
A Survey of Selected Aspects of
Selected Mobile Platforms

IMEDIA/03/00

Arve Larsen

Oslo
June 2000

© Copyright Norsk Regnesentral



NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

    © Copyright Norsk Regnesentral

Tittel/Title:
A Survey of Selected Aspects of Selected Mobile Platforms

Dato/Date: June
År /Year: 2000
Notat nr : IMEDIA/03/00
Note no:

Forfatter /Author:
Arve Larsen

Sammendrag/Abstract:

This report covers selected aspects of selected mobile platforms. The selected platforms cover
all the major consumer PDA offerings, as well as the most important platforms for building
mobile embedded systems.

The first part of this report presents the Selected Aspects described later, followed by a brief
description of our use of Mobile Platforms. This is followed by a description of Common
Aspects of the mobile platforms described herein. The main part of the report covers the
different Operating Systems used in our selected mobile platforms. A brief Summary
completes the report.

Emneord/Keywords: mobile platforms, EPOC, Windows CE, Palm OS

Tilgjengelighet/Availability: Open

Prosjektnr ./Project no.: 619015

Satsningsfelt/Research field: Mobile devices and platforms

Antall sider /No. of pages: 24



               NR-notat/NR Note

Norsk Regnesentral / Norwegian Computing Center
Gaustadalléen 23, Postboks 114 Blindern, 0314 Oslo, Norway
Telefon 22 85 25 00, telefax 22 69 76 60

2

A Survey of Selected Aspects of
Selected Mobile Platforms

Contents
1 Selected Aspects......................................................................................................3
2 Mobile Platforms.....................................................................................................3
3 Common Aspects ....................................................................................................4

3.1 State Management.............................................................................................4
3.2 Storage Solutions..............................................................................................5

4 Operating Systems...................................................................................................6
4.1 Windows CE.....................................................................................................6
4.2 EPOC..............................................................................................................11
4.3 Palm OS..........................................................................................................18
4.4 VxWorks.........................................................................................................20

5 Summary................................................................................................................22
5.1 Future Trends..................................................................................................22
5.2 Aspect Summary.............................................................................................23

6 References.............................................................................................................24

The material in this document is partly based on a report written for Birdstep Technology ASA.



               NR-notat/NR Note

Norsk Regnesentral Page 3 of 25

1 Selected Aspects
The purpose of this report is to select and describe aspects of mobile platforms that
are important for planning and developing software components, libraries or similar
for use on multiple platforms. On this basis we have selected modularisation, state
management, memory architecture, memory management, persistent storage,
multitasking features, remote access and synchronisation, development environment
and language support, as well as supported CPUs.

By modularisation we mean aspects like dynamic link libraries, application
architecture, bundled functionality etc. This is especially important when designing
code or functionality to be shared by different processes. By state management we
mean the operating systems handling of power-on and power-off. This needs to be
considered when handling persistent data. Memory architecture describes how
memory is allocated to processes, addressing schemes, partitions, memory constraints
etc. With typical mobile devices having very limited memory this must be considered
in many kinds of applications. Memory management describes how applications
should allocate and handle memory. This is essential for creating robust applications.
The different platforms have very different strategies for enforcing or supporting good
memory management practices. Persistent storage describes the different abstractions
provided by the operating system for handling persistent data such as files, databases
etc. This is coupled to the memory architecture as well as the platforms support for
removable storage such as compact flash cards. The platforms multitasking features,
such as threads, locking primitives etc, is especially important when creating complex
applications where more than one application or thread may need to access shared
data or other resources. Many mobile platforms are used in connection with other,
perhaps desktop based, systems. The different operating systems provide different
features for remote access and synchronisation. These features may be valuable for
backup purposes, integration with office and legacy systems etc. When developing
applications, both the available development environments and supported languages
should be considered. For low-level programming the target CPU should also be
considered.

2 Mobile Platforms
This report considers a mobile platform to be a complete device, with its operating
system, input/output devices, communications, extensions etc. When considering
mobile platforms, it useful to divide them into groups characterised either by physical
design or operating systems.

Handheld Palmsize Auto Other
CE X X X x1

EPOC X (x)2

                                                
1 Microsoft seems to be seeking a wide acceptance for its Windows CE operating system as a platform
for both PDAs and embedded systems, targeting a wide range of generic devices as well as specialised
devices such as car stereos and game consoles.



               NR-notat/NR Note

Norsk Regnesentral Page 4 of 25

Palm X
VxWorks X3

A third dimension can be described on the basis of communication support. For
instance “Communicator”  is often used to denote a combination handheld PDA and
mobile phone. Similarly “Smartphone” is often taken to mean combination of a
palmsize PDA and a mobile phone.

3 Common Aspects
This section outlines common aspects of the different platforms.

3.1 State Management
Most of the platforms share more or less the same state model. In the On state the
device is perceived as being on, with applications running etc. The On State itself may
have several different sub-states, allowing for efficient power management. In the
Suspend State the device is perceived as being off, with no applications running.
However, all internal memory (application and storage RAM) as well as the system
clock is kept alive. In addition, some processes and hardware components are active,
allowing the system to wake up in response to specific events (connections, alarms
etc.).

Application RAM cleared
Storage RAM cleared

Clock cleared
Persistent storage kept

Application RAM kept
Storage RAM kept
Clock kept
Persistent storage kept

Dead

Suspend

On

Suspend()
Activity
Timeout

Battery
Dead

Cold
Boot

Low
Power

Warm
Boot

Application RAM cleared
Storage RAM kept
Clock kept
Persistent storage kept

Please observe that the Suspend State requires battery power. Whenever the battery
fails, the device reverts to the Dead State and all RAM content is lost.

Platform specific details such as state transition signalling etc. are described
separately.

                                                                                                                                           
2 Several EPOC based SmartPhones have been previewed and even announced, but so far none have
made their way into the public market.
3 VxWorks target is mainly embedded systems. It is included here because some highly specific mobile
applications use and require the kind of environment provided by this OS.



               NR-notat/NR Note

Norsk Regnesentral Page 5 of 25

3.2 Storage Solutions
All of the platforms have both volatile and non-volatile memory built in.

3.2.1 Volatile Memory
The main operating memories of these platforms is based on standard volatile RAM,
allowing fast access, and direct addressing on a word (or byte) level. This memory is
used to store user data as well as user installed applications. Following the state
model, this memory is perceived as persistent because of the Suspend State.
Whenever the device reverts to the Dead State, both applications and data in this
storage is lost.

3.2.2 Non-volatile Memory
All of the devices have basic applications loaded in ROM. In addition most support
persistent storage on flash memory or similar types of storage.

3.2.2.1 ROM
The main content in ROM is the Operating System itself. In addition, core
applications like calendar, address book etc. are often stored in ROM. The platforms
themselves may allow for custom applications to be loaded into ROM, but usually the
device manufacturers want to control such applications themselves.

3.2.2.2 Flash
Flash memory is solid state persistent memory. The most common varieties, PCMCIA
and CompactFlash (CF), both provide a device interface based on a standard disk
interface (ATA). Each operating system provides a file-system on to of the device
interface. To ease interoperability, most platforms use a FAT-based file-system. When
considering the use of flash storage for application purposes, the file system employed
should be taken into account. Some simple file systems like FAT16 are not very
efficient for larger volumes (such as 128MB or more)4.

Linear flash provides a linear address space instead of the ATA interface. This enables
linear flash to be used as direct RAM, but most implementations provide a block
device abstraction instead (similar to the ATA interface of CF and PCMCIA cards).

From an application perspective, most flash memory perform and behave like disks.
This means that access is based on whole sectors, and that performance depends upon
the performance of the card. In addition, solid state flash memory requires that each
sector must be erased before new data can be written.

In small mobile devices, CF cards are most common. The standard defines two
different physical sizes, CF I (thinnest) and CF II (a bit thicker). The amount of
available storage increases steadily. At present, 192 MB CF I cards are available as
well as 488 MB CF II cards.

                                                
4 For 128 MB drives, FAT16 uses allocation units of 4 KB. Similarly 8 KB is used for 256 MB drives,
16 KB for 512 MB drives and so on. This is especially important when dealing with many small files or
detailed (for instance record based) access to larger files.



               NR-notat/NR Note

Norsk Regnesentral Page 6 of 25

The original CF standardisation assumed solid state storage. Now, several
manufacturers also deliver miniature harddrives on CF cards. These are usually CF II
cards with current maximum capacity of 340 MB and 1 GB announced for later this
year.

At present both solid state and disc based cards have physical limitations. Solid state
flash memory has an upper limit on how many times one physical sector may be
written. Most guarantee a minimum of 300 000 writes per physical sector, but also
state that 1 000 000 writes could reasonably be expected. In addition, many cards
employ a dynamic mapping from logical to physical sectors, limiting the actual writes
to a specific physical sector. When updating a logical sector this means that the data is
read from one physical sector, updated in a sector buffer and written to another
physical sector.

The IBM MicroDrive have another limiting factor. Each card is specified to handle
300 000 load/unload cycles, i.e. how many times the drive head is moved off the
physical discs in order to prevent damage when the card shuts down.

The minimum (and most typical) sector size of most block devices like CF cards are
512 bytes/sector, with 1024, 2048 and 4096 bytes/sector being not to uncommon. In
extreme cases 64kbytes/sector may be used.

3.2.2.2.1 Typical CF performance figures

IBM (MicroDrive) Sector Size: 512bytes
Load/unload cycles: 300 000 (head park when powering off)

Sandisk (Solid state) Sleep to write 2,5 msec max
Sleep to read 2,0 msec max
Reset to ready 50 msec typical, 400 msec max
Data Rate to/from Flash 4,0MB/s burst
Data Rate to/from host 6,0MB/s burst

Lexar (Solid state) Up to 10MB/sec burst
Sleep to read/write 25 msec
Sustained write min 600KB/s (4X), min 1,2MB/s (8X)
10 million images guaranteed

Kingston (Solid state) 300 000 cycles pr. logical sector

4 Operating Systems
This chapter describes the different operating systems used by the selected platforms.
Each OS is given a brief introduction before the selected aspects are covered.

4.1 Windows CE
Microsoft’s Windows CE is a member of Microsoft’s WIN32 family of operating
systems (together with Windows NT and Win95/98). All operating systems in this
family provide the same WIN32 API. The Windows CE architecture allows the OS
itself to be adapted to create different platforms. Specific platforms may support other
Microsoft specific technologies, such as COM, ATL and MFC. The core OS itself
supports multiple processes with multiple threads.



               NR-notat/NR Note

Norsk Regnesentral Page 7 of 25

Microsoft has not been kind to the public when naming their various Windows CE
offerings. Firstly, they deliver the generic operating system through a platform builder
pack. The basic operating system have been through several versions (at least 1.0, 2.0,
2.1, 2.11, 2.12, 3.0). The general trend is a move towards richer functionality, as well
as optimising core components such as the OS kernel. Microsoft has presented
Windows CE as their embedded operating system for small footprint systems (thereby
distinguishing it from Embedded Windows NT). In version 3.0, they have
strengthened the real-time capabilities, as well as including the word ‘embedded’  in
several of the related products such as the corresponding visual tools.

In addition to the OS itself, Microsoft markets several generic platforms that in
principle offers exactly the same environment. These are used by most (if not all)
Windows CE consumer devices. The generic platforms are summarised in the table
below.

Abbrv. Name OS Comment
HPC Handheld PC (1.0)

2.0
Later versions (2.11) sold as “Windows CE, Handheld PC
Edition, version 3.0”

HPC Pro Handheld PC Pro 2.11 Sold as “Windows CE, Handheld PC Professional Edition,
version 3.0”

PPC Palmsize PC 2.1
PPC 1.2 Palmsize PC 2.11 Initially marketed as “Colour PPC”
Pocket PC Pocket PC 3.0 Successor to PPC, marketed as “Powered by Microsoft

Windows for Pocket PC”
Auto PC Auto PC Later versions marketed as “Microsoft Windows CE for

Automotive 2.0”

It is important to realise that device manufacturers are free to provide their own
adaptations of the core OS. This means that even though several manufacturers
provide the same generic platform, the actual implementations may be different. A
consequence of this is that if an application is to be certified, it must be tested against
specific devices, not only generic platforms (although most applications will work on
most devices built from the same generic platform).

4.1.1 Modularisation
Windows CE uses the common application/DLL architecture of the WIN32 family. A
running application constitutes a process with at least one thread. In addition most
Windows CE devices also support COM-objects, enabling different applications of
utilising the same components. This is hardly surprising since one goal of Windows
CE is to provide a programming environment similar to other WIN32 platforms.

4.1.2 State Management
Windows CE follows the state model described in common aspects quite closely. In
particular, when entering the Suspend State, no signals are given. To the application
programmer, this state change could be considered as a context switch. When the
system reverts to the On State and the application becomes active, no changes should
be apparent.



               NR-notat/NR Note

Norsk Regnesentral Page 8 of 25

One consideration is that when the system enters the suspend state, the user perceives
the device as being off. This means that removal and insertion of CF cards etc. are
likely to be done in the Suspend State. When the device is reactivated, the system
sends a WM_DEVICECHANGE message and a
NOTIFICATION_EVENT_DEVICE_CHANGE as if the card was removed while the
device was on. Since the same signals are sent if a card is removed or inserted while
in the On State, applications using such cards should process these signals or actively
check the presence of a card before accessing it.

4.1.3 Memory Architecture
Windows CE provides a 1 GB virtual address space for applications. This is divided
into 32MB slots, reserving one slot per process. This gives a maximum of 32
processes. (There is no similar limit on the number of threads.) In addition to this
Windows CE provides 1 GB of virtual memory for memory mapping between
processes. Physical memory is allocated to processes one page at a time. Typical page
sizes are 1KB and 4KB.

Uncompressed ROM programs (including DLLs) can run in-place. Compressed ROM
programs will be decompressed and executed in RAM. Most CE devices have volatile
RAM. Some may have non-volatile RAM (usually linear flash5, none discovered so
far). Se State Management for providing pseudo non-volatile RAM through the
suspend state.

Two types of memory are available to application programmers. Part of available
memory is set aside as RAM for use by applications for storing volatile data. The rest
of available memory is called the object store and are used to store persistent data.

In version 3.0 the maximum size of the object store have been raised from 16 MB to
256 MB. The maximum size of a single file has been raised from 4 to 32 MB. The
maximum size of a database volume has been raised from 32 to 256 MB.

4.1.4 Memory Management
Windows CE relies on standard C/C++ memory allocation, types etc., with some
Microsoft specific solutions. One important aspect of Windows CE programming is
that standard C++ exception handling is not supported. Instead Microsoft provide both
WIN32 and MFC exception handling. These provide more or less the same
functionality, but are realised in a completely different way.

There are no specific requirements for memory management, but when available
memory falls below the hibernation threshold (typically 128 KB) the system will send
a WM_HIBERNATE message to each visible application (i.e., with a button on the
taskbar). Upon receiving the WM_HIBERNATE message the application should free
as much memory and resources as possible.

                                                
5 See
http://www.microsoft.com/windows/embedded/ce/previous/developer/hardware/architecture/ftl.asp



               NR-notat/NR Note

Norsk Regnesentral Page 9 of 25

Windows CE specifies two further thresholds, the low-memory threshold and the
critical-memory threshold. These effectively limit the amount of memory available
through the VirtualAlloc function. Any request for more memory through
VirtualAlloc that breaks one of these thresholds results in a “System Out of Memory”
message to the user who are prompted to close an application. If available memory is
about to fall below the low-memory threshold, WM_CLOSE is used to close
applications. If the application does not close within 5 seconds, the user is prompted
with an “End Task or Wait”  dialogue. End Task results in the application being
terminated by TerminateProcess (with no grace whatsoever). If available memory is
about to fall below the critical-memory threshold, TerminateProcess is used instead of
WM_CLOSE.

To reduce the risk of a single memory allocation through VirtualAlloc failing,
Microsoft recommends using small memory allocations, typically 4kb or less, i.e. not
allocation more memory than you know you are going to need in the near future. This
scheme has no effect whatsoever if the running applications actually require more
memory than is available.

4.1.5 Persistent Storage
In Windows CE the term persistent storage applies both to RAM kept alive in the
Suspend mode (but lost in Dead mode), and to data stored on persistent devices like
CF-cards.

Windows CE has three different types of interfaces for accessing both types of
persistent storage. The CE file system is used to store data files and applications. It is
transactioned, FAT based, and each device can handle up to nine volumes (storage
cards or partitions on a storage card). The CE database provides a very simple but
limited way of storing tabular or record based data. The CE registry allows storing of
common application information in a central registry6.

Although all Windows CE platforms share the same basic abstractions and interfaces,
some present different logical file systems to the user. For the Windows CE Palmsize
platform only specific parts of the total file system is presented to the user through
standard components for file selection and retrieval. Specifically, only directories
starting with My Documents (but all of them regardless of which storage card they are
on) are shown.

4.1.6 Multitasking Features
Windows CE provide more or less the same multitasking features as the other WIN32
platforms. This includes multiple processes, multiple threads pr. process and
preemptive multitasking. An important distinction is that when the main thread of a
process terminates, the whole process terminates.

Threads are scheduled according to priority. High priority threads are handled first.
Scheduling between threads with the same priority is done in a round-robin fashion.
                                                
6 Although registry information may be stored on a persistent device, it must be copied to the RAM-
based registry before it can be used.



               NR-notat/NR Note

Norsk Regnesentral Page 10 of 25

Lower priority threads only runs after higher priority threads have finished, e.g. are
idle or waiting. Events, mutexes and critical sections are used for thread
synchronisation. Events and mutexes may also be used for inter-process
synchronisation. A thread may lose control at any time, except when within a critical
section.

4.1.7 Remote Access and Synchronisation
RAPI allows for remote access to a device from a host. This includes viewing file
systems, heaps, processes and events.

ActiveSync provides a framework for synchronisation between a device and a host.
Synchronisation may be automatic on connect, automatic continuous or manual.
ActiveSync is built around a Service Manager and several Service Providers. The
Service Manager provides basic synchronisation, including connectivity7, change
detection, conflict resolution as well as mapping and transferring data objects. It is
implemented as a part of the Windows CE Services both on the client and the host
side.

The service provider is implemented two modules, the desktop provider module and
the device provider module, both DLLs. A service provider implements
synchronisation tasks specific to an application.

“The service provider interfaces with both the service manager and the application,
thereby exposing the application and the application’s data to the service manager. In
turn, this interaction enables the service manager to synchronise different types of
data from different types of applications. The service provider also facilitates all
requests made by the service manager, such as displaying a user interface (UI) or
reporting status.”  (Taken from the Windows CE Toolkit for Visual C++
documentation).

The basic ActiveSync infrastructure includes providers for built-in databases,
including synchronising files and databases. In addition ActiveSync offers backup and
restore functionality for connected devices. By implementing and registering new
providers application developers can provide application specific transformations,
synchronisation rules etc.

4.1.8 Development Environment and Language Support
Microsoft offers two levels of Windows CE development tools. The Windows CE
Platform Builder (currently version 3.0) is aimed at device producers, enabling
tailoring the OS to a specific platform (processor, peripherals, OS functionality etc).
For application development newer versions of the Platform Builder (at least 3.0)
include Microsoft’s eMbedded Visual Tools.

The Microsoft eMbedded Visual Tools (currently version 3.0, previously called
Windows CE Toolkit) contain all that is necessary to develop CE programs in C++
                                                
7 Based on Windows CE communication services, meaning that most types of communication (LAN,
serial, infrared) can be used.



               NR-notat/NR Note

Norsk Regnesentral Page 11 of 25

and Visual Basic. It is structured into a generic base, consisting of the compiler and
necessary support infrastructure. In addition one or more platform specific SDKs must
be installed. The product CD includes SDKs for the most relevant generic platforms,
including Pocket PC. SDKs for all the generic platforms are available from Microsoft.
Others can be produced using the Platform Builder. Although most of the code can be
shared across different platforms, applications must be compiled for a specific
platform and a specific processor.

In addition to Microsoft, several other companies build development environments.
Sun has produced a beta version of Personal Java for Windows CE. WABA is another
Java offering, building a very lightweight core (significantly smaller and less powerful
than Personal Java) for building Java programs. Pocket C is and environment for
developing C applications. Pocket C applications are not compiled to native code, but
to a byte-code format run by the Pocket C interpreter.

Windows CE itself does not provide any scripting environment (other than the Visual
Basic environment). Some are available from different sources, see for example
http://www.geocities.com/ResearchTriangle/Lab/3533/palm_sw2.html#prog.

4.1.9 Supported CPUs
For application programmers, Windows CE hides all processor details. Like other
Windows platform it is also assumed that all numbers are stored in little-endian
format. For highly specific low-level programming, for instance special device
drivers, processor details may be of importance. Even though the OS itself is largely
processor independent, specific applications must be compiled for specific platforms,
including specific processor architectures.

From the Toolkit for Visual C++ documentation8:
AMD X5, ARM 720T, ARM SA-1100, Hitachi SH4 (16 bit support), IBM PPC
403GC, MIPS 4102, MIPS 4111, MIPS R3910, MIPS R3912, MIPS R4101, Motorola
MPC823, NEC VR4111 (16 bit support), NEC VR4300, PPC 821, QED5230, SH3,
x86

4.2 EPOC
EPOC is an operating system specifically design for mobile devices, now owned and
developed by Symbian. The OS itself is licensed to manufacturers such as Psion,
Nokia and Ericsson who produce consumer devices. The current crop of EPOC
licensees indicates that EPOC’s future will be strongly influenced by the development
of mobile phones, smartphones, communicators and other communication centric
mobile devices.

EPOC is lightweight general OS optimised for small devices, not favouring specific
types of applications. The OS itself is object-oriented, with special constructs for
handling multithreading and exception handling.

                                                
8 See also http://www.microsoft.com/windows/embedded/ce/guide/processors/default.asp.



               NR-notat/NR Note

Norsk Regnesentral Page 12 of 25

There is currently only one version of this OS available in consumer devices9. The
Psion 5 and similar devices all use EPOC release 5 (ER5). Several new devices are
under development using new or specialised versions.

Ericsson’s R380 SmartPhone is based on ER5 with significant changes. Important
examples are a proprietary GUI and UNICODE support.

Expected changes in a new version (ER6) include stronger media support as well as
general UNICODE support. Other possible extensions will probably include
adaptations to voice- and communications centric devices such as Ericsson’s R380
and Nokia’s Communicator.

4.2.1 Modularisation
EPOC provides a standard application/DLL architecture. Executing applications
constitute a process that may utilise dynamic link libraries as needed. In addition
EPOC favours a client/server paradigm for creating applications. Examples of
bundled servers are the file server, the serial communications server (including
telephony), the window server and the font and bitmap server. Applications providing
generic functionality to other applications should be implemented as servers. Standard
thread-functionality is available, but EPOC provides Active Objects as a more
resource friendly and object-oriented abstraction (see Multitasking Features for more
information).

In addition to the application architecture above, EPOC provides several general-
purpose engines. Most engines are libraries providing extended functionality on top of
servers. For persistent storage EPOC provide the STORE and DBMS engines for
accessing streams and databases respectively (see Persistent Storage).

The APPARC engine (application architecture) provides the basic infrastructure for
launching applications etc. An important consequence of this architecture is that every
application and native file type requires a unique id (UID). UIDs are also used for
embedding file types for one application inside another application.

The BAFL engine (basic application framework library) provide, among other generic
functions, the necessary functionality for utilising resources such as language
dependent texts, UI-components etc.

Three different text-processing engines are available, CHARCONV, LEXICON and
ETEXT. CHARCONV provides conversions between various character sets and is
integral in EPOC’s UNICODE support. LEXICON provides spell-checking
functionality for alphabetic languages, with English implemented in the standard
server. ETEXT is a general-purpose text component used by databases, word
processors etc.

                                                
9 ER3 is available on the Psion 3 family of devices, but Psion no longer supports them.



               NR-notat/NR Note

Norsk Regnesentral Page 13 of 25

In addition to these general-purpose engines EPOC provide a comprehensive GUI
supporting windows, user input, printing, fonts etc. CONE is a basic GUI-
environment built on top of the window server. EIKON is a more comprehensive
GUI-environment built on top of CONE.

4.2.2 Memory Architecture
EPOC supports an abstract memory model based on a conventional two-level memory
management unit (MMU) with a common page directory for all processes. Memory is
allocated in chunks, typically with one private chunk per thread, although chunks may
be shared. Each chunk occupies one page directory entry (PDE) and typically has a
stack at the bottom and a heap at the top. Chunks may grow upwards (possible
requiring more page directory entries), but not downwards. For Java support, EPOC
also support chunks that grows downwards.

Context switching on the current EPOC platforms involves moving all the process’
PDEs from a user area to an area accessible by the kernel. ER5 supports four fixed
process slots (for processes that live in the kernel accessible area) for high-speed
context switching. The file server, the serial communications server, the window
server and the font and bitmap server occupy these process slots.

4.2.3 Memory Management
A special feature of EPOC is that every thread in principle has its own heap. This
means that even if two threads belong to the same process, they have different heaps.
This is especially important when code running in one thread tries to access data
created in a different thread and thus on different heap. A specific thread may share
another’s heap either by adopting the other thread’s heap as its own or by switching
heaps during execution. See Multitasking Features for more on EPOC’s unique
multitasking environment.

To preserve a focus on and support for efficient applications in a restricted
environment, EPOC provides several specific types. EPOC strongly suggests (and in
most cases require) the use of special EPOC data types instead of native C/C++ data
types. Many EPOC types, such as TInt, correspond directly with native C types, such
as int.

Most EPOC types follow a specific naming convention. Application developers are
encouraged to use the same convention. EPOC provide three different groups of data
types, called C, T and R-types.

C-types are classes derived from CBase (as all classes should be for cleanup purposes,
see below) and allocated on the heap. They should not be allocated on the stack or as
member variables. C-types must be cleaned up when they are no longer needed
(CBase provides a virtual destructor, but many classes will need to provide their own).
C-types are referenced by a pointer. See cleanup below for more on ownership of C-
types. C-types are passed by reference.



               NR-notat/NR Note

Norsk Regnesentral Page 14 of 25

T-types do not have any ownership of other data. Examples are simple types and
enumerators like TInt and TAmPm, objects like TBuf<40> that do not contain any
references to other objects (i.e. needs no destructor), and objects like TPtrC whose
external references does not indicate ownership (i.e. the primary pointer to the other
object exists elsewhere). T-types can be passed by value or by reference. Reference is
preferred for T-types of more than two machine-words total length. It is till possible
(but rare) to pass T-types by pointer or allocate them on the heap.

R-types are special types that usually contain handles to a resource that is maintained
elsewhere. R-types are similar to T-types in that they can be class members as well as
automatic variables. They are like C-types in that they own other resources. Unlike C-
types, however, they do not have destructors. Instead anyone using an R-type must
explicitly call its Close() method when cleaning up.

Descriptors are EPOC’s way of handling access to and manipulation of strings and
general binary data. A descriptor’s data area is not expandable (except for heap
buffers) and must be accessed through the descriptor’s methods. Three types of
descriptors, pointer (TPtr, TPtrC), buffer (TBuf<TInt>, TBufC<TInt>) and heap
(HBuf, HBufC) are provided. Each type of descriptor comes in two different flavours,
on non-modifiable (ending with C, like TPtrC) and one modifiable (not ending with
C, like TPtr). In addition to this each descriptor type is available in 8-bit (non-
UNICODE and general binary data) and 16-bit (UNICODE) variants. TPtr, for
example is defines as three different types, TPtr8, TPtr16 and TPtr. TPtr8 and TPtr16
are the 8 and 16-bit versions respectively. TPtr is mapped to TPtr16 if _UNICODE is
defines and TPtr8 if not.

When building for several EPOC platforms it is important to choose the right type of
descriptors. 8-bits for general binary data and strings that are 8-bit no matter what, 16-
bits for strings that are 16-bit no matter what and non-specified for all other strings.

All the T-type descriptors behave like other T-types. HBuf and HBufC must be
explicitly deleted, either by User::Free() or delete, thus behaving like C-types.

In addition to the access-safe descriptors described above, EPOC provide type-safe
descriptors called packages. A package is similar to a buffer or pointer descriptor. The
functionality added by packages allows for mapping between C-structures and
descriptors for reading or writing.

Yet another special feature of EPOC is its exception and cleanup facilities. EPOC
does not support C++ exception handling. Leave is EPOC’s way of throwing an
exception, e.g. User::Leave(KError). Any method that may leave should end with L
(like doExampleL). Any call to a L-method should be protected by a trap-harness
either directly or higher up in the call-stack. A trap-harness, for example
TRAPD(errorcode,doExampleL) is similar to try in C++. If doExampleL (or any
method it calls) leaves, control will be passed directly to the nearest trap-harness in
the call-stack (using C++ longjmp). The code immediately following a trap-harness
should check the error code and take appropriate action, similar to catch in C++.



               NR-notat/NR Note

Norsk Regnesentral Page 15 of 25

EPOC’s exception handling have far reaching implications for memory cleanup. Any
variables on the stack above the trap-harness will be orphaned. This should ideally
only happen to T-types. R-types can safely be orphaned only if they are copies of
another R-type still available. The application programmer must clean up all other
types.

EPOC provides a cleanup stack for handling cleanup. This is especially important
when allocation memory within an objects constructor. Let us assume that the
constructor of object A successfully allocates an object B on the heap. If some other
part of the constructor fails it will leave orphaning all members of A. B, which should
normally be delete by A’s constructor will now be lost forever. Debug builds of
EPOC will detect all lost data when the application exits, allowing the developer to
track down all memory leaks.

EPOC handles the above situation gracefully using the cleanup stack. When B is
successfully allocated, it should be pushed to the cleanup stack using
CleanupStack::PushL(B). If the rest of the constructor is executed successfully, B
should be removed from the cleanup stack using CleanupStack::Pop(). If the
constructor leaves, the trap harness will automatically empty the cleanup stack,
gracefully removing B.

A trap harness should not be used within a constructor unless explicitly needed.
Trapping and then (re-) leaving generates more code and is more time consuming than
allowing the leave to fall through to the next trap.

Any object that must be
cleaned up must derive from
CBase. If this is a compound
object, EPOC requires a
special two-phase
construction. This code
example, taken from the
EPOC documentation,
illustrates the two-phase
approach.

NewL creates the new
object using NewLC and
pops the new object from
the cleanup stack. NewLC
creates the actual object,
pushes it to the cleanup
stack and initialises the
object using ConstructL.

CCompound* CCompound::NewLC(TInt aRoot,TInt aChild)
  { // NewLC with two stage construct
    CCompound* self=new (ELeave) CCompound;
      // get new, leave if can’t
    CleanupStack::PushL(self);
      // push onto cleanup stack
      // (in case self->ConstructL leaves)
    self->ConstructL(aRoot,aChild);
      // use two-stage construct
    return self;
  }

void CCompound::ConstructL(TInt aRoot,TInt aChild)
  { // NB. function may leave
    iRoot = aRoot;
    iChild = CSimple::NewL(aChild);
    iChild->iVal = aChild;
  }

CCompound* CCompound::NewL(TInt aRoot,TInt aChild)
  { // version of NewLC which leaves nothing
    // on the cleanup stack
    CCompound* self=NewLC(aRoot,aChild);
    CleanupStack::Pop();
    return self;
  }



               NR-notat/NR Note

Norsk Regnesentral Page 16 of 25

To simplify checking successful construction of object, EPOC provides an overloaded
new-operator (new(ELeave) CCompound) indication that this constructor will leave if
it does not successfully allocate memory. In addition, normal C++-constructors are
not allowed to leave.

Any thread using a cleanup stack must explicitly create it using CTrapCleanup and
delete it when it is not needed. CONE (and thus also EIKON) applications does this
automatically for its main thread.

Besides the cleanup stack, for instance when exiting an application, all objects must
be explicitly deleted. Therefore it is important to clearly define ownership of objects
and make sure that all owners destroy the objects they own. Again, leaks will be
detected in debug builds of the operating system.

4.2.4 Persistent Storage
Like Windows CE EPOC uses “persistent”  to denote data both in battery backed up
RAM and actual persistent devices.

EPOC provides two different types of persistent storage. The stream store provides a
file abstraction while the DBMS engine provides a functional interface to a relational
database. To support this interface EPOC provides a very simple client-side only
implementation of the database interface.

4.2.5 Multitasking Features
EPOC is a multitasking operating systems allowing multiple processes and multiple
threads per process. Still, one of the most prominent features of EPOC is Active
Objects, an object-oriented multitasking abstraction, and its asynchronous
programming facilities.

TRequestStatus objects control asynchronous calls in EPOC. The method TInt
RFile::Read(TDes8& aDes) is synchronous meaning that active thread runs through
the method, returning with the result later. The method void RFile::Read(TDes8&
aDes, TRequestStatus& aStatus), on the other hand, return immediately, while the
actual processing takes place along another line of control. The original thread must
then issue a User::WaitForRequest() and process the value of aStatus, which should
have the same value as the return value of the synchronous version.

Active objects is EPOC way of encapsulating the details of this asynchronous
programming model. An active object exposes service methods and dispatches
requests to service handlers using the asynchronous mechanisms described above.
CActive is the base class of all active objects. CTimer is a simple base class for time-
based active objects, i.e. objects that should be called on clock-ticks10.

                                                
10 For user processes, EPOC provides only a low-resolution clock, with a frequency of 10Hz on a PC
based platform (emulator) and 64Hz on an ARM based platform. Higher resolution clocks are only
available to low-level processes such as device drivers.



               NR-notat/NR Note

Norsk Regnesentral Page 17 of 25

All active objects are controlled by active schedulers. An active scheduler handles all
the details of waiting for service completion and dispatching control to the right active
object through the active objects RunL method. A thread may have only one active
scheduler. The execution of requests and results processing is non-preemptive. A
practical consequence of this is that RunL methods should be as short as possible.

Incidentally, these aspects of EPOC are covered extensively in the SDK
documentation and in Symbian’s technical papers11.

In addition to the active object abstraction, EPOC supports creating and controlling
threads, including mutex and critical section primitives. It is important to remember
that in EPOC resources are owned by threads, not by a process. This includes the
heap, file stores etc.

4.2.6 Remote Access and Synchronisation
EPOC Connect is the name of Symbian’s generic product for remote access and
synchronisation. Device manufacturers license this product and sell it under their own
name, such as Psion with their PsiWin.

EPOC Connect has several different attributes:
1. An application integrated into the Windows environment facilitating drag and

drop file copying, file conversion, synchronisation, backup/restore, device
management etc.

2. A COM-based architecture for including new converters, synchronisers etc.
3. A COM-based architecture providing access to EPOC engines from Windows

(WINC). The COM-interfaces are similar to the native EPOC interfaces.

For developing converters, synchronisers, etc. utilising EPOC Connect Symbian
provides a separate EPOC Connectivity SDK.

4.2.7 Development Environment and Language Support
Symbian’s EPOC SDK provides the main EPOC development environment. It
provides a separate emulation environment for testing and demonstration purposes
(development using Visual C++ 5 or 6). The bundled GNU C++ compiler provides
target platform compilation. The OS itself is wholly object-oriented, not modelled
after other OS “ types”  such as WIN32 or POSIX. To ease porting, most stdlib
functions are available on top of the native EPOC interface. This means that using
standard C functions will impose an overhead. In addition the stdlib implementation
preserves state across calls. This means that every thread using the stdlib must
explicitly close it when exiting.

In addition to the C++ environment EPOC provides a full Java environment. This is
integrated into the existing EPOC platform. Current implementations still suffer from
bugs, but fixes are expected.

                                                
11 See for instance http://www.symbian.com/technology/papers/active/active.html.



               NR-notat/NR Note

Norsk Regnesentral Page 18 of 25

To complement C++ and Java, EPOC offers its own scripting language, OPL. This
can for instance be used to automate common tasks etc.

4.2.8 Supported CPUs (ER5)
MARM: ARM 7100, StrongArm
MTHUMB: not yet supported, will build for ARM Thumb
MCORE: not yet supported, will build for Motorola M340

4.3 Palm OS
Palm OS is a lightweight operating systems especially designed for small devices. It is
currently owned and controlled by Palm, Inc.

Unlike Windows CE and EPOC, Palm OS does not attempt to provide a generic OS
for mobile platforms. Instead the focus is on the creation of small, specialised and
extremely efficient application such as calendar, contacts database etc. Palm OS does
not provide support for threads or more than one running process at a time. However,
the small applications together with the application launch architecture provide the
user with the feeling of having several applications alive and running.

The extremely narrow focus of the Palm platform is a limiting factor. Still, Palm
devices constitute the majority of PPC-type devices, indeed the majority of all PDA-
type platforms. Rumour has it that Palm is seeking to license its user interface to be
used on top of EPOC (or other suitable operating systems). As with the other
platforms, device manufacturers and market impact will have profound influence on
the future development of the platform.

4.3.1 Modularisation
The only modularisation features provided by Palm OS are application and device
driver. No support for dynamically linked libraries exists. This coupled with the
extremely tight memory requirements for most Palm OS devices means that the
application programmer should focus on using the OS-features as much as possible.

Device drivers are small, specialised programs controlled by the OS’  communication
manager. Serial device drivers provide a byte-oriented hardware abstraction layer
concealing details of different UARTs etc. Virtual device drivers provide a block
oriented interface, usually on to of a serial device driver.

4.3.2 Memory Architecture
The memory architecture in Palm OS is structured around storage cards. Each storage
card may have ROM, RAM and flash memory. A 256 MB address space is set aside
for each storage card. All available memory on a storage card is divided into heaps.
RAM is divided into storage RAM and dynamic RAM. Dynamic RAM consists of a
single heap. Storage RAM consists of one or more dynamic heaps.

If more than one storage card is available, only the dynamic heap of the first storage
card is used. All other potential dynamic heaps are ignored. This, and the fact that a
single heap is limited in size, mean that heap memory is an extremely scarce resource



               NR-notat/NR Note

Norsk Regnesentral Page 19 of 25

in Palm OS devices. Do not use heap space unless you really, really need to. Use the
“edit in place”  functionality of database to minimise memory usage.

Palm OS uses 32-bit addresses, with 8, 16, and 32 bit data. Current implementations
use a 16-bit external data bus. The Palm OS documentation explicitly states that the
different OS interfaces should be the design target of any Palm OS application, not
specific details about word lengths, addresses, memory sizes, etc.

4.3.3 Memory Management
Palm OS provides only low-level memory management functions. Most is left to the
application developer.

Memory is allocated in chunks using the memory manager. A chunk is part of a heap,
either a ROM heap, dynamic heap or storage heap. The memory manager should be
used for all allocation of chunks. Current implementations limit the size of a single
chunk to 64KB. Chunks used to hold storage data is handled as a record in a database.
Databases are accessed through the data manager. Cards are treated as separate,
meaning that heaps, chunks and databases are limited to a specific card.

Chunks can be non-movable (fastest, but limits flexibility) or movable (most flexible,
preferred). Non-movable chunks are referenced by a direct pointer. A handle in a
master pointer table is used to reference movable chunks. Handles are not persistent
and should not be stored in a database.

4.3.4 Persistent Storage
Databases are the closest Palm OS comes to a file abstraction. For access to large
blocks of data, Palm OS provides a file streaming API, derived from stdio, on top of
databases. The file streaming API uses a double-buffering architecture which
significant performance impacts. Record-intensive applications tend to obtain better
performance from the Data Manager.

Palm OS does not provide a conventional file system. It provides a flat name-space
for storing applications (.prc-files) and database (.db-files). All access to stored data is
through the data manager, the resource manager or the file streaming API.

Current Palm OS devices have very limited flash-memory support. The only available
offering is a springboard module providing 8 MB of memory. ROM-modules are also
available, providing an external medium for carrying applications and other static
data.

4.3.5 Multitasking Features
Palm OS does not support threads or multitasking. Only one application process may
be active at any time. The only execution environment is the system event loop. This
part of the OS kernel catches all interrupts and events and delivers them to the correct
driver, kernel module or application.



               NR-notat/NR Note

Norsk Regnesentral Page 20 of 25

Palm OS’  application launching architecture provides the user with the notion of
having several applications running by implementing a crude form of task switching.
When the OS event handler detects and event for another application than the one that
is currently active, the active application receives an appStopEvent. This event signals
that application should store whatever state it needs in order to be restarted in its
current state. The application must then stop. The OS starts a new application with a
specific launch code. Depending on the launch code this newly started application
may retrieved its old state, giving the impression of having been dormant.

4.3.6 Remote Access and Synchronisation
Unlike EPOC and Windows CE, Palm OS does not provide any remote access
mechanisms other than low-level network and serial (including infrared)
communication.

Synchronisation is provided by the HotSync infrastructure. Synchronisation is
manual, activated by the HotSync-button on the device. Hitting the button provides
both database synchronisation (integration of data into desktop applications) and
backup (copy of databases on PC).

The HotSync architecture uses special plug-ins called Conduits for moving data
between desktop applications and Palm databases. HotSync uses the application name
to determine which conduit to use for synchronisation. When synchronisation starts
(and finishes), application registered for HotSync notifications (start or end) are
launched one at a time using a special launch code.

4.3.7 Development Environment and Language Support
Palm’s primary development environment is based on C using the Codewarrior
integrated development environment. Standard C routines are supported but must be
linked into every program. Using Palm specific routines instead is recommended. It is
also possible to develop Palm OS applications using the GNU gcc/g++ compiler.

In contrast to EPOC and especially Windows CE, the Palm platform have been
heartily embraced by the free software community, meaning that both applications
and software development tools are readily available, for instance a Pocket C
environment similar to that for Windows CE, and WABA, a lightweight Java
environment.

The platform itself does not provide any scripting facilities, but some standalone
products are available.

4.3.8 Supported CPUs
Motorola 68K

4.4 VxWorks
VxWorks is a real-time multitasking operating system for embedded systems. It is
provided by Wind River Systems. The operating system itself can be tailored to



               NR-notat/NR Note

Norsk Regnesentral Page 21 of 25

include only the components necessary for a given application, resulting in a very
small and highly efficient environment.

4.4.1 Modularisation
VxWorks’  focus on embedded systems affects the modularisation available. Normal
target platforms usually employ a single monolithic application. VxWorks provide a
single process that may have one or more threads. Code executing within a thread is
called a task.

4.4.2 State Management
VxWorks do not provide a state management model similar to the one described
under Common Aspects. When the system is turned of, it is really off.

4.4.3 Memory Architecture
VxWorks provides a single, linear memory space. To ease development of memory
demanding applications virtual memory is supported. To achieve the necessary real-
time requirements, no paging or swapping is performed during run-time. The standard
virtual memory architecture does not support memory page locking or memory
protection. The VxVMI option provides memory page locking, exception table
locking, as well as an architecture independent MMU interface.

A RAM disk driver is available, but this does not support memory-mapped files.
Applications requiring memory mapped files or other forms of caching must
implement it themselves.

4.4.4 Memory Management
From the VxWorks documentation: “Memory Allocation: VxWorks supplies a
memory management facility useful for dynamically allocating, freeing, and
reallocating blocks of memory from a memory pool. Blocks of arbitrary size can be
allocated, and you can specify the size of the memory pool. This memory scheme is
built on a much more general mechanism that allows VxWorks to manage several
separate memory pools.”

VxWorks provide standard C and C++ memory management functions. In addition
libraries for handling linear and ring buffers, linked lists etc. are part of the standard
package. The application developer has the full responsibility for protecting, deleting
and controlling memory, data types etc. The operating system kernel assumes that all
tasks are well behaved and correctly implemented. To help developers achieve this,
Wind River Systems provide testing and evaluation tools and environments.

4.4.5 Persistent Storage
VxWorks provide an abstract Local File System that may be realised using different
actual file systems such as FAT, NTFS etc. The OS also supports development of
drivers for a wide range of storage types, including flash memory, hard drives and
CD-rom. Again, memory-mapped files is not part of the basic OS capabilities.



               NR-notat/NR Note

Norsk Regnesentral Page 22 of 25

4.4.6 Multitasking Features
VxWorks is built around the wind kernel. This optimised kernel provides priority
based multitasking (round-robin can be selected) with strong priority control
functionality. Comprehensive thread support in the form of tasks is provided through
the task library (taskLib).

A wide variety of inter-process communication facilities is offered. This includes
message queues (both wind and POSIX), pipes, socket/RPC, and UNIX-style signals.
Shared memory objects are provided through the VxMP option. A wide range of
semaphores is also available, including binary semaphores, mutual-exclusion
semaphores and POSIX semaphores.

In addition to the inter-process facilities VxWorks provides strong interrupt handling.
This includes allowing task to disable interrupts during specific code segments using
interrupt locks. Task-locks is a milder for of lock protecting the executing task from
most context switches, except hardware interrupts.

4.4.7 Remote Access and Synchronisation
VxWorks does not provide any explicit synchronisation architecture.

4.4.8 Development Environment and Language Support
Development of VxWorks applications is based on UNIX-style C and C++
development, including full ANSI C and POSIX support. Compilers include GNU
gcc/g++ as well as specialised components as part of the Tornado Development
environment.

4.4.9 Supported CPUs
Motorola MC680x0
Sun SPARC, SPARClite
Intel i960
Intel x86
MIPS R3000, R4000, R4650
PowerPC
ARM
(VxSIM)

5 Summary
This section gives a brief summary of this report.

5.1 Future Trends
The general trend is a move to include more and more functionality into mobile
devices. It may seem that a general consolidation is emerging, focusing on a limited
number of physical formats, such as mobile phones (smallest), smartphones and
palmsized PDAs (good screen, no keyboard), communicators and handhelds (good
screen and keyboard). Larger sizes will ultimately compete with notebooks using
traditional operating systems.



               NR-notat/NR Note

Norsk Regnesentral Page 23 of 25

Currently, Palm OS has the largest market share, with Windows CE trying to establish
itself as the only serious alternative for advanced applications, and Symbian playing
on its powerful partners within the mobile phone industry.

Microsoft is in definitive control of Windows CE, having no clear (or at least very
shifting) strategy other than wanting to dominate the market. Device manufacturers
(licensees) are bound by special conditions (marketing, labelling etc). Expensive
licensing gives expensive devices. Expensive development environment has hindered
independent development (most applications must be paid for). Not so good GUI (esp.
Palmsize) have lead to bad user image. A new image (Pocket PC), much cheaper
toolkits, stronger kernel etc are all designed to improve Microsoft’s mobile profile,
hoping to gain on Palm (the current mass-market leader) and EPOC (the so far
uncontested mobile phone champion – without any available devices!).

For EPOC, where the Symbian – the OS developer is controlled by the most
influential licensees the co-development of devices and operating systems seem
stronger. Still, the lack of new available devices makes it difficult to judge EPOC’s
future expectations.

For Palm OS one company in control of OS and most devices, although there are
some licensees. There have been rumours that the Palm OS as such to be abandoned
and GUI built on top of EPOC. Other rumours state that Palm OS is superior in its
focus on small, efficient applications. It Palm OS is to keep its dominating market
share Palm must counter the best of the other contenders while keeping a competitive
edge inventing their own, new features.

For special purpose, especially critical systems, traditional embedded systems like
VxWorks still hold the competitive edge. Here, an interesting development will be
how the marked based on Microsoft’s embedded offerings, both Windows CE and
Embedded NT, will develop.

5.2 Aspect Summary
In practice, the different operating systems described have some common features, but
with significant differences. Most can be programmed using C or C++ and provide
some sort of stdlib-support. The most important differences are EPOC’s memory
management and Palm OS application architecture.

Windows CE is a general purpose operating providing a environment very similar to
other WIN32 operating systems. It does not have an explicit focus on resource
constraints or real-time features. EPOC is also a general-purpose operating system
with special focus on resource constraints such as multitasking and memory
management. Palm OS, on the other hand, is designed for special purpose
applications, small, simple and effective. Palm OS has no explicit focus on resource
constraint, but only low-level memory management support forces every application
developer to handle most resource problems himself. VxWorks is a special purpose
operating system focusing on real-time applications.



               NR-notat/NR Note

Norsk Regnesentral Page 24 of 25

6 References
Microsoft Windows CE Developer’s Kit (documentation for Windows CE Toolkit for
Visual C++ 6.0).
Microsoft eMbedded Visual Tools 3.0

EPOC 5 SDK
EPOC Connectivity SDK
Programming Psion Computers
http://www.symbian.com/technology/papers/papers.html

Palm 3.5 SDK Doc (Palm OS Companion, Reference)

VxWorks Programmer’s Guide 5.4
VxWorks Reference Guide 5.4

CF+ and CompactFlash Specification Revision 1.4
IBM MicroDrive Technical Specifcation
Lexar Media CF Technical Specification
Sandisk CF Technical Specification
Kingston CF Technical Specification


