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Abstract— The ability of pulse-echo measurements to re-
solve closely spaced reflectors is limited by the duration of
the ultrasonic pulse. Resolution can be improved by de-
convolution, but this often fails because frequency selec-
tive attenuation introduces unknown changes in the pulse
shape. In this paper we propose a maximum a posteriori
algorithm for simultaneous estimation of a time varying
pulse and high-resolution deconvolution. A priori infor-
mation is introduced to encourage estimates where the
pulse only varies slowly and the reflectivity sequence is
sparse. This add sufficient regularization to the problem,
and no further assumptions on the pulse such as mini-
mum phase or a particular parametric form are needed.
The joint pulse and reflectivity estimate is computed iter-
atively by alternating steps of pulse estimation and reflec-
tivity estimation. The first step only amounts to a linear
least squares fit. The second step is a difficult combinato-
rial optimization problem which we solve by a sub-optimal
but efficient search procedure. Due to the sparseness as-
sumption, our approach is particularly suited for layered
media containing a limited number of abrupt impedance
changes. This is a situation of interest in many applica-
tions of non-destructive evaluation. Synthetic and real
data results show that the algorithm works well.

Keywords— Adaptive deconvolution, MAP estimation,
iterated window maximization.

I. INTRODUCTION

In ultrasonic non-destructive evaluation (NDE) a fo-
cused acoustic wave of short duration is transmitted into
an object. Due to internal impedance changes, part of
the incident energy is reflected and can be measured to
obtain information about the internal structure of the
object. Under simplifying assumptions, the recorded ul-
trasonic trace (A-line) can be modeled as a 1-D con-
volution between a pulse shape and the reflectivity of
the insonified medium [1]. The convolution with the
pulse “smears” out fine details in the reflectivity and
make interpretation of closely spaced reflectors difficult.
Tt is therefore desirable to (partially) remove the effect
of the pulse, i.e. perform deconvolution. A major diffi-
culty is that the incident pulse often changes consider-
ably as it passes trough the medium. Generally, the high-
frequency components will be attenuated more severely
than the low-frequency components. Linear with fre-
quency attenuation models have been shown to approx-
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imate the pulse changes in some biological tissues [1],
but, in general, the exact nature of the changes is poorly
known. It is thus necessary to estimate both the reflec-
tivity and the pulse from the same data (blind deconvo-
lution), with the additional complication that the pulse
is slowly time varying.

Many adaptive deconvolution algorithms have been
designed to cope with time varying pulses. The major-
ity are autocorrelation based solutions (cf. e.g. [2], [3])
which are incapable of estimating the phase of the pulse.
These typically resort to a questionable minimum phase
assumption. Adaptive deconvolution methods based on
higher order statistics [4] can identify an arbitrary pulse
as long the reflectivity is non-Gaussian and (locally) sta-
tionary. The price to pay for this generality, however, is
that large amounts of data will be necessary for precise
pulse estimates [4], [5]. In particular in the time varying
case, this can be severe since only short data segments
can be considered as reasonably stationary.

To improve the estimates for finite amounts of data,
we shall introduce more a priori information. In NDE,
the insonified material will often admit some form of lay-
ered structure. Large impedance contrasts typically ex-
ist only in a limited number of positions, correspond-
ing to interfaces between different materials, faults etc.
This implies that the reflectivity will be sparse, i.e. only
at a limited number of samples have non-zero values.
Sparseness i1s a powerful constraint that have been used
extensively in seismic applications. Bernoulli-Gaussian
modeling and generalized maximum likelihood solutions
have been shown to provide precise identification of non-
minimum phase pulses and high-resolution deconvolu-
tion results [6], [7], [8]. The solutions have mainly been
limited to the time-invariant case. Natural extensions to
time varying pulses require either a parametric model for
the pulse variations or some sort of time gating. Para-
metric models have been proposed [9], but these appear
quite restrictive and may easily enforce an unrealistic
structure on the data. Time gating consist of dividing
the trace into (possibly overlapping) intervals and carry
out standard estimation in each interval. A fundamental
problem is that long intervals will violate pulse invari-
ance, whereas short intervals may not contain enough
data for precise estimation. A previous approach given
by Chi and Chen [10] proceeds recursively and performs
time-invariant estimation in moderately long and over-
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lapping intervals.

In this paper, we propose a different solution. The
idea is to use short intervals, but to constrain the solu-
tion by the a priori knowledge that the pulse only varies
moderately between neighboring intervals. To do so, we
formulate the problem in a Bayesian framework. A pri-
ori information about the unknowns (the pulse and the
reflectivity) is represented as prior probability distribu-
tions. To combine the information in the prior and the
observed data, we use a mazrimum a posteriori (MAP)
estimate. This is the maximizer of an objective func-
tion (the posterior) defined as the conditional probability
density of the unknowns given the observed data. Com-
puting this maximum is a difficult optimization prob-
lem. Instead of directly maximizing with respect to all
unknowns, we use the following block component method
(BCM) [6]:

1) Start with an initial guess for the reflectivity.

2) Compute the MAP estimate of the pulse treating
the reflectivity estimate from the preceding step as
known.

3) Compute the MAP estimate of the reflectivity
treating the pulse estimate from the preceding step
as known.

4) Repeat from 2) until convergence.

In our Bayesian setting this is a version of the iterated
conditional modes procedure [11] with vector valued vari-
ables. Thus, convergence to a (possibly local) maximum
of the overall objective function is ensured [11]. No guar-
antee for global optimality can be given, but simulations
suggest that a satisfactory solution will usually be found.

The two sub-problems that must be solved are funda-
mentally different. With suitable Gaussian distribution
assumptions, estimation of the pulse for fixed reflectiv-
ity (step 2 above) only requires a linear least squares fit.
However, due to the dimensions of the involved quanti-
ties, the implied inversion may easily be too burdensome.
To avoid this problem, we give an equivalent iterative so-
lution that will be much faster in many cases. We also
give an extension to the multichannel case when sev-
eral traces are available. Provided the pulse is invariant
across the traces, this leads to major improvements of
the estimates.

Estimation of the Bernoulli Gaussian reflectivity for
fixed pulse (step 3 above) is a difficult combinatorial opti-
mization problem that is usually solved by various itera-
tive and sub-optimal methods [8], [12], [13] [14], [15], [16].
Any of these methods are candidates for the optimization
in step 3. Different choices lead to varying degrees of op-
timality and computational efficiency. In this paper we
shall consentrate on the iterated window mazimization
(TWM) algorithm [16], which we have found to perform
better than a selected sample of well-established alter-
natives [17]. TWM uses local updating and pre-storing
of some key-quantities to achieve a very rapid iterative

search. Note also a previous deconvolution algorithm
devised by Powell and described by Zala [18]. This algo-
rithm appears related to IWM and has been used as one
part of a successful inversion scheme for NDE data [18].

Since IWM does not require the pulse to be con-
stant on intervals, we interpolate the estimates from the
pulse estimation step. Thus, the reflectivity estimates
are based on a continuously varying and non-parametric
pulse estimate.

The rest of the paper is organized as follows: In Sec-
tion II the model is stated in detail and the method used
for pulse estimation is derived. Section III treats the re-
flectivity estimation step. A short review of the IWM
algorithm adapted to the present context is given. For
derivation and further discussion the reader is referred
to [16]. In Section IV results from synthetic and real
NDE data are presented which show that the proposed
method works well. Finally, differences to some previous
works are discussed in Section V.

II. PULSE ESTIMATION
A. Model

We model the observed trace, z, by the time-variant
convolutional model

z(n) = Z:L‘(n— kYh(k,n—k)+e(n), n=1,2,...N,

(1)
where z is the reflectivity of the insonified material, h
is the pulse, and e is additive noise. Note that h(-, n)
is the pulse shape resulting from a reflector at position
n. Although the shape depends on n, we assume that
there is a fixed K such that h(k,n) = 0 for £ < 0 and
k > K. To avoid separate treatment of some border con-
ditions, we also assume that the observed record contain
no truncated reflections, i.e. #(n) = 0 for n < 0 and
n > N — K. The noise term accounts for measurement
noise and other effects not explained by our model. We
take it to be zero-mean, Gaussian, and white, with vari-
ance 2.

To achieve a computationally efficient solution, we as-
sume that the pulse is invariant on (small) intervals,
(nj—1,n;], fori=1,2,...7, ng =0, and ny = N. Set

hi(k) = h(k,n), n,_1<n<n; (2)
and
n;_1 <n < n;,
else.

2i(n) = { g’(n),

Using (2) and (3), model (1) can be written as

(3)

2(n) =Y zi(n—k)hi(k) +e(n). (4)

i=1 k=0
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In matrix form (4) becomes

I
7z = Z X;h; +e (5)
i=1

with obvious notation. Setting X = (X3,...,X;) and
h = col(hy, ..., hy), equation (5) can be more compactly
be written as

z=Xh+e (6)

We take the prior for h to be zero mean Gaussian with
covariance matrix Xy . For given X, the MAP estimator
in the linear Gaussian model (6) is then well known to

be (c.f. e.g. [19])

-~
~—

) -1
h= (B—}—aiﬁ];l) u, (
where B = X’X and u = X'z.

B. Prior

To compute (7) the covariance matrix of h must be
specified. We want the pulse to wary only moderately
between neighboring intervals. To encourage such con-
tinuity we use a first order auto-regressive vector pro-
cess, defined by taking h; given h;_; to be Gaussian
with mean ah;_; and variance 3. The chain is initial-
ized by letting hy be Gaussian with mean 0 and variance
(1 — a?)~'=. (This makes the process stationary.) Us-
ing these definitions 1t is not difficult to see that h has
covariance matrix

¥ aX al~1'%
Y aX
1
h=—"—=
e
SYMMETRIC X aX
b))
(8)
The inverse, which is needed in (7), is
x-1! —ax~!
(1+o2)2"1 —ax-! O
21:1 =
SYMMETRIC (14 02)T-1 —ax-!
2—1

The sparse structure of the inverse results from the
choice of an AR model. Higher order AR models would
also give rather simple solutions. However, we think that
the first order model provide an adequate description of
the prior assumption of continuity and will not consider
higher order models.

C. Iterative maximization

If there are many intervals, solving the linear system
in (7) may be costly. Since both B and 21:1 will be
sparse, various standard sparse matrix techniques [20]
could be used. Here, we shall use an iterative solution
that is basically a vector-valued version of the familiar
Gauss-Seidel procedure [21]. To gain some additional in-
sight, we derive the solution from a statistical point of
view and show that it is also an instance of iterated con-
ditional modes with vector valued variables. Instead of
directly determining the MAP estimate of h as in (7),
we compute the conditional MAP estimate of h; given
all h;, j # i. Repeating this procedure iteratively for
all 7 will lead at least to a local maximum of the poste-
rior [11]. Since the posterior in this case (conditional on
X) is multivariate Gaussian and only has a global maxi-
mum, the procedure will certainly converge to the global
optimum. It is thus equivalent to the one-shot inversion
in (7). Note that an iterative inversion procedure is par-
ticularly well suited in the present context. Since pulse
estimation is performed repeatedly as part of the over-
all BCM, the previous pulse estimate provides a good
starting point.

Using the unconditional moments in (8) and basic
properties of multivariate Gaussian vectors [22] the prior
mean for h; given h;, j # 4 is seen to be

ah2, 1= 1,

— [0 .

h; = m(hi_1 + hi+1), l<i< I, (10)
ah[_l, 1=1.

Correspondingly, the conditional covariance matrix is

3 i=1,
1 .

Yhi= —1+a22,1<z<l, (11)
3 i=T

The conditional MAP estimate for h; given h;, j # i is

~ -1 — —
h; = (Bn’ + 0321:)12') (ui - ZBijhj - Biihi) +h;,
J#i

(12)
where B;; = X!X; and u; = Xjz. This can be seen by
rearranging (5) as

z; = X;h; + e, (13)
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where

ii =7 — ijhj — XZI_IZ and ﬁz = hl — Bz (14)
J#i

Model (13) is on the same form as (6). Substituting z by
z;, X by X;, and Xy by Iy ; in (7) gives the conditional
MAP estimate of h;. Linearly transforming this esti-
mate to an estimate for h; and inserting definitions (14)
gives (12).

The unconditional estimate for h can now be found by
solving (12) iteratively for each i. Using the definition of
X; and the assumption that the observed record contains
no truncated reflections, it is easily seen that the B;; is
Toeplitz (each diagonal band is constant). Provided that
=1 is chosen on a Toeplitz form to, the inversion in (12)
can be carried out in order K? by Levinson recursion [20].
For efficient execution the u; and the bands of the By;
should be computed and stored prior to the iteration.
Note also that provided the intervals are not shorter than
K, B;; = 0for [i—j| > 1. Thus, the sumin (12) reduces
to three terms. Also since B;; = B}Z- it 1s only necessary
to compute and store the bands of B;; and B; ;4.

After the B;; and u; have been initialized, the total
operation count for the iterative pulse estimation is on
the order JIK?, where J is the number of iterations.
Since direct inversion in (7) will require on the order of
I3 K3 operations it is clear that the iterative method may
be much faster provided that J stays reasonable.

D. Multichannel Extension

We now consider data consisting of several traces
(channels) indexed by ¢ = 1,2,...,C. Assuming the
pulse to be common to all traces, (5) can be generalized
in an obvious way to

I
ze = Xcihi +ec. (15)

i=1

Provided the noise from the different traces are indepen-
dent and have the same variance, it can be seen that the
MAP estimator for this extended model is obtained by
simple averaging operations. Specifically, (12) can still
be used given the new definitions

c c
B;; = E B.;j, and u;= E U ;,
e=1 e=1

- —_ ! —_ 1
where B, ;; = chchyj and u.; = chizc.

E. Parameter Selection and Implementation

By varying the choice of the AR parameter a and the
basic covariance matrix X, it is possible to express a wide
range of prior assumptions. For example, by appropriate
choice of X it would be possible to express continuity of

each h; as well as continuity between h; and h; 1. In the
following we shall restrict attention to the last form of
continuity which is consistent with our primary motiva-
tion as stated in the introduction. Specifically we choose
3 on the simple form oI and o = 1. The last choice
makes the prior improper. It is non-informative [23] with
respect to the overall mean level of the AR, process. The
posterior and resulting MAP estimate is, however, per-
fectly valid. Note also from (10) that this choice is in-
tuitively pleasing since the conditional prior expectation
of the pulse in any given interval reduces to the average
of the pulses in the neighboring intervals.

From (11)-(12) it can be seen that the remaining pa-
rameter o}, determines the degree of continuity between
neighboring intervals. Its value should be chosen rela-
tive to the interval size. For short intervals the pulse
will vary little between neighboring intervals and a small
on 1s appropriate. To obtain a truly continuous esti-
mate, we would ideally like to use intervals containing
only one sample and enforce the necessary continuity by
a sufficiently small o,. However, this would normally be
computationally prohibitive. For the results presented
here we took the interval size equal to the pulse length
which was 50 samples. Based on some preliminary ex-
periments we chose o, = 0.03. This ensured reasonable
continuity between neighboring intervals, while still en-
abling real pulse variations to be tracked. Note that the
convolutional model (1) is indeterminate with respect to
an inverse scaling of h and z. This ambiguity was re-
solved by simply normalizing each h(-,n) to unit energy
after each step of pulse estimation. The chosen value of
on 18 thus relative to a unit energy pulse.

The noise standard deviation, o, was taken as the true
value for the synthetic data and heuristically selected as
4% of the maximum data value for the real data. Note
that (12) actually only depend on the ratio o2 /oi. Thus,
with the above simplifications the pulse estimation step
only require specification of one free parameter, which is
directly related to the continuity of the produced esti-
mate.

To turn the piece-wise constant pulse estimate into a
truly continuously varying pulse to be used as input to
the reflectivity estimation step, a final step of linear in-
terpolation was used. To ensure the validity of this inter-
polation, the pulse estimates from neighboring intervals
were shifted (if necessary) to obtain maximal correlation.
Note that the interpolation approximation makes the ob-
jective function of the pulse and reflectivity estimation
steps slightly different. Theoretically this could disturb
the convergence properties of the outer BCM and result
in small oscillations. However, this was never observed in
our experiments. A safeguard is to set an upper limit to
the number of BCM iterations or to avoid interpolation
by using the piece-wise constant pulse estimate directly.
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I11. REFLECTIVITY ESTIMATION

We now describe the TWM algorithm [16] which is used
to compute the MAP estimate of the reflectivity, x, for
given h. We assume that x is independent of h and has a
Bernoulli-Gaussian [6] prior defined as follows: The com-
ponents are independent. With probability 1— A they are
zero and with probability A they are sampled from a zero-
mean Gaussian distribution. The variance of this Gaus-
sian is taken to be infinite. This non-informative limit
leads to some simplifications and usually works well [16].
Other assumptions are as in the previous section.

The IWM algorithm is based on an equivalent repre-
sentation of x by two variable length vectors, t giving the
positions of the reflectors (non-null elements) and a giv-
ing their amplitudes. Computing the optimal a for given
t only requires a linear least squares fit. Estimation of
t, however, is a difficult combinatorial problem that is
solved by a (sub-optimal) iterative search. The search
proceeds through a series of local changes to t. Only
changes which increase the posterior are accepted. For
each new candidate value of t, the amplitudes must es-
sentially be refitted. However, because the new t values
only differ from the previous one in a few components,
it is not necessary to refit all the amplitudes. Instead
only those inside a small window, at least covering the
changed reflectors, are updated. This reduces the dimen-
sion of the least squares fit to the number of reflectors
in the window (typically in the order of 1-5). Thus, the
inversion will be fast. Efficient compilation of the coeffi-
cients of the least squares problem is achieved by using
a simple relationship with the two correlation functions
which are computed and stored prior to the iteration.
These are

min(K,N—n)
ewn(k,n) = > h(Ln)h(l—k,n+k)  (16)
=k
and
min(K,N—n)
cem)= 3 hLmzn+D), (1)

=0

where n=1,2,..., N and £k =0,1,...,min(K, N — n).
Assume now that a window w has been chosen. Let
t¥ be the components of t that are inside the window
and t¥ be the components outside the window. Also
partition a likewise. The optimal value of a¥, given a¥,

t and z 1s

Y — (Sw)—lvw

: (18)
where

S5 = can ([t — 1], min(t}’  1}))

(3 7))

(19)

and

vl = ens (1) = > afenn ([t — |, min(t, £5)). (20)
J

Note from the last sum that reflectors outside the window
affect the fit. However, only those producing overlapping
reflections with reflectors inside the window need to be
considered. Thus, the sum should be limited to j such
that [t¥ — t]U| < K. The (t¥,a") pair corresponding to
the largest value of the posterior is the one which yields
the larger value of the criterion

l(t) = (v¥)'a" — oM™, (21)
Here M™ is the number of reflectors inside the window
and # is a parameter to be discussed later.

The window positions are systematically cycled trough
the entire data record. Within each window new candi-
date values for t are obtained by trying all changes
in a predetermined transition set. The changes consid-
ered here were: inserting a reflector, deleting a reflec-
tor, and moving a reflector with one or more samples.
In addition, some changes affecting two reflectors simul-
taneously were also considered (c.f. the specification of
TWM 2 in [16]). Equations (18)-(21) are computed for
the original value of t* and for each new candidate value.
If an improving candidate is found, both a and t is up-
dated. Otherwise only a is updated. Then, a new win-
dow is chosen, and the procedure is repeated until neither
t nor a change any more. This guarantees that the final
value of a will be globally optimal given the final value of
t, but the final value of t may still be suboptimal. The
degree of sub-optimality depend on the richness of the
transition set. For the transition set used here, the IWM
algorithm usually work well and provide higher optimal-
ity than well-established alternatives [12], [13] which are
based on a much more limited exploration strategy [17].
For the applications presented here, the windows were
chosen to include all reflectors with distance 15 samples
or less from those that were updated.

The parameter 6 govern the sparsity of the produced
estimate by determining the “penalty” for each extra re-
flector in (21). Although the MAP estimator defines it
as a function of o and the parameters of the Bernoulli-
Gaussian prior, this value can generally not be used [16].
Instead, we used # = 5002 in all our experiments. (An
argument for choosing # proportional to ¢2 for known
pulse is given in [16]. Here we use a somewhat larger
proportionality constant to account for estimation un-
certainty in the pulse.)

For the first step of reflectivity estimation, no pulse es-
timate is available. In this case a simple estimate formed
by inserting reflectors in all local maxima of the data
record was used. (A point was considered as a local
maxima if it had larger absolute value than the 40 near-
est samples.) In spite of the crudeness of this initial esti-
mate, all presented reconstructions converged reasonably
fast to sensible solutions.
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10 20 30 40 50

Fig. 1. The variant pulse used for data generation: Solid line
n = 1; dashed line n = 500, dotted line » = 1000.

IV. REsuLts
A. Computer Simulations

A record of 1000 samples were generated from
model (1) using a Bernoulli-Gaussian reflectivity with
reflector density A = 0.05. In order to provide a difficult
test for the algorithm, a severely time variant pulse was
used (Fig. 1). Tt was generated according to

h(k,n) = cos [wn(k — 22)] exp [ — (k- 24)2/100],

for w, = 0.7 — 0.0004n, n = 1,2,...1000, and k& =
0,1,...,49. High frequency attenuation is evident. Oth-
erwise, we attach no particular physical reality to the se-
lected shape. The additive noise was taken to be Gaus-
sian, white, and to provide signal-to-noise ratio 20 dB
(defined by mean power of noiseless signal divided by
noise variance).

The resulting reconstruction recovered most of the
large reflectors, but there was also several missed or false
detections (Fig. 2b). The basic pulse shape was tracked
well, but some small deviations are clearly seen (Fig. 3a-
b).

In the next example, 20 independent traces were used.
This required the multichannel modification given in Sec-
tion II-D. Otherwise, conditions were unchanged. In
this case the pulse estimates were almost indistinguish-
able from the truth (Fig. 3c-d). These improved pulse
estimates also lead to a clear improvement in the cor-
responding reflectivity estimate (Fig. 2¢). We conclude
that severely varying pulses can be accurately tracked
provided enough data are available. It is also interesting
that the quite moderate estimation error of the pulses in
Fig. 3a-b worsen the corresponding reflectivity estimate
considerably. This makes it clear that failing to account
for even moderate pulse variations will significantly re-
duce the ability to resolve closely spaced reflectors. This
can be expected to be true not only for the present algo-
rithm, but also for other high resolution deconvolution
techniques.

0.8

-0.8 N
200 400 600 800 1000

200 400 600 800 1000

. . . .
200 400 600 800 1000

Fig. 2. Deconvolution of synthetic data: (a) Non-stationary data;
(b) deconvolution based on only one trace; (c) deconvolution
based on 20 traces (only the first shown). Bars denote esti-
mates and circles denote true values.

B. Application NDFE data

The next data set is from an NDE experiment. A
sample of a fiber composite material used in the pro-
duction of a Swedish airplane had been exposed to a
falling object. The resulting damage was investigated by
scanning an ultrasound transducer along the surface of
the sample. Before deconvolution, the data were expo-
nentially weighted to strengthen week reflections at high
times and a non-zero mean level was subtracted. The
pre-processed data is displayed in Fig. 4a. The reflection
seen in all traces around 0.2ps is the front-wall echo.
The reflection around 1.7us is the back-wall echo, while
the remaining reflections are from inner delaminations
cased by the falling object. Note that the back-wall echo
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(c)

Fig. 3.

20

(d)

Pulse estimates for synthetic data: (a) One trace, n = 200; (b) one trace, n = 800; (c) 20 traces, n = 200; (d) 20 traces,

n = 800. Solid lines denote estimates and dashed lines denote true values. Accuracy for other n was comparable to the displayed

results.

is partly obscured by the strong reflections from the in-
ner delaminations and that some of the events are clearly
due to multiple reflections (in particular the event shown
after the back-wall echo around 2.2us).

The obtained reflectivity estimate is shown in Fig. 4b.
Note that most of the reflections from the delaminations
have the same sign. Based on the conjecture that the few
delaminations with opposite sign were artifacts, we com-
puted a new estimate using a slight modification of (21).
The penalty for reflectors with positive sign was doubled
while the penalty for reflectors with negative sign was
kept unchanged. This did not change the front-wall echo
which was clearly positive, but the inner reflections now
turned out to be almost purely negative (Fig. 4c). The
true structure is not known, but the good lateral con-
tinuity of this reconstruction strengthen our confidence
in it. (Note that such continuity was not exploited in
the algorithm, though it would be possible to do so [24],
[25].) The corresponding pulse estimates show slight, but
clearly evident, high frequency attenuation (Fig. 5). For
comparison, an estimate using an invariant pulse was
also computed (Fig. 4d). This estimate appear clearly
inferior. Note in particular the severe splitting of the
strong reflector around 1.2us and of the back-wall echo.
This particular data set was obtained with a probe with
nominal center frequency 10 MHz (in practice measured

to be somewhat higher). For probes with higher center
frequency, the frequency selective attenuation would be
more severe. In such case it would be even more impor-
tant to account for pulse variations.

An interesting application of the given algorithm is to
resolve reflections from deep (and thus serious) delam-
inations that overlap with multiple reflections from de-
laminations close to the surface. As an illustration, trace
28 from Fig. 4c is selected for detailed display in Fig. 6.
The reflector labeled F is the front wall. Label A denotes
a strong primary reflection. Sound energy ringing back
and forth between reflector A and the front wall gives rise
to the multiple reflections B and C. The point of interest
is the deeper primary reflection X, that has successfully
been detected by the algorithm in spite of severe overlap
with multiple B. From inspection of this trace alone, it is
not clear that the estimate has captured the true struc-
ture, but continuity with the estimates from neighboring
traces in Fig. 4c support the obtained solution.

C. Computational Load

Each of the real data reconstructions in Fig. 4 required
10-15 iteration of the outer BCM, resulting in a total exe-
cution time of less than one minute on a 60 MHz Pentium
PC. Most of the computer time were spent in the reflec-
tivity estimation step. The computational load of this
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Fig. 4. Deconvolution of NDE data: (a) Data (sampling rate 200 MHz); (b) deconvolution with variant pulse; (c) deconvolution
with variant pulse and extra penalty for positive reflections; (d) deconvolution with invariant pulse and extra penalty for positive

reflections.

step 1s quite sensitive to the number of estimated reflec-
tors. Denser estimates will increase the average number
of reflectors in each window and thereby slow down com-
putation of (18)-(21). Reconstruction of the synthetic
example with 20 traces required close to 10 minutes, even

though the number of samples were approximately the
same as for the real data (20 000 and 24 000 respec-
tively). The slower execution for the synthetic data was
mainly related to the much higher reflector density, but
convergence was also slower (30 BCM iterations).
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Fig. 5. Pulse estimates for NDE data: (a) Pulses; (b) amplitude
spectra. Solid lines denote estimate at 0.5us and dashed lines
denote estimate at 2us. (These estimates correspond to the
reflectivity estimate in Fig. 4b. Those corresponding to Fig. 4c
were almost identical.)

In all reconstructions, the iterative solution from Sec-
tion I1-C was used for pulse estimation. For the real data,
this required 20-30 iterations for the first step of pulse
estimation, but quickly reduced to 3-5 in later BCM it-
erations. (The reduction is due to the previous pulse
estimate providing a good starting point.) We have ob-
served, however, that convergence may be very slow in
some cases. This can happen either when there is very
little data in each interval or when particularly strong
continuity is assumed (by using a small oy). In these
cases, other sparse matrix inversion techniques may be
preferable. In the synthetic example with only one trace,
the average number of reflectors in each interval were
only 2. Here each step of pulse estimation varied from
60 to 10 iterations taking from 10 to 2 seconds. However,
the dimension of the linear system was 1000 x 1000. At-
tempting direct (non-sparse) inversion required approx-
imately 2 minutes, thus making the iterative solution
preferable, even though convergence was rather slow.
Adding more data improved the convergence speed. In
the example with 20 traces, only 8 to 3 iterations were
required taking approximately 1.5 to 0.5 seconds.

V. CONCLUSION AND DIScUSSION

We have presented an iterative maximum a posteri-
ori algorithm that can simultaneously estimate a time
variant pulse and perform high resolution deconvolu-

—0.5F b
-1} B 4
—1.51 b
—2F A 4
—-25 . . . L
[e] 0.5 1 1.5 2 2.5

Time (microseé.)

Fig. 6. Trace 28 selected from Fig. 4(c) for detailed display. Es-
timates are shown with bars and superposed on the data. F
indicates the front-wall echo. A indicates a primary reflections
with multiples B and C. X indicates a second primary reflec-
tion detected by the algorithm in spite of severe overlap with
multiple B.

tion. The given simulations show that acceptable results
can be obtained even for small data sets. For moder-
ately large data sets, rapidly varying pulses are tracked
with high accuracy, thus enabling successful resolution
of severely overlapping reflections. The presented NDE
example show that the algorithm also behave well for
real data that will inevitably deviate slightly from the
idealized model.

Sparsity of the reflectivity is fundamental to the ap-
proach. This makes the algorithm well suited for many
NDE applications and some special applications of medi-
cal ultrasound [26]. In typical use of medical ultrasound,
however, most of the information in the data 1s due to
scattering caused by numerous small inhomogenities (dif-
fuse reflections). For such data other methods should be
used.

Our approach require specification of two basic param-
eters. One controls the continuity of the pulse estimate
and the other controls the sparsity of the reflectivity esti-
mate. Block component methods used in seismic applica-
tions have traditionally been extended by an additional
step where all unknown parameters are estimated [6].
This approach has been criticized [27] for leading to pos-
sibly unstable estimates. In accordance with this, we
consider these two parameters as the necessary a priori
input to stabilize the estimates. They may be viewed as
“tuning parameters” or possibly be estimated by other
means.

In contrast to the recursive approach of Chi and
Chen [10], our solution require the entire trace to be
available at the time of processing. On the other hand,
better estimates can be expected since they are based on
more data (all future as well as past samples). In par-
ticular, the recursive approach use an initial part of the
trace before it converges to the true pulse. As a result,
the first part of the estimate will often be in gross er-
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ror. This problem is not shared by the iterative solution
given here. A further difference is the way continuity of
the pulse is ensured. Here we use short non-overlapping
intervals combined by a prior that encourage continu-
ity. This is not equivalent to the smoothing obtained
by using longer and overlapping intervals as in [10]. In
particular when the data (the number and size of re-
flectors) are unevenly distributed, the difference can be
large. As an illustration, consider application of the al-
gorithm given here to a (multi-trace) data set containing
a large amount of data in the first and last interval, say
a front-wall and a back-wall echo, and little or no data
in between. In the first and last interval, the influence of
the prior will be overwhelmed by the data, and the esti-
mate will be close to the true value. If there is no data
in the intermediate intervals, the estimate in these will
simply be the average of the two neighboring intervals,
thus providing a smooth transition between the front-
and back-wall echo. If there is some data in the interme-
diate intervals deviations from the linear transition may
result. The degree of deviation will be consistent with
the amount of data relative to the prior strength.

Consider instead using a longer sliding window for
smoothing. In this case the estimate will be almost iden-
tical to the front-wall echo as long as this reflection is in-
cluded in the window. Then, the estimate will abruptly
change to become highly variable or even undefined when
there is little or no data inside the window. Finally, a
new abrupt change will occur when the back-wall echo
enters the window. This sort of unsmooth behavior
appears clearly undesirable. Furthermore, suppose the
pulse changes significantly shortly after the front-wall
echo. Say, in the second of the small intervals. If there
is enough data in this interval relative to the strength of
the prior, the change can be picked up by our approach.
With a longer window, on the other hand, the change
will be overwhelmed by the much larger amount of data
provided by the front-wall echo. Thus, even if there is
enough data to indicate that a statistically significant
change has occurred, the long window approach will not
account correctly for this in the presence of unevenly dis-
tributed data. In fact, the solution given here smooths
in an optimal fashion relative to the prior belief in conti-
nuity as expressed by o and the amount of data in each
interval.

The present approach makes no distinction between
primary and multiple reflections, thus relying on some
post-processing or manual identification of the multiples.
The inversion method of Zala [18] performs automatic
detection and removal of multiples and has successfully
been applied to NDE data. On the other hand, his work
requires the pulse to be invariant and known a priori.
Combination of his work with the present would give
a complete solution that could simultaneously remove
unwanted multiples and cope with unknown pulse vari-

atlons.
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