721 (1992) | ISO/IEC 10165-2:
1992":system AND SUBCLASSES;
 WITH ATTRIBUTE "ITU-T Rec. X.790 (1995)":tRFormatID;
REGISTERED AS {misaXuserNameBinding 13};

-- **
 -- BEHAVIOUR
-- **

activationNotifBehaviour BEHAVIOUR
 DEFINED AS "This notification is issued by the gBCConnection MO, to
indicate
 all the involved GBCM Users that the activation of the VP Connection took
place.";

administrativeAddressBehaviour BEHAVIOUR
 DEFINED AS "The administrative address of an organisation.";

connectionProtectionLevelBehaviour BEHAVIOUR
 DEFINED AS "This attribute specifies the protection level of the GBC
connection. This
 information will be used in fault management/recovery.";

e164AddressBehaviour BEHAVIOUR
 DEFINED AS " It represents the address assigned to a particular access
point";

gBCAccessPointBehaviour BEHAVIOUR
 DEFINED AS "represents the network access point at which a GBC Connection
enters in the public
 network from the GBCM User's domain (e.g. from a CTN) or enters in the
GBCM User's domain
 from the public network. To each gBCAccessPoint is associated a particular
E.164 address.
 The GBC connections passing through a GBCAccessPoint may reach the
terminals of many end-
 users within e.g. a CTN.
 Let's consider for example a company having in its private network an ATM
MUX, through which
 it puts and receives ATM traffic to/from the public network.
 Let's suppose that the ATM MUX has an SDH physical interface and generates
ATM traffic over
 SDH after multiplexing different traffic sources (IP over AAL5, pure ATM
etc.) generated in the local
 private network.
 Many end-users inside the company will need GBC connections for their
applications (e.g. data
 transfer at high bit rate etc..). They express their needs to the manager
of the private
 network who (playing the role of GBCM User) associates to its (previously
created) APPS

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 136 © 1998 Trumpet Consortium

 subscription the E.164 address of the ATM MUX physical interface. This
will be performed in
 practice by requesting the creation of a gBCAccessPoint instance and
specifying the E.164
 address and all the other parameters relevant for that interface (e.g. Max
number of Vps, max
 bandwidth...etc).
 In the case in which the GBCM User is a VASP, third party connection
reservation can be
 supported in the following way.
 The VASP subscribes itself as GBCM User of e.g. the APPS service (this is
realised by creating a
 GBCM User object instance and a GBCMUser-ServiceProfile object instance
that has ServiceType value =
 APPS). Then the VASP declares, in the list of gBCAccessPoints associated
to that APPS,
 and the E.164 addresses.
 When the VASP will request the reservation of a VP connection having as
source E.164 address the
 above address and having the time schedule, bandwidth parameters ..etc
originally requested to the VASP
 by the VASP user, all will happen (from the point of view of the GBCM
Service Provider) as if
 no third party reservation apply.";

gBCAccessPointPtrBehaviour BEHAVIOUR
 DEFINED AS "It points to the registered gBCAccessPoint(s) to which the
connection is
 associated.";

gBCAccessPointIdBehaviour BEHAVIOUR
 DEFINED AS "It identifies a GBC access point.";

gBCConnectionBehaviour BEHAVIOUR
 DEFINED AS "The gBCMConnection object class represents the GBC global
broadband
 connection that is managed through the GBCM-Xuser interface.";

gBCConnectionIdBehaviour BEHAVIOUR
 DEFINED AS "It identifies the GBC connection. In our context this ID is
envisaged
 global significant. E.g. it can contain several subnetwork IDs, the access
point ID,
 VPI/VCI and the GBCM user ID to identify the connection and to provide
enough
 information for processing the configuration.";

gBCConnectionPtrBehaviour BEHAVIOUR
 DEFINED AS "It points to the GBC Connections terminated at this access
point. His value is set by
the GBCM Service Provider.";
gBCQoSSequenceBehaviour BEHAVIOUR
 DEFINED AS "The QoS tuple for GBCM connection/service.";

gBCMServicePerformerBehaviour BEHAVIOUR
 DEFINED AS "It supports the GBCM actions that can be applied to a GBC
Connection
 through the GBCM Provider domain.";

gBCServiceProviderBehaviour BEHAVIOUR
 DEFINED AS "It contains organizational information about the GBCM Service
Provider
 and its service characteristics.";

gBCMServiceTypeBehaviour BEHAVIOUR
 DEFINED AS "It identifies the GBCM service supported, either SDH or ATM.";

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 137 © 1998 Trumpet Consortium

gBCMUserBehaviour BEHAVIOUR
 DEFINED AS "represents the entity which, as representative of a set of
end-users, is responsible for all
the direct interactions (through the Xuser) with the PNO Service Provider's MISA
OS. Thus it is envisaged that
an instance of such resource has to be created for each of the management systems
interacting with the MISA OS
through the Xuser interface. As a consequence, this could imply, in the case of a
Customer Telecommunication
Network (CTN) composed by different sites each with its own Service Level OS, that
as many GBCM Users
should be instantiated as the number of CTN sites. Naturally one more resource is
needed to contain all the
information that require to be stored in a centralized location (e.g. overall
billing for all the CTN). Being
accounting management out of the scope of MISA, it is left open the task to
identify, define and insert in our
Xuser information model all the additional resources (e.g. customer) that would
permit to extend our Xuser
specification to cover also the accounting issues.
The GBCMUser represents also the entity which subscribes to the GBCM Service and
thus plays both the roles
defined in the Eurescom Xuser: the manager role and the subscriber role.";

gBCMUserCategoryBehaviour BEHAVIOUR
 DEFINED AS "It identifies the category (normal or privileged) of the GBCM
User.";

gBCMUserIdBehaviour BEHAVIOUR
 DEFINED AS "It represents the unique identifier assigned by the GBCM
ServiceProvider to the
subscription of a GBCM User. It is returned to the GBCM User as positive result of
his request to create a
GBCMUser instance.";

gBCPPSParameterBehaviour BEHAVIOUR
 DEFINED AS "It contains the QoS parameters that specify the GBC
connection. As a MISA
 GBC connection will run through different domains with different sets of
QoS parameters,
 we envisage a sequence/tuple of such sets in the GBC connection
description.
 The major reason for using a tuple of QoS descriptions is that many
parameters, e.g.
 ATM parameters, must transferred transparent through a SDH domain.
Moreover, mapping
 of QoS parameters between layers can not be done in all the cases without
lost of information.
 Therefore, it is not enough to have only one set of QoS parameters.";

listOfDestAddrBehaviour BEHAVIOUR
 DEFINED AS "indicates the destination addresses of the GBC connection.";

modifyGBCConnectionBehaviour BEHAVIOUR
 DEFINED AS "This action is performed by the GBCM User requesting the
modification of the
GBC connection. In case of SPPS (SDH), it is possible that modification is not
supported. In this case the
action request will be rejected.";

qoSLimitsSequenceBehaviour BEHAVIOUR
 DEFINED AS "contains two set of parameters (related to the GBC Access
Point) representing the
limits of the QoS in the case of APPS or SPPS respectively.

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 138 © 1998 Trumpet Consortium

 In the case of a gBCAccessPoint associated to a subscription to APPS, the
following parameters may
be specified: MaxNumVPs, ForwardUpperLimitPeackCellRate,
BackwardUpperLimitPeackCellRate.
 In the case of a gBCAccessPoint associated to a subscription to SPPS, the
following attributes may
be specified: ForwardUpperLimitPeackBitRate, BackwardUpperLimitPeackBitRate..";

releaseGBCConnectionBehaviour BEHAVIOUR
 DEFINED AS "This action is performed by the GBCM User requesting the
clearing down of the
GBC Connection. This will delete the gBCConnection object instance.";

releaseNotifBehaviour BEHAVIOUR
 DEFINED AS "This notification is issued by the gBCConnection MO, to
indicate to the involved
GBCM Users, that the GBC Connection has been released.";

removeSubscriptionBehaviour BEHAVIOUR
 DEFINED AS "This action is issued by the GBCM Service Provider when he
wants to stop the
subscription to the GBCM Service. This action implies the deletion of all the
managed object instances
(gBCMUserServiceProfile, gBCAccessPoint, gBCConnection, gBCTroubleReport) having
that
GBCMUserId (identifier of a specific subscription) in their Distinguished Name." ;

gBCScheduleBehaviour BEHAVIOUR
 DEFINED AS "It specifies at which time the GBC connection should be
activated and
optionally at what time the reserved GBC connection should be deactivated or
released.";

reserveGBCConnectionBehaviour BEHAVIOUR
 DEFINED AS "This action is performed by the GBCM User which requests a GBC
connection
reservation
 from the GBCM Service Provider. The result of this action is the
acceptance or reject of the
 connection reservation request (regarding the start time, the stop time
and eventually the
 periodicity requested). If the connection reservation is rejected, the
reason is returned
 (not available resources, not possible in the interval time,...). If the
connection reservation
 is accepted, a gBCConnection object instance is created.";

routingCriteriaBehaviour BEHAVIOUR
 DEFINED AS "It specifies the routing criteria for GBC connection
establishment.";

gBCMUserServiceProfileBehaviour BEHAVIOUR
 DEFINED AS "It represents the service profile associated to the GBCMUser's
subscription. Besides the indication of the particular GBCM service instance (APPS
or SPPS) the GBCM User has subscribed to, it may contain other service related
information (e.g. billing rates, and what a GBC service customer get from the
service provider). A GBCM User having the interest to subscribe to both APPS and
SPPS services, will have two GBCMUser-ServiceProfiles associated to the same
subscription (i.e. to the same GBCMUser instance).";

serviceProfileIdBehaviour BEHAVIOUR
 DEFINED AS "It identifies a GBCM User's service profile. Its value is
assigned by the GBCM Service
Provider when the GBCM User has requested the creation of his service profile ";

serviceProfilePtrBehaviour BEHAVIOUR

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 139 © 1998 Trumpet Consortium

 DEFINED AS " This attribute points to the GBCM User's service profile to
which the GBC access
point is associated upon subscription.";

requiredReconfigurationNotifBehaviour BEHAVIOUR
 DEFINED AS "behaviour to be defined";

troubleNotifBehaviour BEHAVIOUR
 DEFINED AS "behaviour to be defined";

-- Deviations from original:
-- 16 DEC 96: aro (ZRL)
-- - replaced AtmMIBMod with ATMForumASN1Module
-- - replaced ASN1TypeModule with PR-ETS300469

-- **
 -- ASN.1 Module
-- **

MisaXuserASN1Module {joint-iso-ccitt(2) country(16) ch(756) apps(5) misa(7)
xuser(3) informationModel(0) asn1Module(0)} DEFINITIONS IMPLICIT TAGS::=

BEGIN

-- exports everything

IMPORTS

 CharacteristicInformation,
 UserLabel,
 Directionality,
 NameType
 FROM ASN1DefinedTypesModule {ccitt(0) recommendation(0) m(13)
gnm(3100) informationModel(0) asn1Modules(2) asn1DefinedTypesModule(0)}

 Attribute,
 ObjectClass,
 ObjectInstance
 FROM CMIP-1 {joint-iso-ccitt(2) ms(9) cmip(1) modules(0)
protocol(3)}

 NotificationIdentifier,
 SpecificProblems,
 CorrelatedNotifications,
 ProposedRepairActions,
 SystemId,
 AdministrativeState,
 AvailabilityStatus,
 OperationalState,
 ProbableCause,
 MonitoredAttributes,
 PerceivedSeverity,
 AdditionalText,
 Time24,
 StopTime
 FROM Attribute-ASN1Module {joint-iso-ccitt(2) ms(9) smi(3)
part2(2) asn1Module(2) 1}

 NamingString,
 PremisesName,
 ReceivedTime,
 TroubleFound,
 TroubleLocation,
 TroubleType
 FROM X790ASN1Module {itu-t(0) recommendation(0) x(24) x790(790)
informationModel(0) asn1module(2)}

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 140 © 1998 Trumpet Consortium

 AssignmentState,
 LifecycleState,
 Mode,
 TimeWeek,
 TimeMonth,
 StartTime
 FROM I-ETS300653 {ccitt(0) identified-organization(4) etsi(0)
ets(653) informationModel(0) asn1Module(2) i-ets300653(0)}

 PeakCellRate,
 CDVTolerance,
 MaxBurstSize,
 SustainableCellRate
 FROM AtmMIBMod {itu-t(0) recommendation(0) i(9) atmm(751)
informationModel(0) asn1Module(2) atm(0)};

misaXuserInfoModel OBJECT IDENTIFIER::= {joint-iso-ccitt(2) country(16) ch(756)
apps(5) misa(7) xuser(3) informationModel(0)}

misaXuserSpecificExtention OBJECT IDENTIFIER::= {misaXuserInfoModel
specificExtention(1) }

misaCharacteristicInfo OBJECT IDENTIFIER::= {misaXuserSpecificExtention 0}

atmoverE1pdh CharacteristicInformation::= {misaCharacteristicInfo 1}
atmoverE2pdh CharacteristicInformation::= {misaCharacteristicInfo 2}
atmoverE3pdh CharacteristicInformation::= {misaCharacteristicInfo 3}
atmoverVC4sdh CharacteristicInformation::= {misaCharacteristicInfo 4}
atmoverVC3sdh CharacteristicInformation::= {misaCharacteristicInfo 5}
atmoverVC2sdh CharacteristicInformation::= {misaCharacteristicInfo 6}
atmoverVC12sdh CharacteristicInformation::= {misaCharacteristicInfo 7}
opticalSTM1SPICI CharacteristicInformation::= {misaCharacteristicInfo 8}
opticalSTM4SPICI CharacteristicInformation::= {misaCharacteristicInfo 9}
opticalSTM16SPICI CharacteristicInformation::= {misaCharacteristicInfo 10}

subnetworkConnectionProtectionSwitchingFailure ProbableCause::= localValue: 1
interDomainLinkProtectionSwitchingFailure ProbableCause::= localValue: 2
aPPSinavailable ProbableCause::= localValue: 3
sPPSinavailable ProbableCause::= localValue: 4
degrationOfQos ProbableCause::= localValue: 5
configurationError ProbableCause::= localValue: 6
thresholdCrossed ProbableCause::= localValue: 7
subnetworkConnectionProtectionSwitching ProbableCause::= localValue: 8
interDomainLinkProtectionSwitching ProbableCause::= localValue: 9
faultCleared ProbableCause::= localValue: 10
interDomainLinkInavailable ProbableCause::= localValue: 11
foreignConnectionInavailable ProbableCause::= localValue: 12
localConnectionInavailable ProbableCause::= localValue: 13
networkFault ProbableCause::= localValue: 14

misaXuserObjectClass OBJECT IDENTIFIER::= {misaXuserInfoModel
managedObjectClass(3)}

misaXuserPackage OBJECT IDENTIFIER::= {misaXuserInfoModel package(4)}

misaXuserParameter OBJECT IDENTIFIER::= {misaXuserInfoModel paramter(5)}

misaXuserNameBinding OBJECT IDENTIFIER::= {misaXuserInfoModel nameBinding(6)}

misaXuserAttribute OBJECT IDENTIFIER::= {misaXuserInfoModel attribute(7)}

misaXuserAttributeGroup OBJECT IDENTIFIER::= {misaXuserInfoModel
attributeGroup(8)}

misaXuserAction OBJECT IDENTIFIER::= {misaXuserInfoModel action(9)}

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 141 © 1998 Trumpet Consortium

misaXuserNotification OBJECT IDENTIFIER::= {misaXuserInfoModel notification(10)}

AdministrativeAddress::= SEQUENCE {
 contactname [0] PrintableString,
 address [1] PrintableString,
 e-mail [2] PrintableString OPTIONAL,
 phone [3] PrintableString OPTIONAL,
 fax [4] PrintableString OPTIONAL }

E164Address::= PrintableString

GBCAccessPointId::= NameType

GBCAccessPointPtr::= CHOICE {
 singleTermination ObjectInstance,
 multipleTermination SET OF ObjectInstance}

GBCConnectionId::= NameType

GBCConnectionPtr::= SET OF ObjectInstance

GBCMServiceType::= ENUMERATED {apps (0), spps (1)}

GBCMUserCategory::= ENUMERATED {normal (0), privileged (1)}

GBCMUserId::= NameType

ListOfDestAddr::= SEQUENCE OF E164Address

ProtectionLevel::= ENUMERATED {protected (0), unprotected-lowpriority (1),
unprotected-highpriority (2)}

Reason::= NameType

RoutingCriteria::= NameType

ServiceProfileId::= NameType

ServiceProfilePtr::= ObjectInstance

MaxCellTransferDelay::= SEQUENCE {
 acceptableMaxCTD [0] INTEGER OPTIONAL,
 cumulativeMaxCTD [1] INTEGER OPTIONAL }

PeakToPeakCellDelayVariation::= SEQUENCE {
 acceptablePeakToPeakCDV [0] INTEGER OPTIONAL,
 cumulativePeakToPeakCDV [1] INTEGER OPTIONAL }

CellLossRatio::= INTEGER (1..15)

MaxDelay::= INTEGER

MinimumCellRate::= PeakCellRate

BlockErrorRate::= INTEGER

QoSClass::= INTEGER {cbr(0), rt-vbr(1), nrt-vbr(2), ubr(3), abr(4), sdh-cbr(5)}

MaxNumVp::= INTEGER

PeakBitRate::= INTEGER

GBCSchedule::= SEQUENCE {
 startTime StartTime,
 stopTime StopTime,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 142 © 1998 Trumpet Consortium

 CHOICE { durationSchedule [0] NULL,
 dailySchedule [1] GBCDailySchedule,
 weeklySchedule [2] GBCWeeklySchedule,
 monthlySchedule [3] GBCMonthlySchedule,
 occasionalSchedule [4] GBCOccasionalSchedule
 }
 }

GBCDailySchedule::= SEQUENCE OF GBCDaySlot

GBCWeeklySchedule::= SEQUENCE OF GBCWeekSlot

GBCOccasionalSchedule::= SEQUENCE OF GBCOccasionalSlot

GBCMonthlySchedule::= SEQUENCE OF GBCMonthlySlot

GBCDaySlot::= SEQUENCE {
 slotBegin Time24,
 slotEnd Time24
 }

GBCWeekSlot ::= SEQUENCE {
 slotBegin TimeWeek,
 slotEnd TimeWeek
 }

GBCOccasionalSlot::= SEQUENCE {
 slotBegin StartTime,
 slotEnd StopTime
 }

GBCMonthlySlot::= SEQUENCE {
 slotBegin TimeMonth,
 slotEnd TimeMonth
 }

ATMSpecificParameters::= SEQUENCE {
 qosClass [0] QoSClass OPTIONAL,
 maxCTD [1] MaxCellTransferDelay OPTIONAL,
 peakToPeakCDV [2] PeakToPeakCellDelayVariation OPTIONAL,
 cellLossRatio [3] CellLossRatio OPTIONAL,
 peakCellRate [4] PeakCellRate OPTIONAL,
 sustainableCellRate [5] SustainableCellRate OPTIONAL,
 pcrCDVTolerance [6] CDVTolerance OPTIONAL,
 scrCDVTolerance [7] CDVTolerance OPTIONAL,
 maxBurstSize [8] MaxBurstSize OPTIONAL,
 minCellRate [9] MinimumCellRate OPTIONAL }

SDHSpecificParameters::= SEQUENCE {
 qosClass [0] QoSClass OPTIONAL,
 throughput [1] PeakBitRate OPTIONAL,
 delay [2] MaxDelay OPTIONAL,
 blockErrorRate [3] BlockErrorRate OPTIONAL }

GBCQoSSequence::= SEQUENCE {
 aPPSQoSSequence [0] APPSQoSSequence OPTIONAL,
 sPPSQoSSequence [1] SPPSQoSSequence OPTIONAL }

APPSQoSSequence::= SEQUENCE {
 forward [0] ATMSpecificParameters OPTIONAL,
 backward [1] ATMSpecificParameters OPTIONAL }

SPPSQoSSequence::= SEQUENCE {
 forward [0] SDHSpecificParameters OPTIONAL,
 backward [1] SDHSpecificParameters OPTIONAL }

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 143 © 1998 Trumpet Consortium

QoSLimitsSequence::= SEQUENCE {
 atmQoSLimitsSequence [0] ATMQoSLimitsSequence OPTIONAL,
 sdhQoSLimitsSequence [1] SDHQoSLimitsSequence OPTIONAL }

ATMQoSLimitsSequence::= SEQUENCE {
 maxNumVp MaxNumVp,
 forwardNegotiableParameter ATMSpecificParameters,
 backwardNegotiableParameter ATMSpecificParameters }

SDHQoSLimitsSequence::= SEQUENCE {
 forwardNegotiableParameter SDHSpecificParameters,
 backwardNegotiableParameter SDHSpecificParameters }

ReserveGBCConnectionInformation::= SEQUENCE {
 gBCMUserId GBCMUserId,
 sourceE164Address [0] E164Address OPTIONAL,
 destinationE164Address E164Address,
 connectionProtectionLevel [1] ProtectionLevel OPTIONAL,
 routingCriteria RoutingCriteria OPTIONAL,
 gBCType GBCType,
 gBCDirectionality Directionality,
 gBCSchedule GBCSchedule,
 gBCPPSparameters GBCQoSSequence OPTIONAL }

GBCType::= GBCMServiceType

ReserveGBCConnectionResult::= CHOICE {
 successful [0] SEQUENCE {
 gBCConnectionId GBCConnectionId,
 gBCAccessPointId GBCAccessPointId OPTIONAL},
 unsuccessfull [1] Reason }

ReserveGBCConnectionNotifInformation::= SEQUENCE {
 gBCMUserId GBCMUserId,
 sourceE164Address E164Address,
 destinationE164Address E164Address,
 connectionProtectionLevel [1] ProtectionLevel OPTIONAL,
 routingCriteria RoutingCriteria OPTIONAL,
 gBCType GBCType,
 gBCDirectionality Directionality,
 gBCSchedule GBCSchedule,
 gBCPPSparameters GBCQoSSequence OPTIONAL}

ReserveNotifReply::= CHOICE {
 acception [0] AdditionalText,
 rejection [1] Reason }

ModifyGBCConnectionInformation::= SEQUENCE {
 gBCMUserId GBCMUserId,
 gBCConnectionId GBCConnectionId,
 gBCSchedule [0] GBCSchedule OPTIONAL,
 gBCPPSparameters [1] GBCQoSSequence OPTIONAL}

ModifyGBCConnectionResult::= CHOICE {
 successful NULL,
 unsuccessfull Reason }

ModifyGBCConnectionNotifInformation::= SEQUENCE {
 gBCSchedule [0] GBCSchedule OPTIONAL,
 gBCPPSparameters [1] GBCQoSSequence OPTIONAL }

ReleaseGBCConnectionInformation::= SEQUENCE {
 gBCMUserId GBCMUserId,
 gBCConnectionId GBCConnectionId,
 reason Reason }

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 144 © 1998 Trumpet Consortium

ReleaseGBCConnectionResult::= CHOICE {
 successful NULL,
 unsuccessfull Reason }

RemoveSubscriptionInformation::= SEQUENCE{
 gBCMUserId GBCMUserId
 }

RemoveSubscriptionResult::= CHOICE {
 successful NULL,
 unsuccessful Reason }

ActivationNotifInformation::= ENUMERATED { ok(0), ko(1)}

DeactivationNotifInformation::= ENUMERATED {ok(0), ko(1)}

ReleaseNotifInformation::= ReleaseReason

ReleaseReason::= CHOICE {
 fromPNO ENUMERATED {enduserRelease (0), timeout (1),
 pnoRelease (2), other (3) },
 fromOriginCPN PrintableString }

GBCAlarmReportNotifInfo::= SEQUENCE {
 typeOfAlarm GBCAlarmType,
 probableCause ProbableCause,
 perceivedSeverity PerceivedSeverity,
 notificationIdentifier [1] NotificationIdentifier OPTIONAL,
 specificProblems [2] SpecificProblems OPTIONAL,
 correlatedNotifications [3] CorrelatedNotifications OPTIONAL,
 monitoredAttributes [4] MonitoredAttributes OPTIONAL,
 proposedRepairActions [5] ProposedRepairActions OPTIONAL,
 additionalText AdditionalText OPTIONAL }

RequiredReconfigurationNotifInfo::= SEQUENCE {
 relevantAlarmNotificationId NotificationIdentifier,
 relevantMOC ObjectClass,
 relevantMOI ObjectInstance,
 reconfigurationDescription ReconfigurationDescription,
 notificationIdentifier [1] NotificationIdentifier OPTIONAL
 }

TroubleNotifInfo::= SEQUENCE {
 managedObjectInstance [0] ObjectInstance,
 receivedTime [1] GeneralizedTime,
 troubleFound [2] TroubleFound,
 troubleType [15] TroubleType OPTIONAL
}

GBCAlarmType::= CHOICE {
 number INTEGER {
 recoverableFailure (1),
 unrecoverableFailure (2),
 cleared (3)
 },
 identifier OBJECT IDENTIFIER
}

ReconfigurationDescription::= PrintableString

TroubleReportFormat::= SEQUENCE OF SingleFormat

SingleFormat::= SEQUENCE {
 managedObjectInstance GraphicString,
 receivedTime GraphicString,
 troubleType GraphicString,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 145 © 1998 Trumpet Consortium

 troubleReportStatus GraphicString
}

GBCServiceDescription::= GraphicString(SIZE(0..256))

END

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 146 © 1998 Trumpet Consortium

11. APPENDIX D - LIST OF REQUIRED PLATFORMS & PACKAGES

Vendor/Package Required for Availability and
Dependencies

Cost Description/Comments

Sun
Microsystems,
Inc.
JRE/JDK 1.0.2

CPN GUI &
Trace System

Sun Microsystems, Inc.
JRE/JDK 1.1.4 (or higher)

free JDK, Java Development
toolkit, needed to develop
Java 1.0
applications/applets. JRE,
Java runtime environment
is a subset of JDK
including the JAVA
libraries and the virtual
machine to run Java
Applications.
NOTE: For a runtime-only
configuration (without the
need to modify the JAVA
source code) the JRE/JDK
package is optional since
the JAVA runtime is
available with Java-
enabled web browsers. For
the TRUMPET trials,
however, JDK 1.0.2 should
be in place to allow code
changes during the
integration phase.

Sun
Microsystems,
Inc.
JRE/JDK 1.1.4 (or
higher)

CPN & VASP Solaris 2.x
Windows 95/NT
HP/UX 10.x

free Java Development (JDK)
and Runtime (JRE) toolkit,
JRE is a subset of JDK
including the JAVA
libraries and the virtual
machine to run Java
Applications.
NOTE: JDK for HP/UX is
provided by Hewlett-
Packard.

Netscape
Navigator 3 or
Communicator 4
or
Microsoft
Internet Explorer
4.0

CPN GUI (and
other GUIs,
documenation)

Solaris 2.x
Windows 95/NT
HP/UX 10.x
(Internet Explorer is not
available for HP/UX 10.x,
for Solaris 2.5 only a beta
version is available to date)

free A web browser which
provides the execution
environment to download
and run Java
 Applets.

Objectspace
Voyager 1.0.0

CPN & VASP 100% JAVA based
(reqs JRE/JDK 1.1.x)

free Voyager is a Java-centric
distributed computing
platform supporting
transparent access to
remote objects and
facilitates object mobility.

Objectspace
JGL 2.0.2

CPN(?) & VASP 100% JAVA based
(reqs JRE/JDK 1.0.2 or
higher)

free JGL includes 11 optimized
data structures including
sequential containers, sets,
maps, and queues. Both
ordered and hashing

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 147 © 1998 Trumpet Consortium

versions of sets and maps
are available.
NOTE: Support for object
persistence is only
provided using JRE/JDK
1.1.

Netscape
LDAP Java SDK
1.0beta 2

VASP 100% JAVA based
(reqs JRE/JDK 1.1.x)

free Java toolkit to build
applications that access
networked directory data
through the Internet
standard Lightweight
Directory Access Protocol
(LDAP, RFC 1777).
Constitutes a subset of the
Netscape Directory SDK.

IONA
Orbix 2.x /C++
(Single Threaded
version)

VASP (CORBA
Adapter to
Xuser Manager)

Solaris 2.x
(reqs SunWSpro Compiler
4.x)
Hewlett Packard HP/UX
10.x
(reqs HP aC++ Compiler)

Developers:
US$ 5000,-
Runtime:
US$ 100,-
UNIX
Support:
US$ 750,-
Windows
Support:
US$ 400,-

OMG CORBA 2
compliant C++ ORB,
Required for the
CORBA/TMN gateway,
Runtime & Developers
Licenses are available.

IONA
OrbixWeb for Java
2.x

VASP (Client
Proxies & Event
Handler of the
control server)

Solaris 2.x
Windows 95/NT
HP/UX 10.x
(reqs. JRE/JDK 1.0.2 or
higher)

Developers:
US$ 799,-
Runtime:
free
Ann. support:
US$ 400,-

OMG CORBA 2
compliant Java ORB,
Required for the
CORBA/TMN gateway,
Runtime & Developers
Licenses are available.

Netscape
Directory Services
3.0

VASP (& CA) Solaris 2.x Windows 95/NT
HP/UX 10.x

 free Directory Service
implementation (X.500
based) supporting LDAP
version 2 and 3.
NOTE: This package
includes the Netscape
Directory SDK which in
turn includes LDAP Java
SDK 1.0beta 2.
NOTE: Currently the CA is
based on the Michigan
LDAP service. Support of
Netscape Directory
Services is considered as
an optional work item.

University of
Michigan
Michigan LDAP

CA Solaris 2.x Windows 95/NT
HP/UX 10.x

free Various LDAP tools which
have been developed at
UMich. Needs to be in
place to operate an CA.
Pointers to LDAP-related
sources can also be found
at reference .com.

Rogue Wave
tools.h++ 7.x

potentially all
components
developed with
C++

Solaris 2.x
Windows 95/NT
HP/UX 10.x

Usually no
extra cost as it
is bundled
with C++

C++ foundation class
library contains over 120
classes, including dates,
times and strings, sets,

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 148 © 1998 Trumpet Consortium

compilers,
Software:
US$ 594,-
Support:
US$ 234,-

bags, B-Trees, sorted
collections, linked lists,
queues, stacks, and more
This library is bundled
with SunWSpro C++ and
the HP aC++ compilers.

Sun
Microsystems,
Inc.
Workshop pro
C/C++ compiler
4.2

all components
developed with
C++
(e.g., VASP
CORBA
Adapter, PNO,
security
package)

Solaris 2.x variable
R&D: ask for
academic price
list
Named
customers:
approx. UK
pounds 700,-
Printed Docu.:
UK pounds
180,-

SUN ANSI C/C++
Compiler, Linker and
Libraries (includes Rogue
Wave tools.h++ 7.0),
Runtime libs could be
provided by TRUMPET
partner, Contact and price
info. can be obtained
through SunExpress

Hewlett Packard
HP aC++ for
HP/UX-10

all components
developed with
C++
(e.g., VASP
CORBA
Adapter, PNO,
security
package)

HP/UX 10.x variable
list price:
US$ 1495,-

HP ANSI C/C++
Compiler, Linker, and
Libraries (includes C++
standard lib and Rogue
Wave tools.h++ 7.0),
NOTE: HP offers another
Compiler (Cfront) called
C++ 3.0 or CSET which is
NOT suitable since there is
no proper support for
Orbix, and limitations for
library support such as
tools.h++!!!

Hewlett Packard
Cumulative
Consolidated
Patch
PSOV_01730 for
HPOV-DM 4.21
on Solaris 2.x

PNO & NMS Solaris 2.x free Cumulative Consolidated
Patch for HPOV-DM 4.21
on HP/UX 10.x. The patch
is required to run the VASP
CORBA/TMN gateway
and the PNO Xuser Agent.
The patch can be obtained
from HP Support web site.

Hewlett Packard
Cumulative
Consolidated
Patch
PSOV_12211 for
HPOV-DM 4.21
on HP/UX 10.x

PNO & NMS HP/UX 10.x free Cumulative Consolidated
Patch for HPOV-DM 4.21
on HP/UX 10.x. The patch
is required to run the VASP
CORBA/TMN gateway
and the PNO Xuser Agent.
The patch can be obtained
from HP Support web site.

Hewlett Packard
MOT 1.1

NMS Solaris 2.x
HP/UX 10.x
(reqs HPOV-DM 4.2)

variable
Runtime
provided by
GMD

HP OpenView Telecom
Managed Object Toolkit,
provides high-level C++
APIs which hides the
complexity of XOM/XMP
object manipulations and
provides a generator to
create OSI agent
implementations from
GDMO/ASN.1

Fore Systems NMS FORE ASX200 not available ATM Networking

Implementation AC112/GMD/WP3/DS/R/011/b1 (PLEASE CHECK)

Page 149 © 1998 Trumpet Consortium

ForeThought 4.02 (embedded Sun Solaris
system)

Software which also
provides the SNMP
management interfaces
(MIBs) required for the
NMS

 Table 5: List of required platforms and packages

